首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The life cycles of many organisms are constrained by the seasonality of resources. This is particularly true for leaf-mining herbivorous insects that use deciduous leaves to fuel growth and reproduction even beyond leaf fall. Our results suggest that an intimate association with bacterial endosymbionts might be their way of coping with nutritional constraints to ensure successful development in an otherwise senescent environment. We show that the phytophagous leaf-mining moth Phyllonorycter blancardella (Lepidoptera) relies on bacterial endosymbionts, most likely Wolbachia, to manipulate the physiology of its host plant resulting in the ‘green-island’ phenotype—photosynthetically active green patches in otherwise senescent leaves—and to increase its fitness. Curing leaf-miners of their symbiotic partner resulted in the absence of green-island formation on leaves, increased compensatory larval feeding and higher insect mortality. Our results suggest that bacteria impact green-island induction through manipulation of cytokinin levels. This is the first time, to our knowledge, that insect bacterial endosymbionts have been associated with plant physiology.  相似文献   

2.
Parathion utilization by bacterial symbionts in a chemostat.   总被引:10,自引:10,他引:0       下载免费PDF全文
A continuous-culture device was used to select and enrich for microorganisms, from sewage and agricultural runoff, that were capable of using the organophosphorus insecticide parathion as a sole growth substrate. Parathion was dissimilated by the highly acclimated symbiotic activities of Pseudomonas stutzeri, which non-oxidatively and cometabolically hydrolyzed the parathion to ionic diethyl thiophosphate and p-nitrophenol, and P. aeruginosa, which utilized the p-nitrophenol as a sole carbon and energy source. Ionic diethyl thiophosphate was found to be inert to any transformations. Methyl parathion was dissimilated in an analogous way. The device functioned as a chemostat with parathion as the growth-limiting nutrient, and extraordinarily high dissimilation rates were attained for parathion (8 g/liter per day) and for p-nitrophenol (7 g/liter per day). This is the first report of parathion utilization by a defined microbial culture and by symbiotic microbial attack and of dissimilation of an organophosphorus pesticide in a chemostat.  相似文献   

3.
A continuous-culture device was used to select and enrich for microorganisms, from sewage and agricultural runoff, that were capable of using the organophosphorus insecticide parathion as a sole growth substrate. Parathion was dissimilated by the highly acclimated symbiotic activities of Pseudomonas stutzeri, which non-oxidatively and cometabolically hydrolyzed the parathion to ionic diethyl thiophosphate and p-nitrophenol, and P. aeruginosa, which utilized the p-nitrophenol as a sole carbon and energy source. Ionic diethyl thiophosphate was found to be inert to any transformations. Methyl parathion was dissimilated in an analogous way. The device functioned as a chemostat with parathion as the growth-limiting nutrient, and extraordinarily high dissimilation rates were attained for parathion (8 g/liter per day) and for p-nitrophenol (7 g/liter per day). This is the first report of parathion utilization by a defined microbial culture and by symbiotic microbial attack and of dissimilation of an organophosphorus pesticide in a chemostat.  相似文献   

4.
Growth factor receptor bound protein 7 (Grb7) is an adaptor protein that is co-overexpressed and forms a tight complex with the ErbB2 receptor in a number of breast tumours and breast cancer cell lines. The interaction of Grb7 with the ErbB2 receptor is mediated via its Src homology 2 (SH2) domain. Whilst most SH2 domains exist as monomers, recently reported studies have suggested that the Grb7-SH2 domain exists as a homodimer. The self-association properties of the Grb7-SH2 domain were therefore studied using sedimentation equilibrium ultracentrifugation. Analysis of the data demonstrated that the Grb7-SH2 domain is dimeric with a dissociation constant of approximately 11 M. We also demonstrate, using size-exclusion chromatography, that mutation of phenylalanine 511 to an arginine produces a monomeric form of the Grb7-SH2 domain. This mutation represents the first step in the engineering of a Grb7-SH2 domain with good solution properties for further biophysical and structural investigation.  相似文献   

5.
Peristaltic motor activity of the gut is an essential activity to sustain life. In each gut organ, a multitude of overlapping mechanisms has developed to acquire the ability of coordinated contractile activity under a variety of circumstances and in response to a variety of stimuli. The presence of several simultaneously operating control systems is a challenge for investigators who focus on the role of one particular control activity since it is often not possible to decipher which control systems are operating or dominant in a particular situation. A crucial advantage of multiple control systems is that gut motility control can withstand injury to one or more of its components. Our efforts to increase understanding of control mechanism are not helped by recent attempts to eliminate proven control systems such as interstitial cells of Cajal (ICC) as pacemaker cells, or intrinsic sensory neurons, nor does it help to view peristalsis as a simple reflex. This review focuses on the role of ICC as slow-wave pacemaker cells and places ICC into the context of other control mechanisms, including control systems intrinsic to smooth muscle cells. It also addresses some areas of controversy related to the origin and propagation of pacemaker activity. The urge to simplify may have its roots in the wish to see the gut as a consequence of a single perfect design experiment whereas in reality the control mechanisms of the gut are the messy result of adaptive changes over millions of years that have created complementary and overlapping control systems. All these systems together reliably perform the task of moving and mixing gut content to provide us with essential nutrients.  相似文献   

6.
In mammals, a pacemaker in the suprachiasmatic nucleus (SCN) is thought to be required for behavioral, physiological, and molecular circadian rhythms. However, there is considerable evidence that temporal food restriction (restricted feedisng [RF]) and chronic methamphetamine (MA) can drive circadian rhythms of locomotor activity, body temperature, and endocrine function in the absence of SCN. This indicates the existence of extra-SCN pacemakers: the Food Entrainable Oscillator (FEO) and Methamphetamine Sensitive Circadian Oscillator (MASCO). Here, we show that these extra-SCN pacemakers control the phases of peripheral oscillators in intact as well as in SCN-ablated PER2::LUC mice. MA administration shifted the phases of SCN, cornea, pineal, pituitary, kidney, and salivary glands in intact animals. When the SCN was ablated, disrupted phase relationships among peripheral oscillators were reinstated by MA treatment. When intact animals were subjected to restricted feeding, the phases of cornea, pineal, kidney, salivary gland, lung, and liver were shifted. In SCN-lesioned restricted-fed mice, phases of all of the tissues shifted such that they aligned with the time of the meal. Taken together, these data show that FEO and MASCO are strong circadian pacemakers able to regulate the phases of peripheral oscillators.  相似文献   

7.
Sorimachi K  Okayasu T 《Amino acids》2008,34(4):661-668
When nucleotide (G, C, T and A) contents were plotted against each nucleotide, their relationships were clearly expressed by a linear formula, y = αx + β in the coding and non-coding regions. This linear relationship was obtained from the complete single-stranded DNA. Similarly, nucleotide contents at all three codon positions were expressed by linear regression lines based on the content of each nucleotide. In addition, 64 codon usages were also expressed by linear formulas against nucleotide content. Thus, the nucleotide content not only in coding sequence but also in non-coding sequence can be expressed by a linear formula, y = αx + β, in 145 organisms (112 bacteria, 15 archaea and 18 eukaryotes). Based on these results, the ratio of C/T, G/T, C/A or G/A one can essentially estimate all four nucleotide contents in the complete single-stranded DNA, and the determination of any ratio of two kinds of nucleotides can essentially estimate four nucleotide contents, nucleotide contents at the three different codon positions and codon distributions at 64 codons in the coding region. The maximum and minimum values of G content were ∼0.35 and ∼0.15, respectively, among various organisms examined. Codon evolution occurs according to linear formulas between these two values. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
In this work, we investigate the investment of entomopathogenic Steinernema nematodes (Rhabditidae) in their symbiotic association with Xenorhabdus bacteria (Enterobacteriaceae). Their life cycle comprises two phases: (1) a free stage in the soil, where infective juveniles (IJs) of the nematode carry bacteria in a digestive vesicle and search for insect hosts, and (2) a parasitic stage into the insect where bacterial multiplication, nematode reproduction, and production of new IJs occur. Previous studies clearly showed benefits to the association for the nematode during the parasitic stage, but preliminary data suggest the existence of costs to the association for the nematode in free stage. IJs deprived from their bacteria indeed survive longer than symbiotic ones. Here we show that those bacteria-linked costs and benefits lead to a trade-off between fitness traits of the symbiotic nematodes. Indeed IJs mortality positively correlates with their parasitic success in the insect host for symbiotic IJs and not for aposymbiotic ones. Moreover mortality and parasitic success both positively correlate with the number of bacteria carried per IJ, indicating that the trade-off is induced by symbiosis. Finally, the trade-off intensity depends on parental effects and, more generally, is greater under restrictive environmental conditions.  相似文献   

9.
Engineering a novel beta-lactamase by a single point mutation   总被引:2,自引:0,他引:2  
beta-Lactamases are widespread and efficient bacterial enzymes which play a major role in bacterial resistance to penicillins and cephalosporins. In order to elucidate the role of the residues lying in a conserved loop of the enzymatic cavity of the active-site serine Streptomyces albus G beta-lactamase, modified proteins were produced by oligo-directed mutagenesis. Mutation of Asn116, which lies on one side of the active site cavity pointing to the substrate-binding site, into a serine residue resulted in spectacular modifications of the specificity profile of the enzyme. That replacement yielded an enzyme with a nearly unchanged activity towards good penicillin substrates. In sharp contrast its efficiency in hydrolysing cephalosporins was drastically reduced, the best substrates suffering the largest decrease in the second-order rate constant for serine acylation. In fact that single mutation generated a truly new enzyme behaving exclusively as a penicillinase, a situation which is never encountered to the same degree in any of the numerous naturally occurring variants of class A beta-lactamases.  相似文献   

10.
At the nonpermissive temperature, premature chromosome condensation (PCC) occurs in tsBN2 cells derived from the BHK cell line, which can be converted to the Ts+ phenotype by the human RCC1 gene. To prove that the RCC1 gene is the mutant gene in tsBN2 cells, which have RCC1 mRNA and protein of the same sizes as those of BHK cells, RCC1 cDNAs were isolated from BHK and tsBN2 cells and sequenced to search for mutations. The hamster (BHK) RCC1 cDNA encodes a protein of 421 amino acids homologous to the human RCC1 protein. In a comparison of the base sequences of BHK and BN2 RCC1 cDNAs, a single base change, cytosine to thymine (serine to phenylalanine), was found in the 256th codon of BN2 RCC1 cDNA. The same transition was verified in the RCC1 genomic DNA by the polymerase chain reaction method. BHK RCC1 cDNA, but not tsBN2 RCC1 cDNA, complemented the tsBN2 mutation, although both have the same amino acid sequence except for one amino acid at the 256th codon. This amino acid change, serine to phenylalanine, was estimated to cause a profound structural change in the RCC1 protein.  相似文献   

11.
12.

Background  

Symbioses between invertebrates and prokaryotes are biological systems of particular interest in order to study the evolution of mutualism. The symbioses between the entomopathogenic nematodes Steinernema and their bacterial symbiont Xenorhabdus are very tractable model systems. Previous studies demonstrated (i) a highly specialized relationship between each strain of nematodes and its naturally associated bacterial strain and (ii) that mutualism plays a role in several important life history traits of each partner such as access to insect host resources, dispersal and protection against various biotic and abiotic factors. The goal of the present study was to address the question of the impact of Xenorhabdus symbionts on the progression and outcome of interspecific competition between individuals belonging to different Steinernema species. For this, we monitored experimental interspecific competition between (i) two nematode species: S. carpocapsae and S. scapterisci and (ii) their respective symbionts: X. nematophila and X. innexi within an experimental insect-host (Galleria mellonella). Three conditions of competition between nematodes were tested: (i) infection of insects with aposymbiotic IJs (i.e. without symbiont) of both species (ii) infection of insects with aposymbiotic IJs of both species in presence of variable proportion of their two Xenorhabdus symbionts and (iii) infection of insects with symbiotic IJs (i.e. naturally associated with their symbionts) of both species.  相似文献   

13.
We tested the recent hypothesis that the"fly factor"phenomenon(food cur-rently or previously fed on by flies attracts more flies than the same type of food kept inccessible to flies)is mediated by bacterial symbionts deposited with feees or regur-gitated by feeding flies.We allowed laboratory-reared black blow flies,Phormia regina(Meigen),to feed and de fecate on bacterial Luria-Bertani medium solidified with agar,and isolated seven morphologically distinct bacterial colonies.We identified these us-ing matrix-assisted laser desorption/ionization mass spectrometry and sequencing of the 165 rRNA gene.In two-choice laboratory experiments,traps baited with cultures of Pro-teus mirabilis Hauser,Morganella morganii subsp.sibonii Jensen,or Serratia marcescens Bizio,captured significantly more flies than corresponding control jars baited with tryptic soy agar only.A mixture of seven bacterial strains as a trap bait was more attractive to flies than a single bacterial isolate(M.m.siboni).In a field experiment,traps baited with agar cultures of P:mirabilis and M.m siboni in combination captured significantly more flies than lraps baited with either bacterial isolate alone or the agar control.As evident by gas chromatography-mass spectrometry,the odor profiles of bacterial isolates differ,which may explain the additive effect of bacteria to the attractiveness of bacterial trap baits.As"generalist bacteria,"P mirabilis and M.m.sibonii growing on animal protein(beef liver)or plant protein(tofu)are similarly effective in attracting flies.Bacteria-derived airborne semiochemicals appear to mediate foraging by flies and to inform their feeding and oviposition decisions.  相似文献   

14.
Bacteriorhodopsin is a model system for membrane proteins. This seven transmembrane helical protein is embedded within a membrane structure called purple membrane. Its structural stability against mechanical stress was recently investigated by atomic force microscopy experiments, in which single proteins were extracted from the purple membrane. Here, we study this process by all-atom molecular dynamics simulations, in which single bacteriorhodopsin molecules were extracted and unfolded from an atomistic purple membrane model. In our simulations, key features from the experiments like force profiles and location of key residues that resist mechanical unfolding were reproduced. These key residues were seen to be stabilized by a dynamic network of intramolecular interactions. Further, the unfolding pathway was found to be velocity-dependent. Simulations in which the mechanical stress was released during unfolding revealed relaxation motions that allowed characterization of the nonequilibrium processes during fast extraction.  相似文献   

15.
《Biophysical journal》2022,121(21):4119-4127
Macromolecular phase separation has recently come to immense prominence as it is central to the formation of membraneless organelles, leading to a new paradigm of cellular organization. This type of phase transition, often termed liquid-liquid phase separation (LLPS), is mediated by molecular interactions between biomolecules, including nucleic acids and both ordered and disordered proteins. In the latter case, the separation between protein-dense and -dilute phases is often interpreted using models adapted from polymer theory. Specifically, the “stickers and spacers” model proposes that the formation of condensate-spanning networks in protein solutions originates from the interplay between two classes of residues and that the main determinants for phase separation are multivalency and sequence patterning. The duality of roles of stickers (aromatics like Phe and Tyr) and spacers (Gly and polar residues) may apply more broadly in protein-like mixtures, and the presence of these two types of components alone may suffice for LLPS to take place. In order to explore this hypothesis, we use atomistic molecular dynamics simulations of capped amino acid residues as a minimal model system. We study the behavior of pure amino acids in water for three types of residues corresponding to the spacer and sticker categories and of their multicomponent mixtures. In agreement with previous observations, we find that the spacer-type amino acids fail to phase separate on their own, while the sticker is prone to aggregation. However, ternary amino acid mixtures involving both types of amino acids phase separate into two phases that retain intermediate degrees of compaction and greater fluidity than sticker-only condensates. Our results suggest that LLPS is an emergent property of amino acid mixtures determined by composition.  相似文献   

16.
In this review, we examine the functional roles of microbial symbionts in plant tolerance to cold and freezing stresses. The impacts of symbionts on antioxidant activity, hormonal signaling and host osmotic balance are described, including the effects of the bacterial endosymbionts Burkholderia, Pseudomonas and Azospirillum on photosynthesis and the accumulation of carbohydrates such as trehalose and raffinose that improve cell osmotic regulation and plasma membrane integrity. The influence of root fungal endophytes and arbuscular mycorrhizal fungi on plant physiology at low temperatures, for example their effects on nutrient acquisition and the accumulation of indole‐3‐acetic acid and antioxidants in tissues, are also reviewed. Meta‐analyses are presented showing that aspects of plant performance (shoot biomass, relative water content, sugar and proline concentrations and Fv/Fm) are enhanced in symbiotic plants at low (?1 to 15 °C), but not at high (20–26 °C), temperatures. We discuss the implications of microbial symbionts for plant performance at low and sub‐zero temperatures in the natural environment and propose future directions for research into the effects of symbionts on the cold and freezing tolerances of plants, concluding that further studies should routinely incorporate symbiotic microbes in their experimental designs.  相似文献   

17.
Insects naturally harbor a broad range of selfish agents that can manipulate their reproduction and development, often leading to host sex ratio distortion. Such effects directly benefit the spread of the selfish agents. These agents include two broad groups: bacterial symbionts and selfish chromosomes. Recent studies have made steady progress in uncovering the cellular targets of these agents and their effector genes. Here we highlight what is known about the targeted developmental processes, developmental timing, and effector genes expressed by several selfish agents. It is now becoming apparent that: (1) the genetic toolkits used by these agents to induce a given reproductive manipulation are simple, (2) these agents target sex-specific cellular processes very early in development, and (3) in some cases, similar processes are targeted. Knowledge of the molecular underpinnings of these systems will help to solve long-standing puzzles and provide new tools for controlling insect pests.Subject terms: Development, Genomic instability  相似文献   

18.
Voltage-gated K(+) channel subunits must reach the plasma membrane to repolarize action potentials. Yet the efficiency of cell surface targeting varies among Kv subunits with some requiring auxiliary subunits for optimal expression. Here we identify a conserved motif located in the variable C-terminal region of Kv1 channels that controls the efficiency of functional channel expression. Variations among wild type channels in the optimal sequence VXXSL produce differences in distribution and the requirement for auxiliary subunits. Furthermore, deletion of this motif decreases subunit glycosylation and surface localization but does not prohibit subunit multimerization. Finally, the action of the essential sequence is shown to be independent of the chaperone effect of Kvbeta subunits. Thus, the newly identified C-terminal motif governs processing and cell surface expression of Kv1 voltage-gated K(+) channels.  相似文献   

19.
Bordetella pertussis contains two genes encoding the serospecific fimbrial subunit proteins 2 and 3 which are assembled into completed fimbriae, which elicit the formation of agglutinating antibodies. Expression of these agglutinogens can vary independently of each other. A gene library from a B. pertussis strain (fimbrial serotype 0.3) was probed with an oligonucleotide probe specific for fimbrial subunit genes. Three homologous genetic loci were identified; an active fim 3 gene, an inactive fim 2 gene and an unknown fim-homologous region. The fim 3 gene carried on a cosmid produced agglutinating fimbrial structures in B. parapertussis and in variants of B. pertussis which had lost the capacity to produce the agglutinogen. This indicated that cis-acting factors are associated with serotype variation in B. pertussis rather than the production of trans-acting repressor molecules.  相似文献   

20.
Burger G  Lang BF 《IUBMB life》2003,55(4-5):205-212
Mitochondria, the energy-producing organelles of the eukaryotic cell, originate from an endosymbiotic alpha-proteobacterium. These organelles are believed to have arisen only once in evolutionary history, but despite their common ancestry, mitochondrial DNAs vary extensively throughout eukaryotes in genome architecture and gene content. New insights into early mitochondrial genome evolution come from the investigation of primitive mitochondriate eukaryotes, as well as the comparison between mitochondria and intracellular bacterial symbionts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号