首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Isolation and incubation conditions were established for Petunia hybrida chloroplasts capable of performing in vitro protein and RNA synthesis. Under these conditions, chloroplasts from leaves as well as from the non-photoautotrophic mutant green cell culture AK-2401 are able to incorporate labeled amino acids into polypeptides. Intact chloroplasts can use light as an energy source; photosynthetically-inactive chloroplasts require the addition for ATP for this protein synthesis. Sodium dodecylsulphate polyacrylamide slab gel electrophoresis shows that in isolated leaf chloroplasts at least twenty-five radioactive polypeptide species are synthesized. The three major products synthesized have molecular weights of 52,000, 32,000 and 17,000. Coomassie brilliant-bluestained polypeptide patterns from plastids isolated from the mutant green cell culture AK-2401 differ considerably from those obtained from leaf chloroplasts. The pattern of radioactive polypeptides synthesized in these isolated cell culture plastids also shows differences. These results indicate that the difference in developmental stage observed between plastids from the cell culture AK-2401 and leaves is reflected in an altered expression of the chloroplast DNA.Abbreviations CAP D-threo-chloramphenicol - 2,4-D 2,4-dichlorophenoxyacetic acid - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecylsulphate  相似文献   

2.
The activation by proteases of the Ca2+-dependent ATPase of chloroplast coupling factor 1 (CF1) has been investigated. Using low concentrations of papain and trypsin, the increase in ATPase activity and the degradation of the five subunits of CF1 were compared. Sodium dodecyl sulfate-gel electrophoresis of protease-treated CF1 revealed that the delta subunit was very rapidly degraded and that the alpha and beta subunits were clipped. The gamma and epsilon subunits were more resistant to digestion. The modification of the alpha subunit of latent CF1 most closely correlated with the activation of Ca2+-ATPase activity. Trypsin treatment of dithiothreitol-activated CF1 resulted in a very rapid increase in Ca2+-ATPase activity and a corresponding rapid cleavage of the gamma subunit to a 25,000-dalton species. With more prolonged treatment, the 25,000-dalton species was cleaved to fragments of 14,000 and 11,000-daltons. Dithiothreitol treatment did not alter the rate of attack on the other subunits. The gamma subunit of heat-activated CF1 was also more susceptible to protease digestion. The increased protease sensitivity of the gamma subunit of soluble CF1 after treatment with dithiothreitol or heat mimics the increased protease sensitivity of the gamma subunit of bound CF1 when thylakoids are treated with trypsin during illumination (Moroney, J. V., and McCarty, R. E. (1982) J. Biol. Chem. 257, 5915-5920). These results suggest that the conformational changes that occur when purified CF1 is exposed to dithiothreitol are similar to those that CF1 bound to thylakoid membranes undergoes under illumination.  相似文献   

3.
Starting from isolated chloroplasts of the Chlamydomonas reinhardii cw 15 mutant, several mRNA-containing chloroplast subfractions, i.e. thylakoid-bound polysomes, detached polysomes or isolated RNA, were prepared and incubated in homologous and heterologous translation systems. In the reticulocyte lysate these fractions gave rise to strikingly different product patterns. A most prominent difference concerned the in-vivo rapidly labelled 32,000-dalton thylakoid polypeptide. Neither this membrane protein nor its 34,000-dalton precursor was formed when membrane-containing or free polysomes were translated, while the 34,000-dalton precursor was a main product of the RNA isolated from the same membranes. The influence of thylakoid membranes during translation was also observed in homologous translation systems with lysed chloroplasts supplemented with ATP. Membrane and soluble fractions, when translated separately, yielded product patterns which differed from each other, although the RNAs extracted from the respective fractions gave the same product patterns when translated in reticulocyte lysate; the latter included a soluble protein, the large subunit of ribulose-1,5-bisphosphate carboxylase, and a membrane protein, the 34,000-dalton precursor of the 32,000-dalton membrane protein, as major labelled translation products. These results point to a regulatory role of thylakoid membranes in the expression of chloroplast mRNA and argue against compartmentation of the chloroplast mRNAs between the soluble and membrane fractions.Abbreviation SDS sodium dodecyl sulfate  相似文献   

4.
The Vir-c mutation is a virescent chloroplast mutation found in a line of plants derived from protoplast fusions between a Nicotina tabacum line and a line containing N. tabacum nuclei with Nicotiana suaveolens cytoplasm. Vir-c displays a lag period in chlorophyll accumulation and granal stack formation in young leaves. We examined total chloroplast protein in young leaves and showed the mutant contains 1.3 to 2.1 times less stromal protein, and 2.9 to 4.3 times less thylakoid protein when compared to the N. tabacum var “Turkish Samsun” control. Electrophoretic patterns of total thylakoid proteins indicated three polypeptides were specifically decreased in amount within the context of the overall reduction in thylakoid protein. Electrophoresis of thylakoid proteins synthesized by chloroplasts isolated from half-expanded leaves demonstrated that mutant chloroplasts did not synthesize a 37.5 kilodalton polypeptide which was synthesized by “Samsun” chloroplasts. A polypeptide of this molecular weight was synthesized by Vir-c chloroplasts isolated from mature leaves which had recovered the normal phenotype. Restriction digestion and electrophoresis of the mutant's chloroplast DNA produced a pattern of restriction fragments different from either N. tabacum or N. suaveolens chloroplast DNA.  相似文献   

5.
The amphibian photoreceptor rod outer segment contains a guanine nucleotide-binding complex which consists of a 39,000-dalton polypeptide that binds guanine nucleotides (G protein), a 36,000-dalton polypeptide (H protein), and an approximately 6,500-dalton polypeptide. Sensitivity to trypsin proteolysis was utilized as a probe of structure-function relationships for these polypeptides. Digestion of the H protein generated fragments of 26,000 and 15,000 daltons whose proteolytic susceptibility was not altered by guanosine triphosphates, light, or membranes. The approximately 6,500-dalton polypeptide was not trypsin sensitive. When the G protein was eluted from illuminated membranes by GTP, trypsin proteolysis cleaved a terminal 1,000-dalton fragment (G1) to yield a 38,000-dalton fragment (G38). With increased digestion time, a 6,000-dalton fragment (G6) was removed from G38 to yield a 32,000-dalton fragment (G32). G32 was subsequently digested to fragments of 23,000 and 12,000 daltons. However, when the G protein was eluted from illuminated membranes by hydrolysis-resistant analogues of GTP, G32 was protected from further digestion. This is consistent with a GTP-induced conformational change in the G protein which is altered by GTP hydrolysis. Proteolysis of the G protein after covalent labeling with a photoaffinity analogue of GTP demonstrated that the analogue is bound to first G38 and then G32, indicating the GTP-binding site is associated with G32. Fragment G6 was cleaved when the G protein was soluble or bound to unilluminated membranes. However, when bound to illuminated membranes, fragments were generated reflecting the loss of 7,500, 9,000, or 11,000 daltons from the G protein. This light-induced alteration in proteolytic susceptibility indicates there is a light-induced conformational change in the G protein. Fragment G1 was not removed from the G protein when it was membrane bound, suggesting G1 is involved in binding to a membrane structure. These data suggest that the light-induced binding of the G protein to illuminated membranes and the reversal of this binding by GTP are mediated through conformational changes in the G protein and that three conformations exist: 1) a basal, inactive conformation; 2) a primed conformation induced by binding to photolyzed rhodopsin, with a high affinity for GTP; and 3) an active conformation, induced by binding of GTP, which activates the catalytic complex of light-activated phosphodiesterase.  相似文献   

6.
Washed thylakoids of pea chloroplasts, containing tightly bound polysomes, incorporate radioactive amino acids into protein when supplied with soluble factors from Escherichia coli. Polyacrylamide gel electrophoresis with lithium dodecyl sulfate, followed by autoradiography of the labeled products, showed the synthesis of a number of different polypeptides. Two of the most heavily labeled products were in the region expected for the alpha and beta subunits of coupling factor 1, at 57 and 54 kDa. Positive identification of the subunits was made using monospecific antibodies. Furthermore, the same two polypeptides made by soluble polysomes located in the chloroplast stroma were found. While the major proportion of the newly formed alpha and beta subunits made by thylakoid-bound polysomes remained with the thylakoids after protein synthesis occurred, no evidence was found of incorporation into complete, EDTA-extractable coupling factor 1.  相似文献   

7.
Radioactive amino acids, when added to isolated pea chloroplasts or chloroplast extracts engaged in protein synthesis, are incorporated into Rubisco large subunits that co-migrate with native Rubisco during nondenaturing electrophoresis. We have added the transition state analog 2′-carboxyarabinitol bisphosphate (CABP) to chloroplast extracts after in organello or in vitro incorporation of radioactive amino acids into Rubisco large subunits. Upon addition of CABP the radioactive bands co-migrating with native Rubisco undergo a readily detected shift in electrophoretic mobility just as the native enzyme, thus demonstrating the ability of the newly assembled molecules to interact with this transition state analog.  相似文献   

8.
The distribution and molecular weights of cellular proteins in soluble and membrane-associated locations were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie blue staining of leaf (Digitaria sanguinalis L. Scop.) extracts and isolated cell extracts. Leaf polypeptides also were pulse-labeled, followed by isolation of the labeled leaf cell types and analysis of the newly synthesized polypeptides in each cell type by electrophoresis and fluorography.

Comparison of the electrophoretic patterns of crabgrass whole leaf polypeptides with isolated cell-type polypeptides indicated a difference in protein distribution patterns for the two cell types. The mesophyll cells exhibited a greater allocation of total cellular protein into membrane-associated proteins relative to soluble proteins. In contrast, the bundle sheath cells exhibited a higher percentage of total cellular protein in soluble proteins. Phosphoenolpyruvate carboxylase was the major soluble protein in the mesophyll cell and ribulose bisphosphate carboxylase was the major soluble protein in the bundle sheath cell. The majority of in vivo35S-pulse-labeled proteins synthesized by the two crabgrass cell types corresponded in molecular weight to the proteins present in the cell types which were detected by conventional staining techniques. The bundle sheath cell and mesophyll cell fluorograph profiles each had 15 major 35S-labeled proteins. The major incorporation of 35S by bundle sheath cells was into products which co-electrophoresed with the large and small subunits of ribulose bisphosphate carboxylase. In contrast, a major 35S-labeled product in mesophyll cell extracts co-electrophoresed with the subunit of phosphoenolpyruvate carboxylase. Both cell types exhibited equivalent in vivo labeling of a polypeptide with one- and two-dimensional electrophoretic behavior similar to the major apoprotein of the light-harvesting chlorophyll a/b protein. Results from the use of protein synthesis inhibitors during pulse-labeling experiments indicated intercellular differences in both organelle and cytoplasmic protein synthesis. A majority of the 35S incorporation by crabgrass mesophyll cell 70S ribosomes was associated with a pair of membrane-associated polypeptides of molecular weight 32,000 and 34,500; a comparison of fluorograph and stained gel profiles suggests these products resemble the precursor and mature forms of the maize chloroplast 32,000 dalton protein reported by Grebanier et al. (1978 J. Cell Biol. 28:734-746). In contrast, crabgrass bundle sheath cell organelle translation was directed predominantly into a product which co-electrophoresed with the large subunit of ribulose bisphosphate carboxylase.

  相似文献   

9.
Isolated chloroplasts of Acetabularia incorporate radioactive amino acids into more than 30 polypeptides in the light, including the apoprotein of the P700-chlorophyll a protein complex, the reaction centre core of photosystem I [Biochim. Biophys. Acta, 609. 107-120 (1980)]. In this paper it is shown that the apoproteins of the two minor chlorophyll a complexes, thought to be part of photosystem II reaction centre core, are also synthesized by isolated chloroplasts. Furthermore, they are integrated correctly into the thylakoid membrane in the absence of any cytoplasmic contribution, such that they can be isolated as chlorophyll-protein complexes indistinguishable from those already in the membrane. In contrast, the minor chlorophyll a + b complex 'CP 29' [Camm, E. L. and Green, B. R. (1980) Plant Physiol. 66, 428-432] and its dimers are not synthesized by isolated chloroplasts. In this they resemble the other chlorophyll a + b complex, the light-harvesting complex (LHC). It may be significant that the LHC, which is not essential for photosynthetic activity, is under nuclear control, while the reaction centre polypeptides, cytochrome b559, and cytochrome f, are synthesized on chloroplast ribosomes.  相似文献   

10.
Monomeric cAMP-binding fragments of molecular mass 16,000 and 14,000 daltons were obtained by Sephadex G-75 chromatography of partially trypsin-hydrolyzed regulatory subunits of cAMP-dependent protein kinase isozymes I and II, respectively. The Stokes radii were 19.1 and 16.4 A, the frictional ratios were 1.15 and 1.03, and the sedimentation coefficients were 1.94 and 1.91 S for the 16,000- and 14,000-dalton fragments, respectively. The 16,000-dalton fragment retained specific cyclic nucleotide binding characteristics of the native protein. The specificity of cyclic nucleotide binding to the 14,000-dalton fragment (cAMP greater than cIMP = 8-bromo-cAMP = 8-oxo-cAMP greater than cUMP = cGMP) differed from that of the native subunit (cAMP = 8-oxo-cAMP greater than 8-bromo-cAMP greater than cIMP greater than cUMP = cGMP). The 14,000-dalton fragment bound nearly 1 mol of cAMP/mol of fragment. The binding exchange rate of cAMP was much faster for the 14,000-dalton fragment than for either of the native regulatory subunits or for the 16,000 dalton fragment. Although hemin inhibited cAMP binding to the native regulatory subunits and to the 16,000 dalton fragment, the molecule did not affect cAMP binding to the 14,000-dalton fragment. Both of the native regulatory subunits and the isolated 16,000- and 14,000-dalton fragments could be covalently labeled with the photoaffinity analog, 8-N3-[32P]cAMP. The 14,000-dalton fragment could not be phosphorylated and neither fragment could recombine with the catalytic subunit to inhibit its activity. The results indicate that the functional entities of the regulatory subunit other than cAMP binding are destroyed by trypsin. The properties of the 16,000-dalton fragment suggest that the intact cAMP-binding site is contained in a small trypsin-resistant "core" of the native regulatory subunit. The properties of the 14,000-dalton fragment imply that part of the binding site of the native regulatory subunit was slighlty modified or lost during preparation of this fragment.  相似文献   

11.
12.
The three most abundant nonhistone polypeptides (molecular weights 75,000, 71,000 and 61,000) of the avian erythrocyte nucleus have previously been isolated in the nuclear envelope fraction. They have been separated by sodium dodecylsulfate-polyacrylamide gel electrophoresis and peptide-mapped after limited enzymatic digestion. Three enzymes–chymotrypsin, papain and Staphylococcus aureus protease–were used. Results obtained with each enzyme indicate strong similarities between the three nuclear envelope polypeptides. The amino acid compositions of the two most abundant polypeptides (P75 and P71) have been determined and found to be similar. Further, they readily yield large fragments upon brief alkaline hydrolysis. For both P75 and P71 the degree and the pattern of alkaline fragmentation are almost identical. A 61,000-dalton polypeptide which appears to be P61 is obtained from P75 and P71 by mild acid hydrolysis. These results establish the close chemical similarity of these predominant polypeptides in the erythrocyte nucleus and suggest that they serve related functions.  相似文献   

13.
Excised primary leaves of spinach (Spinacia oleracea) incorporate [35S]-methionine into a number of chloroplast polypeptides. The ratio of incorporation of isotope into the large subunit of ribulose bisphosphate carboxylase relative to a thylakoid polypeptide (peak D) decreases during leaf development in whole leaves; this changing pattern of incorporation is also observed in isolated chloroplasts where these two polypeptides are the major products of protein synthesis. Chloroplast RNA prepared from developing leaves was translated in a reticulocyte lysate extract to yield full-length carboxylase large subunit and peak D polypeptides. The fidelity of translation of these two polypeptides was checked by partial protease digestion. Changes in the synthesis of the large subunit of the carboxylase and peak D in developing leaves are reflected in changes in the amount of translatable mRNA for these two polypeptides.  相似文献   

14.
The incorporation of newly synthesized large subunits into ribulose bisphosphate carboxylase/oxygenase (RuBisCO) in pea chloroplast extracts occurs at the expense of intermediate forms of the large subunit which are complexed with a binding protein. Most subunits of this binding protein are found in dodecameric complexes in chloroplast extracts. Addition of small subunits to these extracts results in approximately 40 to 60% increased incorporation of newly made large subunits into RuBisCO at low or zero concentrations of ATP, but is without significant effect at high concentrations of ATP, a condition in which the dodecameric binding protein complex is dissociated into subunits. Overall, these data support the assumption that the incorporation of large subunits into RuBisCO in chloroplast extracts reflects de novo assembly rather than `mere' exchange of subunits. The in vitro assembly of large subunits into RuBisCO is a function of the conditions under which the large subunits are synthesized in organello. When the large subunits are made in chloroplasts suspended in 188 millimolar sorbitol, they are approximately 2- to 3-fold better able to assemble into RuBisCO when subsequently incubated in vitro than when they are synthesized in chloroplasts suspended in 375 millimolar sorbitol. This observation indicates that mere synthesis of large subunits is not sufficient to confer maximal assembly competence on large subunits.  相似文献   

15.
Spinach chloroplast RNA was translated in a wheat germ cell-freesystem in the presence of [35S]methionine or [3H]lysine, andthe products were analyzed by SDS polyacrylamide gel electrophoresisand fluorography. A polypeptide with molecular mass of 2,000-Dalarger than the 32,000-Da thylakoid protein was detected asa major product labeled by [35S]methionine but not by [3H]lysine.Peptide mapping of this polypeptide showed a pattern very closeto that of the 32,000-Da protein synthesized in isolated chloroplasts.A better separation of this polypeptide from the 32,000-Da proteinwas observed in the electrophoresis on polyacrylamide gel includingurea at 8 M. Pulse-labeling of the isolated chloroplasts showedthe occurrence of the larger molecular weight form, which wasconverted to the mature size by a chasing incubation with coldmethionine. These results suggested that the 32,000-Da proteinof spinach is translated primarily as a high molecular weightprecursor in the chloroplasts, as has been reported for otherplant species. (Received March 30, 1985; Accepted April 23, 1985)  相似文献   

16.
Hubbs AE  Roy H 《Plant physiology》1993,101(2):523-533
In higher plants, ribulose bisphosphate carboxylase/oxygenase (Rubisco) consists of eight large "L" subunits, synthesized in chloroplasts, and eight small "S" subunits, synthesized as precursors in the cytosol. Assembly of these into holoenzyme occurs in the chloroplast stroma after import and processing of the S subunits. A chloroplast chaperonin interacts with the L subunits, which dissociate from the chaperonin before they assemble into holoenzyme. Our laboratory has reported L subunit assembly into Rubisco in chloroplast extracts after protein synthesis in leaves, intact chloroplasts, and most recently in membrane-free chloroplast extracts. We report here that the incorporation of in vitro-synthesized L subunits into holoenzyme depends on the conditions of L subunit synthesis. Rubisco assembly did not occur after L subunit synthesis at 160 mM KCI. When L subunit synthesis occurred at approximately 70 mM KCI, assembly depended on the temperature at which L subunit synthesis took place. These phenomena were the result of postsynthetic events taking place during incubation for protein synthesis. We separated these events from protein synthesis by lowering the temperature during protein synthesis. Lower temperatures supported the synthesis of full-length Rubisco L subunits. The assembly of these completed L subunits into Rubisco required intervening incubation with ATP, before addition of S subunits. ATP treatment mobilized L subunits from a complex with the chloroplast chaperonin 60 oligomer. Addition of 130 mM KCI at the beginning of the intervening incubation with ATP blocked the incorporation of L subunits into Rubisco. The inhibitory effect of high KCI was due to CI- and came after association of newly synthesized L subunits with chaperonin 60, but before S subunit addition. It is interesting that L subunits synthesized at [greater than or equal to]32[deg]C failed to assemble into Rubisco under any conditions. These results agree with previous results obtained in this laboratory using newly synthesized L subunits made in intact chloroplasts. They also show that assembly of in vitro-synthesized L subunits into Rubisco requires ATP, that CI- inhibits Rubisco assembly, and that synthesis temperature affects subsequent assembly competence of L subunits.  相似文献   

17.
Identification of clp genes expressed in senescing Arabidopsis leaves.   总被引:4,自引:0,他引:4  
Clp protease is a highly selective protease in E. coli, which consists of two types of subunits, the regulatory subunit with ATPase activity, ClpA, and the catalytic subunit, ClpP. In order to examine the possible association of plant Clp protease with the degradation of protein in senescing chloroplasts, we isolated a cDNA clone for ClpC which is a plant homologue of ClpA from Arabidopsis thaliana in addition to ERD1 which we had isolated earlier [Kiyosue et al. (1993) Biochem. Biophys. Res. Commun. 196: 1214]. We also isolated a clone for the plastidic gene, clpP (pclpP) and cDNA clones for putative nuclear clpP genes (nclpP1-6). We analyzed the expression of these clp genes in Arabidopsis leaves after various dark periods and during natural senescence. The expression of erd1 was increased by dark-induced and by natural senescence, as reported earlier [Nakashima et al. (1997) Plant J. 12: 851], while that of AtclpC was decreased. Two catalytic subunits nclpPs (nclpP3 and nclpP5) showed high expression in naturally senescing leaves, but the expression of pclpP and the other nclpPs was not changed. Immunoblot analysis of chloroplast protein and in vitro import analysis demonstrated that both nucleus-encoded regulatory subunits as well as nClpP5 were localized in the chloroplast stroma. These observations suggest that chloroplast Clp protease is composed of very complicated combinations of subunits, and that ERD1, nClpP5 and pClpP have a role in the concerted degradation of protein in senescing chloroplasts.  相似文献   

18.
The mature eggs of Plodia interpunctella were found to contain four major polypeptides. These yolk polypeptides (YPs) were found to have approximate molecular weights of 153,000 daltons (YP1), 69,000 daltons (YP2), 43,000 daltons (YP3), and 33,000 daltons (YP4) as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In addition, we found YP1 was resolved by a 5% polyacrylamide gel into two separate polypeptides of 153,000 and 147,000 daltons. All of the YPs could be labeled in vivo or in vitro with [35S]-methionine. Yolk peptide 1 and YP3 were synthesized by fat body of pharate adult and adult females and secreted into the hemolymph. Yolk peptide 2 and YP4 were synthesized and secreted into incubation medium by ovaries that contained vitellogenic oocytes, but these polypeptides were not found in the hemolymph. Fat bodies of males synthesized and secreted an immunoprecipitable polypeptide similar to YP3 as well as immunoprecipitable polypeptides larger than 200,000 daltons that had no counterparts in the oocytes. Peptide mapping by protease digestion showed each YP to be cleaved into unique fragments, suggesting that no precursor-product relationship exists between the YPs. Ion exchange chromatography and gel permeation chromatography separated that yolk proteins into two groups with approximate molecular weights of 462,000 and 264,000 daltons. By resolving these peaks on SDS-PAGE, it was found that YP1 and YP3 formed the 462,000-dalton yolk protein and YP2 and YP4 formed the 264,000-dalton yolk protein.  相似文献   

19.
An isolation procedure is worked out and properties are studied of CF1 ATPase from chloroplasts with changed submolecular structure. The enzyme, isolated by chlorophorm treatment, produced Ca-dependent ATPase activity in water solution. As compared with the enzyme isolated by well known Lien and Racker method, the enzyme preparation obtained is slightly activated by heating, is not activated by trypsin and has a lesser ability to recover ATP synthesis in EDTA-treated chloroplasts. Purification on DEAE-Sephadex produced the enzyme preparation free of delta-subunit. Chlorophorm treatment is suggested to change submolecular protein structure, in particular, loosening of the link of delta-subunit with other enzyme subunits. The data obtained suggest that delta-subunit participates in the binding of CF1 ATPase with chloroplast membrane.  相似文献   

20.
DNA coding for the alpha and beta subunits of Vibrio harveyi luciferase, the luxA and luxB genes, and the adjoining chromosomal regions on both sides of these genes (total of 18 kilobase pairs) was cloned into Escherichia coli. Using labeled DNA coding for the alpha subunit as a hybridization probe, we identified a set of polycistronic mRNAs (2.6, 4, 7, and 8 kilobases) by Northern blotting; the most prominent of these was the one 4 kilobases long. This set of mRNAs was induced during the development of bioluminescence in V. harveyi. Furthermore, the same set of mRNAs was synthesized in E. coli by a recombinant plasmid that contained a 12-kilobase pair length of V. harveyi DNA and expressed the genes for the luciferase subunits. A cloned DNA segment corresponding to the major 4-kilobase mRNA coded for the alpha and beta subunits of luciferase, as well as a 32,000-dalton protein upstream from these genes that could be specifically modified by acyl-coenzyme A and is a component of the bioluminescence system. V. harveyi mRNA that was hybridized to and released from cloned DNA encompassing the luxA and luxB genes was translated in vitro. Luciferase alpha and beta subunits and the 32,000-dalton polypeptide were detected among the products, along with 42,000- and 55,000-dalton polypeptides, which are encoded downstream from the lux genes and are thought to be involved in luminescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号