首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Foam fractionation can be used to enrich a hydrophobic protein such as bromelain from an aerated dilute protein solution because the protein foams. On the other hand, a protein such as invertase, which is hydrophilic, is not likely to foam under similar aerated conditions. While a foam fractionation process may not be approapriate for recovering a hydrophilic protein alone, it is of interest to see how that non-foaming protein affects the foaming protein when the two are together in a mixture. The bromelain enrichment, activity and mass recovery were observed as a function of the solution pH in order to explore how invertase can affect the recovery of bromelain in a foam fractionation process.  相似文献   

2.
Foam fractionation and resin adsorption were used to recover soybean saponins from the industrial residue of soybean meal. First, a two-stage foam fractionation technology was studied for concentrating soybean saponins from the leaching liquor. Subsequently, resin adsorption was used to purify soybean saponins from the foamate in foam fractionation. The results showed that the enrichment ratio, the recovery percentage, and the purity of soybean saponins by using the two-stage foam fractionation technology could reach 4.45, 74%, and 67%, respectively. After resin adsorption and desorption, the purity of soybean saponins in the freeze-dried powder from the desorption solution was 88.4%.  相似文献   

3.
AIMS: The objective of this study was to evaluate the capability of Fusarium culmorum to produce non-hydrophobin surface-active proteins in vitro, to isolate and characterize such proteins from liquid cultures, to analyse their effect on overfoaming (gushing) of beer and to elucidate their prevalence in pure cultures and infected malt. METHODS AND RESULTS: A 20 kDa protein was isolated from liquid cultures of F. culmorum BBA 62182 upon enrichment by foaming. BLAST search with N-terminal and internal sequences of the protein revealed high homology with a hypothetical protein predicted within the F. graminearum PH1 genome sequence. Oligonucleotide primers designed to bind 30 nt upstream and downstream of the predicted gene were used to amplify a 695 nt PCR fragment from genomic DNA of F. culmorum BBA 62182. Cloning and sequencing of the product revealed a 635 nt open reading frame which had 98% homology to the predicted F. graminearium PH1 gene code. Removal of a 59 nt intron and translation resulted in a 191 amino acid protein of 20.754 kDa with a calculated pI of 9.1. Amino acids obtained by Edman sequencing of fragments within the 20 kDa protein were 100% homologous with the sequence deduced from the DNA sequence. According to its properties, the new protein was termed alkaline foam protein A (AfpA). Sequence comparison revealed some homologies with proteins in Emericella nidulans, which are involved in phialide development and response to antifungal agents. Homologies with other hypothetical fungal proteins suggest a new group of proteins, for which we suggest the name fungispumins. Addition of AfpA to beer showed that overfoaming (gushing) is not induced in stable beer but can significantly enhance this effect in beer showing moderate gushing. Use of a polyclonal anti-AfpA antibody in a Western blot revealed that the protein is produced by various F. culmorum strains and also by F. graminearum, but not by other Fusarium spp. tested. PCR testing of 69 species of Fusarium and Trichoderma reesei with a gene specific primer pair revealed that the gene may be present exclusively in F. culmorum, F. graminearum, F. cerealis, F. lunulosporum and F. oxysporum f. sp . dianthi. Immunochemical detection of AfpA in malts artificially inoculated with F. culmorum and F. graminearum showed that the protein was present in gushing inducing malts (gushing test) but absent in malts which were negative in a gushing test. CONCLUSIONS: AfpA is a member of a new protein class, fugispumins, and can be isolated from pure liquid cultures of F. culmorum. A homologous protein is synthesised by F. graminearum. The protein is produced in contaminated malt and enhances gushing of beer. The gene coding for AfpA is restricted to Fusarium species presumably involved in the induction of beer gushing. SIGNIFICANCE AND IMPACT OF THE STUDY: We describe a new class of proteins, fungispumins, the natural function of which remains to be elucidated. Findings add useful information to research on the mechanisms involved in foam stability of beer. AfpA may be useful as a marker for gushing in future quality control applications for the brewing industry.  相似文献   

4.
Aims:  Construction of an industrial brewer's yeast strain, which could improve foam stability and reduce calorific values of beer.
Methods and Results:  An industrial brewer's yeast strain (Ts-10) was constructed by integrating glucoamylase encoding gene GAI amplified from Saccharomycopsis fibuligera by PCR into the locus of proteinase A (PrA) gene ( PEP4 ). The resulting recombinant strain identified by PCR could grow on YNB minimal medium plate with starch as sole carbon source. Its highest GAI activity was 91·69 U ml−1, but it had no PrA activity. The real extract was reduced by 21·07% and the main residual maltotriose content was reduced by 14% in wort fermented with the recombinants strain. Its foam retention in beer was higher 39 s and the contents of potential off-flavour compounds, such as diacetyl, pentanedione and acetaldehyde were lowered by 16%, 13% and 14%, respectively, as compared with the industrial brewer's yeast YSF-5.
Conclusions:  An industrial brewer's yeast strain was constructed by introducing GAI gene and disrupting PEP4 gene.
Significance and Impact of the Study:  The recombinant strain (Ts-10) had better foam performance and mouthfeel in addition to low-calories values. It was free of heterologous DNA sequences and drug-resistance genes and could be safely used in beer production.  相似文献   

5.
Increasing interest in biological surfactants has led to intensified research directed at more cost-efficient production of biosurfactants, relative to traditional surface-active components based on petrochemical feedstocks. This publication will focus on a new integrated process for continuous rhamnolipid (RL) production. RL was synthesized by Pseudomonas aeruginosa DSM 2874 and was continuously removed in situ by foam fractionation. To prevent loss of the biocatalyst through foaming, bacteria were entrapped in magnetic alginate beads. Immobilizates were retained from the foam by high-gradient magnetic separation and back-flushed in the bioreactor at constant intervals. It was demonstrated that continuous RL production in a 10-L bioreactor over several cycles with intermediate growth periods is feasible. Complete separation of RLs from the production medium with an average enrichment ratio of 15 in the collapsed foam was demonstrated, yielding a final RL amount of 70 g after four production cycles.  相似文献   

6.
A droplet fractionation method was previously developed to concentrate a dilute nonfoaming protein solution. In that earlier study with invertase, it was demonstrated that droplets created by ultrasonic energy waves could be enriched up to 8 times that of the initial dilute invertase solution. In this study, a mixture of bromelain (a foaming protein) and invertase (a nonfoaming protein) is investigated as a preliminary step to determine if droplet fractionation can also be used to separate a non-foaming protein from foaming proteins. The foaming mixture containing bromelain is first removed by bubbling the binary mixture with air. After the foam is removed, the protein rich air-water interfacial layer is skimmed off (prior to droplet fractionation) so as not to interfere with the subsequent droplet production from the remaining bulk liquid, rich in non-foaming protein. Finally, sonic energy waves are then applied to this residual bulk liquid to recover droplets containing the non-foaming protein, presumed to be invertase. The primary control variable used in this droplet fractionation process is the pH, which ranged for separate experiments between 2 and 9. It was observed that the maximum overall protein partition coefficients of 5 and 4 were achieved at pH 2 and 4, respectively, for the initial foaming experiment followed by the post foaming droplet fractionation experiment.  相似文献   

7.
Variability in poloxamer 188 (P188) raw material, which is routinely used in cell culture media to protect cells from hydrodynamic forces, plays an important role in the process performance. Even though tremendous efforts have been spent to understand the mechanism of poloxamer's protection, the root cause for lot‐to‐lot variation was not clear. A recent study reported that the low performance was not due to toxicity but inefficiency to protect cells (Peng et al., Biotechnol Prog. 2014;30:1411–1418). In this study, it was demonstrated for the first time that the addition of other surfactants even at a very low level can interfere with P188 resulting in a loss of efficiency. It was also found that the performance of P188 lots correlated well with its foam stability. Foam generated from low performing lots in baffled shaker flask lasts longer, which suggests that the components in the foam layers are different. The spiking of foam generated from a low performing lot into the media containing a high performance lot resulted in cell damage and low growth. Analytical studies using size exclusion chromatography (SEC) identified differences in high molecular weight (HMW) species present in the P188 lots. These differences are much clearer when comparing the HMW region of the SEC chromatogram of foam vs. bulk liquid samples. This study shows that low performing lots have enriched HMW species in foam samples due to high hydrophobicity, which can be potentially used as a screening assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:767–775, 2016  相似文献   

8.
AIMS: To investigate the influence of the choice of yeast strain on the haze, shelf life, filterability and foam quality characteristics of fermented products. METHODS AND RESULTS: Twelve strains were used to ferment a chemically defined wort and hopped ale or stout wort. Fermented products were assessed for foam using the Rudin apparatus, and filterability and haze characteristics using the European Brewing Convention methods, to reveal differences in these parameters as a consequence of the choice of yeast strain and growth medium. CONCLUSIONS: Under the conditions used, the choice of strain of Saccharomyces cerevisiae effecting the primary fermentation has an impact on all of the parameters investigated, most notably when the fermentation medium is devoid of macromolecular material. SIGNIFICANCE AND IMPACT OF THE STUDY: The filtration of fermented products has a large cost implication for many brewers and wine makers, and the haze of the resulting filtrate is a key quality criterion. Also of importance to the quality of beer and some wines is the foaming and head retention of these beverages. The foam characteristics, filterability and potential for haze formation in a fermented product have long been known to be dependant on the raw materials used, as well as other production parameters. The choice of Saccharomyces cerevisiae strain used to ferment has itself been shown here to influence these parameters.  相似文献   

9.
On the denaturation of enzymes in the process of foam fractionation   总被引:1,自引:0,他引:1  
Experimental study on the denaturation of enzyme during the separation by foaming was conducted with trypsin and catalase in aqueous medium as model system respectively. The effects of operating pH and sparging gas composition on the denaturation of an enzyme were examined respectively. The oxidative deactivation of enzyme at the gas-liquid interface was identified, which could be reduced by applying nitrogen or carbon dioxide as sparging gas. At suitable conditions, the loss of enzyme activity can be reduced to less than 10% in case of trypsin and to zero in case of catalase. With its proven mildness and effectiveness, foam fractionation in a loop bubble column is applicable for recovery and concentration of enzymes from aqueous solutions.  相似文献   

10.
The barley proteins have been the subject of interests of many research groups dealing with barley grains, malt and beer. The proteins which remain intact after harsh malting conditions influence the quality and flavor of beer. The characteristic feature of the proteins present in malt and beer is their extensive modification with carbohydrates, mainly glucose that comes from the starch degradation during technological processes. The degree of the protein glycation has an effect on the quality of malt and beer and on the properties of the beer foam. A combination of two-dimensional high performance liquid chromatography (2D-HPLC) and matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF MS) was used for the analysis of the protein extracts that were reduced, alkylated, and degraded enzymatically without prior protein separation. This so-called "shot-gun" approach enabled us to determine glycation sites in one third of the proteins identified in the study and to propose potential glycation markers for fast and efficient monitoring during malting.  相似文献   

11.
This review focuses on the role of proteins in the production and maintenance of foam in both sparkling wines and beer. The quality of the foam in beer but especially in sparkling wines depends, among other factors, on the presence of mannoproteins released from the yeast cell walls during autolysis. These proteins are hydrophobic, highly glycosylated, and their molecular masses range from 10 to 200 kDa--characteristics that allow mannoproteins to surround and thus stabilize the gas bubbles of the foam. Both the production and stabilization of foam also depend on other proteins. In wine, these include grape-derived proteins such as vacuolar invertase; in beer, barley-derived proteins, such as LTP1, protein Z, and hordein-derived polypeptides, are even more important in this respect than mannoproteins.  相似文献   

12.
Polyurethane (PU) foam is a material often used in biomechanical experiments and demands for the definition of crushable foam plasticity (CFP) in numerical simulations of the primary stability and deformation of implants, to describe the crushing behaviour appropriately. Material data of PU foams with five different densities (10–40 pounds per cubic foot were ascertained experimentally in uniaxial compression test and used to calibrate CFP models for finite element modelling. Additionally, experimental and numerical deformation, push-out and lever-out tests of press-fit acetabular cups were carried out to assess the influence of the chosen material definition (linear elastic and CFP) on the numerical results. Comparison of the experimentally and numerically determined force–displacement curves of the uniaxial compression test showed a mean deviation of less than 3%. In primary stability testing, the deviation between the experimental and numerical results was in a range of 0%–27% for CFP modelling and 64%–341% for the linear elastic model. The material definition selected, highly influenced the numerical results in the current study. The use of a CFP model is recommended for further numerical simulations, when a deformation of the foam beyond the yield strength is likely to occur.  相似文献   

13.
A novel technology coupling extraction and foam fractionation was developed for separating the total saponins from Achyranthes bidentata. In the developed technology, the powder of A. bidentata was loaded in a nylon filter cloth pocket with bore diameter of 180?µm. The pocket was fixed in the bulk liquid phase for continuously releasing saponins. Under the optimal conditions, the concentration and the extraction rate of the total saponins in the foamate by the developed technology were 73.5% and 416.2% higher than those by the traditional technology, respectively. The foamates obtained by the traditional technology and the developed technology were analyzed by ultraperformance liquid chromatography–mass spectrometry to determine their ingredients, and the results appeared that the developed technology exhibited a better performance for separating saponins than the traditional technology. The study is expected to develop a novel technology for cost effectively separating plant-derived materials with surface activity.  相似文献   

14.
Traits conferring brewing quality are important objectives in malting barley breeding. Beer foam stability is one of the more difficult traits to evaluate due to the requirement for a relatively large amount of grain to be malted and then the experimental costs for subsequent brewing trials. Consequently, foam stability tends to be evaluated with only advanced lines in the final stages of the breeding process. To simplify the evaluation and selection for this trait, efficient DNA makers were developed in this study. Previous studies have suggested that the level of both of the foam-associated proteins Z4 and Z7 were possible factors that influenced beer foam stability. To confirm the relationship between levels of these proteins in beer and foam stability, 24 beer samples prepared from malt made from 10 barley cultivars, were examined. Regression analyses suggested that beer proteins Z4 and Z7 could be positive and negative markers for beer foam stability, respectively. To develop DNA markers associated with contents of proteins Z4 and Z7 in barley grain, nucleotide sequence polymorphisms in barley cultivars in the upstream region of the translation initiation codon, where the promoter region might be located were compared. As a result, 5 and 23 nucleotide sequence polymorphisms were detected in protein Z4 and protein Z7, respectively. By using these polymorphisms, cleaved amplified polymorphic sequence (CAPS) markers were developed. The CAPS markers for proteins Z4 and Z7 were applied to classify the barley grain content of 23 barley cultivars into two protein Z4 (pZ4-H and pZ4-L) and three protein Z7 (the pZ7-H, pZ7-L and pZ7-L2) haplotypes, respectively. Barley cultivars with pZ4-H showed significantly higher levels of protein Z4 in grain, and those with pZ7-L and pZ7-L2 showed significantly lower levels of protein Z7 in grain. Beer foam stability in the cultivars with pZ4-H and pZ7-L was significantly higher than that with pZ4-L and pZ7-H, respectively. Our results indicate that these CAPS markers provide an efficient selection tool for beer foam stability in barley breeding programs.  相似文献   

15.
W. S. Tan  Y. L. Chen 《Cytotechnology》1994,15(1-3):321-328
Previous work by the authors and others has shown that suspended animal cell damage in bioreactors is caused by cell-bubble interactions, regardless whether the bubbles are from bubble entrainment or direct gas sparging. As approach to measure the adsorptivity of animal cells to bubbles, a modified batch foam fractionation technique has been developed in this work and proven to be applicable. By using this technique, the number of cells adsorbed per unit bubble surface area and the adsorption coefficients have been measured to quantify hybridoma cell-bubble interactions, and the prevetive effects of serum and Pluronic F68 on these interactions. It was demonstrated quantitatively that the hybridoma cells adhere to bubbles spontaneously and significant numbers exist in the foam, and that both the serum and Pluronic F68 provide strong prevention to these cell-bubble interactions. The results obtained provide criteria for bioreactor operation and medium formulation to prevent cell-bubble interactions and cell damage in the culture processes.Abbreviations NBCS new born calf serum - SFM serum-free medium  相似文献   

16.
Gushing of beer is characterised by the fact that immediately after opening a bottle a great number of fine bubbles are created throughout the volume of beer and ascend quickly under foam formation, which flows out of the bottle. This infuriating gushing phenomenon has been, and still is, a problem of world-wide importance to the brewing industry. It is generally assumed that the causes of malt-derived gushing are due to the use of "weathered" barley or wheat and the growth of moulds in the field, during storage and malting. We now develop a hypothesis connecting several lines of evidence from different laboratories. These results indicate that the fungal hydrophobins, hydrophobic components of conidiospores or aerial mycelia, are gushing-inducing factors. Furthermore, increased formation of ns-LTPs (non-specific lipid transfer proteins), synthesised in grains as response to fungal infection, and their modification during the brewing process may be responsible for malt-derived gushing.  相似文献   

17.
Espresso coffee foam, called crema, is known to be a marker of the quality of espresso coffee extraction. However, the role of foam in coffee temperature has not been quantitatively clarified. In this study, we used an automatic machine for espresso coffee extraction. We evaluated whether the foam prepared using the machine was suitable for foam analysis. After extraction, the percentage and consistency of the foam were measured using various techniques, and changes in the foam volume were tracked over time. Our extraction method, therefore, allowed consistent preparation of high-quality foam. We also quantitatively determined that the foam phase slowed cooling of the liquid phase after extraction. High-quality foam plays an important role in delaying the cooling of espresso coffee.  相似文献   

18.
The formation of fat‐laden foam cells, which contributes to the fatty streaks in the plaques of atheromas, is an important process in atherosclerosis. Vascular smooth muscle cells (VSMCs) are a critical origin of foam cells. However, the mechanisms that underlie VSMC foam cell formation are not yet completely understood. Here, we demonstrated that oxidized low‐density lipoprotein (oxLDL) inhibited lipophagy by suppressing lipid droplet (LD)‐lysosome fusion and increased VSMC foam cell formation. Moreover, although oxLDL treatment inhibited lysosomal biogenesis, it had no significant effect on lysosomal proteolysis and lysosomal pH. Notably, through TMT‐based quantitative proteomic analysis and database searching, 94 differentially expressed proteins were identified, of which 54 were increased and 40 were decreased in the oxLDL group compared with those in the control group. Subsequently, SCD1, a protein of interest, was further investigated. SCD1 levels in the VSMCs were down‐regulated by exposure to oxLDL in a time‐dependent manner and the interaction between SCD1 and LDs was also disrupted by oxLDL. Importantly, SCD1 overexpression enhanced LD‐lysosome fusion, increased lysosomal biogenesis and inhibited VSMC foam cell formation by activating TFEB nuclear translocation and its reporter activity. Modulation of the SCD1/TFEB‐mediated lipophagy machinery may offer novel therapeutic approaches for the treatment of atherosclerosis.  相似文献   

19.
Foam disruption by agitation—the stirring as foam disruption (SAFD) technique—was scaled up to pilot and production scale using Rushton turbines and an up-pumping hydrofoil impeller, the Scaba 3SHP1. The dominating mechanism behind SAFD—foam entrainment—was also demonstrated at production scale. The mechanistic model for SAFD defines a fictitious liquid velocity generated by the (upper) impeller near the dispersion surface, which is correlated with complete foam disruption. This model proved to be scalable, thus enabling the model to be used for the design of SAFD applications. Axial upward pumping impellers appeared to be more effective with respect to SAFD than Rushton turbines, as demonstrated by retrofitting a 12,000 l bioreactor, i.e. the triple Rushton configuration was compared with a mixed impeller configuration from Scaba with a 20% lower ungassed power draw. The retrofitted impeller configuration allowed 10% more broth without risking excessive foaming. In this way a substantial increase in the volumetric productivity of the bioreactor was achieved. Design recommendations for the application of SAFD are given in this paper. Using these recommendations for the design of a 30,000 l scale bioreactor, almost foamless Escherichia coli fermentations were realised. Electronic Publication  相似文献   

20.
Commercial beer was subjected to an investigation in order to establish standard conditions for preparing organic solvent extracts to be used in short-term genetic screening assays. Test samples for use in the evaluation were prepared by mixing several brands of commercially available beer into a composite pool which was then spiked with the mutagen, 2-nitrofluorene. The composite sample was then concentrated using varying ratios of beer to XAD-2 resin in a 1.5 cm X 30 cm column. Dry-weight analyses indicated that significant amounts of residue could be trapped by XAD-2 resin. Columns were sequentially eluted by methylene chloride, acetone and methanol followed by evaporation of the solvents under nitrogen gas. Residues from commercial products were not mutagenic, but mutagenic activity could be detected in residues from spiked beer, yielding nearly 90% of the expected biological activity in S. typhimurium TA98. A standard method amenable to processing large volumes of beer products was devised for application to other projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号