首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In human liver, unconjugated bile acids can be formed by the action of bile acid-CoA thioesterases (BACTEs), whereas bile acid conjugation with taurine or glycine (amidation) is catalyzed by bile acid-CoA:amino acid N-acyltransferases (BACATs). Both pathways exist in peroxisomes and cytosol. Bile acid amidation facilitates biliary excretion, whereas the accumulation of unconjugated bile acids may become hepatotoxic. We hypothesized that the formation of unconjugated and conjugated bile acids from their common substrate bile acid-CoA thioesters by BACTE and BACAT is regulated via the peroxisome proliferator-activated receptor alpha (PPARalpha). Livers from wild-type and PPARalpha-null mice either untreated or treated with the PPARalpha activator WY-14,643 were analyzed for BACTE and BACAT expression. The total liver capacity of taurochenodeoxycholate and taurocholate formation was decreased in WY-14,643-treated wild-type mice by 60% and 40%, respectively, but not in PPARalpha-null mice. Suppression of the peroxisomal BACAT activity was responsible for the decrease in liver capacity, whereas cytosolic BACAT activity was essentially unchanged by the treatment. In both cytosol and peroxisomes, the BACTE activities and protein levels were upregulated 5- to 10-fold by the treatment. These effects caused by WY-14,643 treatment were abolished in PPARalpha-null mice. The results from this study suggest that an increased formation of unconjugated bile acids occurs during PPARalpha activation.  相似文献   

2.
Lactobacilli and bile salt hydrolase in the murine intestinal tract.   总被引:11,自引:7,他引:4       下载免费PDF全文
Mice that have a complex intestinal microflora but that do not harbor lactobacilli were used to determine the contribution of lactobacilli to the total bile salt hydrolase activity in the murine intestinal tract. Bile salt hydrolase activity in the ileal contents of these mice was reduced 86% in the absence of lactobacilli and by greater than 98% in the absence of lactobacilli and enterococci compared with samples from conventional mice. Bile salt hydrolase activities were lower in ileal and cecal contents from lactobacillus-free mice colonized with enterococci than in samples from lactobacillus-free mice colonized with lactobacilli. Bile salt hydrolase activity in the duodena, jejuna, ilea, and ceca of reconstituted lactobacillus-free mice colonized by lactobacilli was similar to that in samples from the intestinal tracts of conventional mice. We conclude from these studies that lactobacilli are the main contributors to total bile salt hydrolase activity in the murine intestinal tract.  相似文献   

3.
Lactobacilli and bile salt hydrolase in the murine intestinal tract   总被引:8,自引:0,他引:8  
Mice that have a complex intestinal microflora but that do not harbor lactobacilli were used to determine the contribution of lactobacilli to the total bile salt hydrolase activity in the murine intestinal tract. Bile salt hydrolase activity in the ileal contents of these mice was reduced 86% in the absence of lactobacilli and by greater than 98% in the absence of lactobacilli and enterococci compared with samples from conventional mice. Bile salt hydrolase activities were lower in ileal and cecal contents from lactobacillus-free mice colonized with enterococci than in samples from lactobacillus-free mice colonized with lactobacilli. Bile salt hydrolase activity in the duodena, jejuna, ilea, and ceca of reconstituted lactobacillus-free mice colonized by lactobacilli was similar to that in samples from the intestinal tracts of conventional mice. We conclude from these studies that lactobacilli are the main contributors to total bile salt hydrolase activity in the murine intestinal tract.  相似文献   

4.
The relation between pancreatic lipase activity, unconjugated bile acids and pH was studied in vitro and in vivo. Lipase activity was assayed in vitro using automatic titration, where the fatty acids liberated from the hydrolysis of glycerol tributyrate (GTB) were measured. The lipase activity was determined at different ratios of conjugated to unconjugated bile acids (100:0, 75:25, 50:50, 25:75, 0:100) in response to pH 6.6, 6.8, 7.0 and 7.5. The in vivo study involved 96 one-day-old male broiler chickens. The chickens were assigned randomly, in pens of six animals, into two dietary treatments (8 replicate blocks), composing a non-supplemented diet (A(-)) and a diet supplemented (A(+)) with avilamycin (10 mg/kg feed) and salinomycin (40 mg/kg feed). After 35 days, the chickens were killed and content of the proximal part of the small intestine was collected and analyzed for bacterial counts, pH, bile acid concentration, and lipase activity. Evidence for a significant pH-dependent inhibition of lipase activity by unconjugated bile acids was provided in vitro and confirmed in vivo. Due to a reduction in nutrient fermentation, the pH in the small intestine of antibiotic-fed chickens was significantly higher than in chickens fed the non-supplemented diet. The high pH in the small intestine of chickens fed the A(+)diet was accompanied by a significant increase in lipase activity, and coincided with a significantly lower concentration of unconjugated bile acids and a higher ratio of conjugated to unconjugated bile acids. This study emphasizes the important influence of unconjugated bile acids on lipase activity at physiological pH-values.  相似文献   

5.
The principles governing the in vitro solubility of the common natural conjugated and unconjugated bile acids and salts in relation to pH, micelle formation, and Ca2+ concentration are considered from a theoretical standpoint and then correlated first with experimental observations on model systems and second with the formation of precipitates containing bile acids in health and disease. In vitro, taurine-conjugated bile acids are soluble at strongly acidic pH; glycine-conjugated bile acids are poorly soluble at moderately acidic pH; and many of the common, natural unconjugated bile acids are insoluble at neutral pH. For both glycine-conjugated and unconjugated bile acids, solubility rises exponentially, with increasing pH, until the concentration of the anion reaches the critical micellization concentration (CMC) when micelle formation occurs and solubility becomes practically unlimited. In vivo, in health, conjugated bile acids are present in micellar form in the biliary and intestinal tract. Unconjugated bile acids formed in the large intestine remain at low monomeric concentrations because of the acidic pH of the proximal colon, binding to bacteria, and absorption across the intestinal mucosa. In diseases in which proximal small intestinal content is abnormally acidic, precipitation of glycine-conjugated bile acids (in protonated form) occurs. Increased bacterial formation of unconjugated bile acids occurs with stasis in the biliary tract and small intestine; in the intestine, unconjugated bile acids precipitate in the protonated form. If the precipitates aggregate, an enterolith may be formed. In vitro, the calcium salts of taurine conjugates are highly water soluble, whereas the calcium salts of glycine conjugates and unconjugated bile acids possess limited aqueous solubility that is strongly influenced by bile acid structure. Precipitation occurs extremely slowly from supersaturated solutions of glycine-conjugated bile acids because of metastability, whereas super-saturated solutions of unconjugated bile acids rapidly form precipitates of the calcium salt. In systems containing Ca2+ ions and unconjugated bile acids, pH is important, since it is the key determinant of the anion concentration. For bile acids with relatively soluble calcium salts (or with a low CMC), the concentration of the anion will reach the CMC and micelles will form, thus precluding formation of the insoluble calcium salt. For bile acids, with relatively insoluble calcium salts (or with a high CMC), the effect of increasing pH is to cause the anion to reach the solubility product of the calcium salt before reaching the CMC so that precipitation of the calcium salt occurs instead of micelle formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Identification of unconjugated bile acids in human bile   总被引:1,自引:0,他引:1  
Unconjugated bile acids in the bile of healthy and diseased humans were determined qualitatively and quantitatively by means of gas-liquid chromatography and gas-liquid chromatography-mass spectrometry, after their isolation by ion-exchange chromatography. In a healthy person and three patients with cholelithiasis, unconjugated bile acids comprised 0.1-0.4% of total biliary bile acids. The bile acid composition of the unconjugated fraction was quite different from that of the glycine- or taurine-conjugate fraction, in that it contained a relatively large proportion of unusual bile acids including C23 and C27 bile acids. In two patients with cerebrotendinous xanthomatosis, C22 and C23 bile acids were the major constituents of the biliary unconjugated bile acids, and comprised about 0.8% of total bile acids; no detectable amounts of C27 bile acids were found in their bile. The analysis of biliary unconjugated bile acids may be useful for the diagnosis of metabolic diseases concerning bile acids, particularly the accumulation or disappearance of unusual bile acids.  相似文献   

7.
Many lactobacilli from various origins were found to apparently lack cholic acid extrusion activity. Cholic acid was accumulated spontaneously, driven by the transmembrane proton gradient. Accumulation is a newly identified kind of interaction between intestinal microbes and unconjugated bile acids and is different from extrusion and modification, which have been described previously.  相似文献   

8.
Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in liver and is able to transport bile acids (BAs) in vitro. Male Oatp1a1-null mice have increased concentrations of taurodeoxycholic acid (TDCA), a secondary BA generated by intestinal bacteria, in both serum and livers. Therefore, in the present study, BA concentrations and intestinal bacteria in wild-type (WT) and Oatp1a1-null mice were quantified to investigate whether the increase of secondary BAs in Oatp1a1-null mice is due to alterations in intestinal bacteria. The data demonstrate that Oatp1a1-null mice : (1) have similar bile flow and BA concentrations in bile as WT mice; (2) have a markedly different BA composition in the intestinal contents, with a decrease in conjugated BAs and an increase in unconjugated BAs; (3) have BAs in the feces that are more deconjugated, desulfated, 7-dehydroxylated, 3-epimerized, and oxidized, but less 7-epimerized; (4) have 10-fold more bacteria in the small intestine, and 2-fold more bacteria in the large intestine which is majorly due to a 200% increase in Bacteroides and a 30% reduction in Firmicutes; and (5) have a different urinary excretion of bacteria-related metabolites than WT mice. In conclusion, the present study for the first time established that lack of a liver transporter (Oatp1a1) markedly alters the intestinal environment in mice, namely the bacteria composition.  相似文献   

9.
Bile acids are secreted in the bile in the form of conjugates and many species of intestinal bacteria can rapidly deconjugate them. Studies have shown that an unconjugated bile acid may have bactericidal and bacteriostatic effects, which are pH dependent. It is proposed that unconjugated bile acids may be involved in a homoeostatic mechanism, preventing bacterial growth in the small intestine.  相似文献   

10.
To obtain information on the concentration and spectrum of bile acids in human cecal content, samples were obtained from 19 persons who had died an unnatural death from causes such as trauma, homicide, suicide, or drug overdose. Bile acid concentration was measured via an enzymatic assay for 3alpha-hydroxy bile acids; bile acid classes were determined by electrospray ionization mass spectrometry and individual bile acids by gas chromatography mass spectrometry and liquid chromatography mass spectrometry. The 3alpha-hydroxy bile acid concentration (mumol bile acid/ml cecal content) was 0.4 +/- 0.2 mM (mean +/- SD); the total 3-hydroxy bile acid concentration was 0.6 +/- 0.3 mM. The aqueous concentration of bile acids (supernatant after centrifugation) was identical, indicating that most bile acids were in solution. By liquid chromatography mass spectrometry, bile acids were mostly in unconjugated form (90 +/- 9%, mean +/- SD); sulfated, nonamidated bile acids were 7 +/- 5%, and nonsulfated amidated bile acids (glycine or taurine conjugates) were 3 +/- 7%. By gas chromatography mass spectrometry, 10 bile acids were identified: deoxycholic (34 +/- 16%), lithocholic (26 +/- 10%), and ursodeoxycholic (6 +/- 9), as well as their primary bile acid precursors cholic (6 +/- 9%) and chenodeoxycholic acid (7 +/- 8%). In addition, 3beta-hydroxy derivatives of some or all of these bile acids were present and averaged 27 +/- 18% of total bile acids, indicating that 3beta-hydroxy bile acids are normal constituents of cecal content. In the human cecum, deconjugation and dehydroxylation of bile acids are nearly complete, resulting in most bile acids being in unconjugated form at submicellar and subsecretory concentrations.  相似文献   

11.
Hepatocyte nuclear factor 4alpha (HNF4alpha) has an important role in regulating the expression of liver-specific genes. Because bile acids are produced from cholesterol in liver and many enzymes involved in their biosynthesis are preferentially expressed in liver, the role of HNF4alpha in the regulation of bile acid production was examined. In mice, unconjugated bile acids are conjugated with taurine by the liver-specific enzymes, bile acid-CoA ligase and bile acid-CoA:amino acid N-acyltransferase (BAT). Mice lacking hepatic HNF4alpha expression exhibited markedly decreased expression of the very long chain acyl-CoA synthase-related gene (VLACSR), a mouse candidate for bile acid-CoA ligase, and BAT. This was associated with markedly elevated levels of unconjugated and glycine-conjugated bile acids in gallbladder. HNF4alpha was found to bind directly to the mouse VLACSR and BAT gene promoters, and the promoter activities were dependent on HNF4alpha-binding sites and HNF4alpha expression. In conclusion, HNF4alpha plays a central role in bile acid conjugation by direct regulation of VLACSR and BAT in vivo.  相似文献   

12.
Duodenal bile, urine, plasma, and feces from a child with hepatic 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase deficiency were analyzed by fast atom bombardment mass spectrometry and gas chromatography-mass spectrometry to investigate the formation and excretion of abnormal bile acids and bile alcohols. The biliary bile salts consisted of glycocholic acid (25%) and of sulfated and glycine conjugated di- and trihydroxycholenoic acids (55%), two C27 bile acids, and eleven sulfated bile alcohols (mainly tetrols, 20%), all having 3 beta,7 alpha-dihydroxy-delta 5 or 3 beta,7 alpha,12 alpha-trihydroxy-delta 5 ring structures. In plasma, sulfated cholenoic acids constituted 65% and unconjugated 3 beta,7 alpha-dihydroxy-5-cholestenoic acid 25% of the total level, 71 micrograms/ml. The urinary excretion of the former was 30.4 mg/day and that of unsaturated bile alcohol sulfates, mainly pentols, 7 mg/day. The predominant bile acid in feces was an unconjugated epimer of 3 beta,7 alpha,12 alpha-trihydroxy-5-cholenoic acid, and small amounts of cholic acid were present. The minimum total excretion was 11.3 mg/day. Treatment with chenodeoxycholic acid resulted in marked clinical improvement and normalized liver function tests. Further studies are needed to define the mechanism of action. Plasma bile acids decreased to 1.6 micrograms/ml and urinary excretion to 3.4 mg/day. Chenodeoxycholic and ursodeoxycholic acids became predominant in all samples. The fecal excretion of unsaturated cholenoic acid sulfates increased to 40 mg/day compared to 89 mg/day of saturated bile acids. The results provide further support for a defective hepatic 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase deficiency, and indicate that the 3 beta-hydroxy-delta 5 bile acids are formed via 7 alpha-hydroxycholesterol. The formation of glycocholic acid may be due to an incomplete enzyme defect or to transformation of the 3 beta-hydroxy-delta 5 structure by bacterial and hepatic enzymes during an enterohepatic circulation.  相似文献   

13.
Determination of quantitative changes in the pattern of serum bile acids is important for the monitoring of diseases affecting bile acid metabolism. A sensitive and specific high-performance liquid chromatography (HPLC)-MS/MS method was developed for the differentiated quantification of unconjugated as well as glycine- and taurine-conjugated cholic, chenodeoxycholic (CDCA), deoxycholic (DCA), ursodeoxycholic (UDCA) and lithocholic acid (LCA) in serum samples. After solid-phase extraction and reversed-phase HPLC separation, detection of the conjugated bile acids was performed using electrospray ionization (ESI)-MS/MS and selected reaction monitoring mode, whereas unconjugated bile acids were determined by ESI-MS and selected ion monitoring mode. The within-day and between-day coefficients of variation were below 7% for all bile acids and the recovery rates of the extraction procedure were between 84.9 and 105%. The developed method was applied to a group of 21 healthy volunteers and preliminary reference intervals in serum were established. In patients with drug-induced cholestasis, an elevation of primary bile acids has been shown.  相似文献   

14.
We wished to develop an efficient, noninvasive method for monitoring ovarian function in domestic and nondomestic Felidae. We hypothesized that the method could be based on measurement of one of the major excreted estrogen metabolites. To identify and characterize the major excreted metabolites, a bolus of (14)C-estradiol was administered into the femoral vein of adult female cats. We measured the amounts of total radioactivity per unit time contained in unconjugated and conjugated estradiol metabolites, in conjugated metabolites that were hydrolyzable, and in those not hydrolyzable by beta Glucuronidase / aryl sulfatase (the enzyme). Radionuclide levels were determined in voided feces and urine, in jugular vein plasma, bile, contents of the duodenum, and in the small intestine. Metabolites of (14)C-estradiol were voided preferentially in feces and in equal amounts either as unconjugated estradiol or as conjugates not hydrolyzable by the enzyme. In plasma, conjugated estrogens comprised an increasing proportion of the total radioactivity during the first 40 min after administration. Plasma pools of samples from 0.5 to 30 min and 40 to 360 min contained a monoconjugate and a diconjugate, respectively; both were hydrolyzable by the enzyme. Bile and intestinal samples were collected at 360 min after administration. In the bile, 99% of the total radioactivity was in conjugated compounds, only 20% of which were not hydrolysable by the enzyme. The proportion of unconjugated metabolites increased to 18% in the duodenum and to 45% in the small intestine. The major conjugates contained in voided feces not hydrolyzable by the enzyme were estradiol sulfate (m/z = 351.6836), distributed as the 3-sulfate (20%) and 17-sulfate (80%); of the latter, 70% were 17alpha- and 30% 17beta-estradiol sulfates. These data document the fate of estradiol in the circulation of the cat, they demonstrate that a large portion of the voided estradiol metabolites are not hydrolyzable by the enzyme, and account for those conjugates previously termed nonhydrolyzable.  相似文献   

15.
The postprandial concentrations of free and conjugated bile acids were measured in total content and micellar phase of jejunal aspirates from nine patients with steatorrhoea due to the stagnant loop syndrome and from 11 normal controls. Aspirates from the stagnant loop syndrome patients, but not from the normal controls, had a high concentration of free (unconjugated) bile acids. There was a reciprocal decrease in the concentration of conjugated bile acids, but total bile acid concentration in the whole aspirate remained normal. Total bile acid concentration in the micellar phase of intestinal content was reduced, indicating precipitation of bile acids. These findings suggest that precipitation of unconjugated bile acids, rather than passive absorption, leads to a reduced postprandial concentration of bile acids in the micellar phase of jejunal content, and are consistent with the hypothesis that fat malabsorption in the stagnant loop syndrome results from decreased micellar dispersion of lipolytic products.  相似文献   

16.
T Niwa  T Koshiyama  J Goto  T Nambara 《Steroids》1992,57(11):522-529
3-N-Acetylglucosaminides of unconjugated, glycine- and taurine-conjugated bile acids have been synthesized. Bile acids appropriately protected were condensed with acetochloroglucosamine through the 3 alpha-hydroxyl group by means of the Koenigs-Knorr reaction using cadmium carbonate as a catalyst. Subsequent borohydride reduction and/or alkaline hydrolysis provided desired 3-N-acetylglucosaminides of unconjugated bile acids. Glycine-conjugates were obtained from N-acetylglucosaminides of unconjugated bile acids and ethyl glycinate by the carbodiimide method. The preparation of N-acetylglucosaminides of taurine-conjugates was attained by the Koenigs-Knorr reaction of bile acid p-nitrophenyl esters followed by condensation with taurine. 7-N-Acetylglucosaminides of ursodeoxycholates were prepared in a similar fashion. The convenient synthesis of 3-N-acetylglucosaminides of unconjugated bile acids is also described.  相似文献   

17.
Population studies in man and experimental animal work support the contention that dietary supplementation with calcium may prevent the development of colorectal cancer. The mechanism of action is postulated to be bile acid chelation in the small-bowed forming non-toxic calcium soap compounds but such substances have yet to be isolated and quantified. In this 2-part study faecal concentrations of acidic lipids and neutral sterols were measured in 93 Sprague-Dawley rats whose calcium intake was modulated by enriching the chow and adding calcium lactate (24 milligrams) to the drinking water. In study-1 (dietary calcium intake doubled from 0.4-0.8%) small bowel resection was used to manipulate colonic lipid concentration for comparison with control rats who had undergone transection with immediate restoration of bowel continuity at an equivalent point. Faecal concentrations of free bile acids were 53-67% less in animals receiving added calcium [1.76 +/- 1.33 vs 0.82 +/- 0.65 mg/g (transection); 2.74 +/- 3.73 vs 1.03 +/- 1.27 mg/g (small bowel resection): P less than 0.001]. In study-2 (dietary calcium intake trebled to 1.21%) faecal bile acid concentration was reduced by 32% (1.86 +/- 0.57 vs 1.27 +/- 0.34 mg/g: NS) whereas long chain fatty acid concentrations were increased by 117% (6.77 +/- 2.39 vs 14.67 +/- 4.82 mg/g: P less than 0.001) in animals receiving added calcium. Serum calcium levels remained unchanged in these animals. Calcium soaps of the bile acids were not detected in faeces and therefore contrary to popular theory these results indicate that conditions within the intestinal lumen favour calcium chelation of long chain fatty acids rather than bile acids.  相似文献   

18.
Certain bile acid oxazoline derivatives (100 microM), but not corresponding unconjugated bile acids (100 microM), were found to inhibit the growth of Eubacterium sp. V.P.I. 12708. The growth inhibition was correlated with the polarity of the steroid portion of the bile acid oxazoline. Primary cultures of adult rat hepatocyte monolayer cultures converted [7 epsilon-14C]methylchenooxazoline3 into MeOH-H2O soluble derivatives. Certain intestinal bacteria were capable of metabolizing [17 epsilon-14C]methylchenooxazoline as well as the MeOH-soluble hepatocyte derivative(s). These results suggest that bile acid oxazoline derivatives may undergo hepatic, as well as bacterial metabolism during enterohepatic circulation.  相似文献   

19.
The 9 UDP-glucuronosyltranferases (UGTs) encoded by the UGT1 locus in humans are key enzymes in the metabolism of most drugs as well as endogenous substances such as bile acids, fatty acids, steroids, hormones, neurotransmitters, and bilirubin. Severe unconjugated hyperbilirubinemia in humans that suffer from Crigler-Najjar type I disease results from lesions in the UGT1A1 gene and is often fatal. To examine the physiological importance of the Ugt1 locus in mice, this locus was rendered non-functional by interrupting exon 4 to create Ugt1(-/-) mice. Because UGT1A1 in humans is responsible for 100% of the conjugated bilirubin, it followed that newborn Ugt1(-/-) mice developed serum levels of unconjugated bilirubin that were 40-60 times higher than Ugt1(+/-) or wild-type mice. The result of extreme unconjugated bilirubin in Ugt1(-/-) mice, comparable to the induced levels noted in patients with Crigler-Najjar type 1 disease, is fatal in neonatal Ugt1(-/-) mice within 2 weeks following birth. The extreme jaundice is present as a phenotype in skin color after 8 h. Neonatal Ugt1(-/-) mice exhibit no detectable UGT1A-specific RNA, which corresponds to a complete absence of UGT1A proteins in liver microsomes. Conserved glucuronidation activity attributed to the Ugt1 locus can be defined in Ugt1(-/-) mice, because UGT2-dependent glucuronidation activity is unaffected. Remarkably, the loss of UGT1A functionality in liver results in significant alterations in cellular metabolism as investigated through changes in gene expression. Thus, the loss of UGT1A function in Ugt1(-/-) mice leads to a metabolic syndrome that can serve as a model to further investigate the toxicities associated with unconjugated bilirubin and the impact of this disease in humans.  相似文献   

20.
The concentrations of 3 beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid, and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid were determined in plasma from patients with different liver diseases and compared with those of unconjugated and conjugated C24 bile acids. The levels of the cholestenoic acids were similar in patients with extrahepatic cholestasis and in controls (median concentration 153 and 162 ng/ml, respectively), whereas significantly elevated levels were found in plasma from patients with primary biliary cirrhosis (median concentration 298 ng/ml) and alcoholic liver cirrhosis (median concentration 262 ng/ml). As expected, conjugated C24 bile acids were elevated in most patients whereas the corresponding unconjugated compounds were low in cholestasis and elevated in alcoholic liver cirrhosis. The levels of the individual C27 acids were usually positively correlated to each other and also to the levels of conjugated C24 bile acids in plasma from patients with liver cirrhosis. In contrast, there was no correlation between the levels of C27 acids and conjugated bile acids in patients with extrahepatic cholestasis. The levels of unconjugated C24 bile acids were not correlated to C27 acids or conjugated bile acids in any of the groups. The results indicate that there is a close metabolic relationship between the individual C27 acids, that they do not participate in an enterohepatic circulation, and that the liver is important for their elimination/metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号