首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hinz A  Tampé R 《Biochemistry》2012,51(25):4981-4989
The transporter associated with antigen processing (TAP) is a prototype of an asymmetric ATP-binding cassette (ABC) transporter, which uses ATP binding and hydrolysis to translocate peptides from the cytosol to the lumen of the endoplasmic reticulum (ER). Here, we review molecular details of peptide binding and ATP binding and hydrolysis as well as the resulting allosteric cross-talk between the nucleotide-binding domains and the transmembrane domains that drive translocation of the solute across the ER membrane. We also discuss the general molecular architecture of ABC transporters and demonstrate the importance of structural and functional studies for a better understanding of the role of the noncanonical site of asymmetric ABC transporters. Several aspects of peptide binding and specificity illustrate details of peptide translocation by TAP. Furthermore, this ABC transporter forms the central part of the major histocompatibility complex class I (MHC I) peptide-loading machinery. Hence, TAP is confronted with a number of viral factors, which prevent antigen translocation and MHC I loading in virally infected cells. We review how these viral factors have been used as molecular tools to decipher mechanistic aspects of solute translocation and discuss how they can help in the structural analysis of TAP.  相似文献   

2.
3.
4.
Multidrug resistance of cancer cells is, at least in part, conferred by overexpression of P-glycoprotein (P-gp), a member of the ATP-binding cassette (ABC) superfamily of active transporters. P-gp actively extrudes chemotherapeutic drugs from cells, thus reducing their efficacy. As a typical ABC transporter, P-gp has four domains: two transmembrane domains, which form a pathway through the membrane through which substrates are transported, and two hydrophilic nucleotide-binding domains (NBDs), located on the cytoplasmic side of the membrane, which couple the energy of ATP hydrolysis to substrate translocation. It has been proposed that the NBDs of ABC transporters, including the histidine permease of Salmonella typhimurium and the cystic fibrosis transmembrane conductance regulator, are accessible from the extracellular surface of the cell, spanning the membrane directly or potentially contributing to the transmembrane pore. Such organization would have significant implications for the transport mechanism. We determined to establish whether the NBDs of P-gp are exposed extracellularly and which amino acids are accessible, using cysteine-scanning mutagenesis and limited proteolysis. In contrast to other transporters, the data provided no evidence that the P-gp NBDs are exposed to the cell surface. The implications for the structure and mechanism of P-gp and other ABC transporters are discussed.  相似文献   

5.
BACKGROUND: The transporter associated with antigen processing (TAP) is a heterodimeric member of the large family of ABC transporters. The study of interactions between the subunits TAP1 and TAP2 can reveal the relative orientation of the transmembrane segments, which form a translocation pore for peptides. This is essential for understanding the architecture of TAP and other ABC transporters. RESULTS: The amino-terminal six transmembrane segments (TMs) of human TAP1, TAP1 (1-6), and the amino-terminal five TMs of TAP2, TAP2(1-5), are thought to constitute the pore of TAP. Two new approaches are used to define dimer interactions. We show that TM6 of TAP1 (1-6) is able to change topology post-translationally. This TM, along with a cytoplasmic tail, is translocated into the endoplasmic reticulum lumen, unless TAP2 is expressed. Coexpression of TM(4-5) of TAP2 stabilizes the topology of TAP1 (1-6), even when the TM1 of TAP1 is subsitituted with another sequence. This suggests that the carboxy-terminal TMs of the pore-forming domains TAP1 (1-6) and TAP2(1-5) interact. An alternative assay uses photobleaching in living cells using TAP1 (1-6) tagged with the green fluorescent protein (GFP). Coexpression with TAP2(1-5) results in reduced movement of the heterodimer within the endoplasmic reticulum membrane, as compared with the single TAP1 (1-6) molecule. In contrast, TAP2(1-4) has no effect on the mobility of TAP1 (1-6)-GFP, indicating the importance of TM5 of TAP2 for dimer formation. Also, TM1 of both TAP1 and TAP2 is essential for formation of a complex with low mobility. CONCLUSIONS: Dimerization of the pore-forming transmembrane domains of TAP1 (TM1-6) with its TAP2 counterpart (TM1-5) prevents the post-translational translocation of TM6 of TAP1 and results in a complex with reduced mobility within the endoplasmic reticulum membrane compared with the free subunit. These techniques are used to show that the pore-forming domains of TAP are aligned in a head-head/tail-tail orientation. This positions the following peptide-binding segments of the two TAP subunits to one side of the pore.  相似文献   

6.
ATP-binding cassette (ABC) transporters constitute one of the largest families of integral membrane proteins, including importers, exporters, channels, receptors, and mechanotransducers, which fulfill a plethora of cellular tasks. ABC transporters are involved in nutrient uptake, hormone and xenobiotic secretion, ion and lipid homeostasis, antibiotic and multidrug resistance, and immunity, thus making them prime candidates for cellular regulation and pharmacological intervention. In recent years, numerous various structures of ABC transporters have been determined by X-ray crystallography or cryogenic electron microscopy. Structural and functional studies revealed that various auxiliary domains play key roles for the subcellular localization of ABC transporters and recruitment of regulatory factors. In this regard, the ABC transporter associated with antigen processing TAP stands out. In the endoplasmic reticulum membrane, TAP assembles the peptide-loading complex, which serves as a central checkpoint in adaptive immunity. Here, we discuss the various aspects of auxiliary domains for ABC transporter function with a particular emphasis on the structure of the peptide-loading complex, which is crucial for antigen presentation in adaptive immunity.  相似文献   

7.
Leveson-Gower DB  Michnick SW  Ling V 《Biochemistry》2004,43(44):14257-14264
The transporter associated with antigen presentation (TAP) is an ATP-binding cassette (ABC) protein which transports peptides for presentation to the immune system. TAP is composed of two half transporters, TAP1 (ABCB2) and TAP2 (ABCB3), which heterodimerize to function. In humans, the TAP family consists of TAP1, TAP2, and TAPL (ABCB9). While the TAP1-TAP2 complex is well characterized, TAPL's dimerization state and function are unknown. To identify interactions within the human TAP family, we adapted the dihydrofolate reductase protein-fragment complementation assay (DHFR PCA) to half ABC transporters. This assay has been shown to be suitable for the study of membrane-bound proteins in vivo [Remy, I., Wilson, I. A., and Michnick, S. W. (1999) Science 283, 990-993]. With this method, in vivo TAP1-TAP2 heterodimerization was confirmed, no homodimerizations were detected with TAP1 or TAP2, and TAPL did not show any interaction with TAP1 or TAP2. However, we found strong evidence that TAPL forms homodimers. These results provide evidence of a novel homomeric TAPL interaction and demonstrate that the DHFR PCA will be of general utility in studies of half ABC transporter interactions in vivo.  相似文献   

8.
ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. “This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.”  相似文献   

9.
Powering the peptide pump: TAP crosstalk with energetic nucleotides   总被引:3,自引:0,他引:3  
ATP-binding cassette (ABC) transporters represent a large family of membrane-spanning proteins that have a shared structural organization and conserved nucleotide-binding domains (NBDs). They transport a large variety of solutes, and defects in these transporters are an important cause of human disease. TAP (tmacr;ransporter associated with āntigen pmacr;rocessing) is a heterodimeric ABC transporter that uses nucleotides to drive peptide transport from the cytoplasm into the endoplasmic reticulum lumen, where the peptides then bind major histocompatibility complex (MHC) class I molecules. TAP plays an essential role in the MHC class I antigen presentation pathway. Recent studies show that the two NBDs of TAP fulfil distinct functions in the catalytic cycle of this transporter. In this opinion article, a model of alternating ATP binding and hydrolysis is proposed, in which nucleotide interaction with TAP2 primarily controls substrate binding and release, whereas interaction with TAP1 controls structural rearrangements of the transmembrane pathway. Viral proteins that inhibit TAP function cause arrests at distinct points of this catalytic cycle.  相似文献   

10.
ATP-sensitive K(+) (K(ATP)) channels are the target of a number of pharmacological agents, blockers like hypoglycemic sulfonylureas and openers like the hypotensive cromakalim and diazoxide. These agents act on the channel regulatory subunit, the sulfonylurea receptor (SUR), which is an ABC protein with homologies to P-glycoprotein (P-gp). P-gp is a multidrug transporter expressed in tumor cells and in some healthy tissues. Because these two ABC proteins both exhibit multispecific recognition properties, we have tested whether SUR ligands could be substrates of P-gp. Interaction with P-gp was assayed by monitoring ATPase activity of P-gp-enriched vesicles. The blockers glibenclamide, tolbutamide, and meglitinide increased ATPase activity, with a rank order of potencies that correlated with their capacity to block K(ATP) channels. P-gp ATPase activity was also increased by the openers SR47063 (a cromakalim analog), P1075 (a pinacidil analog), and diazoxide. Thus, these molecules bind to P-gp (although with lower affinities than for SUR) and are possibly transported by P-gp. Competition experiments among these molecules as well as with typical P-gp substrates revealed a structural similarity between drug binding domains in the two proteins. To rationalize the observed data, we addressed the molecular features of these proteins and compared structural models, computerized by homology from the recently solved structures of murine P-gp and bacterial ABC transporters MsbA and Sav1866. Considering the various residues experimentally assigned to be involved in drug binding, we uncovered several hot spots, which organized spatially in two main binding domains, selective for SR47063 and for glibenclamide, in matching regions of both P-gp and SUR.  相似文献   

11.
Procko E  Gaudet R 《Biochemistry》2008,47(21):5699-5708
The transporter associated with antigen processing (TAP), an ABC transporter, pumps cytosolic peptides into the endoplasmic reticulum, where the peptides are loaded onto class I MHC molecules for presentation to the immune system. Transport is fueled by the binding of ATP to two cytosolic nucleotide-binding domains (NBDs) and ATP hydrolysis. We demonstrate biochemically that there are two electrostatic interactions across the interface between the two TAP NBDs and that these interactions are important for peptide transport. Notably, disrupting these interactions by mutagenesis does not greatly alter the ATP hydrolysis rate in an isolated NBD model system, suggesting that the interactions function at alternative stages in the transport cycle. The data support the general model for ABC transporters in which the NBDs form a tight, closed conformation during transport. Our results are discussed in relation to other ABC transporters that do or do not conserve potential interacting residues of opposite charges at the homologous positions.  相似文献   

12.
Cif (PA2934), a bacterial virulence factor secreted in outer membrane vesicles by Pseudomonas aeruginosa, increases the ubiquitination and lysosomal degradation of some, but not all, plasma membrane ATP-binding cassette transporters (ABC), including the cystic fibrosis transmembrane conductance regulator and P-glycoprotein. The goal of this study was to determine whether Cif enhances the ubiquitination and degradation of the transporter associated with antigen processing (TAP1 and TAP2), members of the ABC transporter family that play an essential role in antigen presentation and intracellular pathogen clearance. Cif selectively increased the amount of ubiquitinated TAP1 and increased its degradation in the proteasome of human airway epithelial cells. This effect of Cif was mediated by reducing USP10 deubiquitinating activity, resulting in increased polyubiquitination and proteasomal degradation of TAP1. The reduction in TAP1 abundance decreased peptide antigen translocation into the endoplasmic reticulum, an effect that resulted in reduced antigen available to MHC class I molecules for presentation at the plasma membrane of airway epithelial cells and recognition by CD8+ T cells. Cif is the first bacterial factor identified that inhibits TAP function and MHC class I antigen presentation.  相似文献   

13.
The development of effective clinical interventions against multidrug resistance (MDR) in cancer remains a significant challenge. Single nucleotide polymorphisms (SNPs) contribute to wide variations in how individuals respond to medications and there are several SNPs in human P-glycoprotein (P-gp) that may influence the interactions of drug-substrates with the transporter. Interestingly, even some of the synonymous SNPs have functional consequences for P-gp. It is also becoming increasingly evident that an understanding of the transport pathway of P-gp may be necessary to design effective modulators. In this review we discuss: (1) The potential importance of SNPs (both synonymous and non-synonymous) in MDR and (2) How new concepts that have emerged from structural studies with isolated nucleotide binding domains of bacterial ABC transporters have prompted biochemical studies on P-gp, leading to a better understanding of the mechanism of P-gp mediated transport. Our results suggest that the power-stroke is provided only after formation of the pre-hydrolysis transition-like (E·S) state during ATP hydrolysis.  相似文献   

14.
Some members of the ABC-transporter superfamily, such as P-glycoprotein and the multidrug resistance associated protein, may confer resistance to the avermectin subclass of macrocyclic lactones. The aim of this study was to examine the presence of ABC transporters in both sea lice (Lepeophtheirus salmonis) and its Atlantic salmon host (Salmo salar) using monoclonal antibodies (C219 and JSB-1, with high selectivity for P-gp) and a new polyclonal antibody (SL0525) generated against a putative sea louse ABC transporter. The antibody raised to SL0525 did not react with rat P-gp, suggesting that an ABC transporter, not necessarily P-gp, was isolated. C219 was the only antibody to localize P-gp in all 3 salmon tissues (intestine, kidney and liver). American lobster (Homarus americanus) was used as a reference crustacean for L. salmonis immunostaining reactions and showed positive staining in the hepatopancreatic and intestinal tissues with all 3 antibodies. The L. salmonis showed positive staining in the intestinal epithelial lining with all antibodies. This report represents the first documented evidence for the expression of ABC transporters in L. salmonis, its Atlantic salmon host, and the American lobster.  相似文献   

15.
The heterodimeric peptide transporter TAP belongs to the ABC transporter family. Sequence comparisons with the P-glycoprotein and cystic fibrosis transmembrane conductance regulator and the functional properties of selective amino acids in these ABC transporters postulated that the glutamic acid at position 263 and the phenylalanine at position 265 of the TAP1 subunit could affect peptide transporter function. To define the role of both amino acids, TAP1 mutants containing a deletion or a substitution to alanine at position 263 or 265 were generated and stably expressed in murine and human TAP1(-/-) cells. The different TAP1 mutants were characterized in terms of expression and function of TAP, MHC class I surface expression, immune recognition, and species-specific differences. The phenotype of murine and human cells expressing human TAP1 mutants with a deletion or substitution of Glu(263) was comparable to that of TAP1(-/-) cells. In contrast, murine and human TAP1 mutant cells containing a deletion or mutation of Phe(265) of the TAP1 subunit exhibit wild-type TAP function. This was associated with high levels of MHC class I surface expression and recognition by specific CTL, which was comparable to that of wild-type TAP1-transfected control cells. Thus, biochemical and functional evidence is presented that the Glu(263) of the TAP1 protein, but not the Phe(265), is critical for proper TAP function.  相似文献   

16.
Koch J  Guntrum R  Tampé R 《FEBS letters》2005,579(20):4413-4416
TAP, an ABC transporter in the ER membrane, provides antigenic peptides derived from proteasomal degradation to MHC class I molecules for inspection by cytotoxic T lymphocytes at the cell surface so as to trace malignant or infected cells. To investigate the minimal number of transmembrane segments (TMs) required for assembly of the TAP complex based on hydrophobicity algorithms and alignments with other ABC transporters we generated N-terminal truncation variants of human TAP1 and TAP2. As a result, a 6+6 TM core-TAP complex represents the minimal functional unit of the transporter, which is essential and sufficient for heterodimer assembly, peptide binding, and peptide translocation into the ER. The TM1 of both, core-TAP1 and core-TAP2 are critical for heterodimerization of the complex.  相似文献   

17.
ATP binding cassette (ABC) transporters comprise an extended protein family involved in the transport of a broad spectrum of solutes across membranes. They consist of a common architecture including two ATP-binding domains converting chemical energy into conformational changes and two transmembrane domains facilitating transport via alternating access. This review focuses on the biogenesis, and more precisely, on the degradation of mammalian ABC transporters in the endoplasmic reticulum (ER). We enlighten the ER-associated degradation pathway in the context of misfolded, misassembled or tightly regulated ABC transporters with a closer view on the cystic fibrosis transmembrane conductance regulator (CFTR) and the transporter associated with antigen processing (TAP), which plays an essential role in the adaptive immunity. Three rather different scenarios affecting the stability and degradation of ABC transporters are discussed: (1) misfolded domains caused by a lack of proper intra- and intermolecular contacts within the ABC transporters, (2) deficient assembly with auxiliary factors, and (3) arrest and accumulation of an intermediate or ‘dead-end’ state in the transport cycle, which is prone to be recognized by the ER-associated degradation machinery.  相似文献   

18.
Before exit from the endoplasmic reticulum (ER), MHC class I molecules transiently associate with the transporter associated with antigen processing (TAP1/TAP2) in an interaction that is bridged by tapasin. TAP1 and TAP2 belong to the ATP-binding cassette (ABC) transporter family, and are necessary and sufficient for peptide translocation across the ER membrane during loading of MHC class I molecules. Most ABC transporters comprise a transmembrane region with six membrane-spanning helices. TAP1 and TAP2, however, contain additional N-terminal sequences whose functions may be linked to interactions with tapasin and MHC class I molecules. Upon expression and purification of human TAP1/TAP2 complexes from insect cells, proteolytic fragments were identified that result from cleavage at residues 131 and 88 of TAP1 and TAP2, respectively. N-Terminally truncated TAP variants lacking these segments retained the ability to bind peptide and nucleotide substrates at a level comparable to that of wild-type TAP. The truncated constructs were also capable of peptide translocation in vitro, although with reduced efficiency. In an insect cell-based assay that reconstituted the class I loading pathway, the truncated TAP variants promoted HLA-B*2705 processing to similar levels as wild-type TAP. However, correlating with the observed reduction in tapasin binding, the tapasin-mediated increase in processing of HLA-B*2705 and HLA-B*4402 was lower for the truncated TAP constructs relative to the wild type. Together, these studies indicate that N-terminal domains of TAP1 and TAP2 are important for tapasin binding and for optimal peptide loading onto MHC class I molecules.  相似文献   

19.
An underlying mechanism for multi drug resistance (MDR) is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins. ABC transporters also determine the general fate and effect of pharmaceutical agents in the body. The three major types of ABC transporters are MDR1 (P-gp, P-glycoprotein, ABCB1), MRP1/2 (ABCC1/2) and BCRP/MXR (ABCG2) proteins. Flow cytometry (FCM) allows determination of the functional expression levels of ABC transporters in live cells, but most dyes used as indicators (rhodamine 123, DiOC(2)(3), calcein-AM) have limited applicability as they do not detect all three major types of ABC transporters. Dyes with broad coverage (such as doxorubicin, daunorubicin and mitoxantrone) lack sensitivity due to overall dimness and thus may yield a significant percentage of false negative results. We describe two novel fluorescent probes that are substrates for all three common types of ABC transporters and can serve as indicators of MDR in flow cytometry assays using live cells. The probes exhibit fast internalization, favorable uptake/efflux kinetics and high sensitivity of MDR detection, as established by multidrug resistance activity factor (MAF) values and Kolmogorov-Smirnov statistical analysis. Used in combination with general or specific inhibitors of ABC transporters, both dyes readily identify functional efflux and are capable of detecting small levels of efflux as well as defining the type of multidrug resistance. The assay can be applied to the screening of putative modulators of ABC transporters, facilitating rapid, reproducible, specific and relatively simple functional detection of ABC transporter activity, and ready implementation on widely available instruments.  相似文献   

20.
A new method for intravital assessment of the functional activity of anticancer drug efflux transporters in intact solid tumor specimens was developed. The method is based on the well-known approach to the transporter functional evaluation by intracellular accumulation of antitumor drugs and particularly the anthracycline antibiotic doxorubicin (Dox). The main new point of the method providing investigation of intact solid tumor specimens which markedly simplified the procedure is the fact that the intratissue and intracellular accumulation of Dox is determined not by the level of the drug in the tissue but by its fluorescence decrease in the incubation medium. To assess just the intracellular content of Dox and to estimate the transporter functional activity, investigation of the influence of membrane transporter inhibitors such as verapamil (P-gp inhibitor) and sodium azide (inhibitor of all the energy-dependent ABC transporters) on the drug fluorescence decrease in the incubation medium is stipulated. The validity of such an approach was experimentally proved with the specimens of the Ehrlich solid tumor transplants in mice (a sensitive variant of the tumor and the tumor with induced drug resistance). Biopsy specimens of human breast tumors were investigated with the new method and functional activity of various efflux transporters was revealed: (1) only P-gp, (2) both P-gp and other ABC transporters, (3) only transporters different from P-gp, (4) no functional activity of efflux transporters. The main trends of the further investigation of efflux transporter functional activity in human solid tumors possible for the first time with the use of the new method are defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号