首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamate transporters in hyperammonemia   总被引:2,自引:0,他引:2  
Evidence suggests that increases in brain ammonia due to congenital urea cycle disorders, Reye Syndrome or liver failure have deleterious effects on the glutamate neurotransmitter system. In particular, ammonia exposure of the brain in vivo or in vitro preparations leads to alterations of glutamate transport. Exposure of cultured astrocytes to ammonia results in reduced high affinity uptake sites for glutamate due to a reduction in expression of the astrocytic glutamate transporter GLAST. On the other hand, acute liver failure leads to decreased expression of a second astrocytic glutamate transporter GLT-1 and a consequent reduction in glutamate transport sites in brain. Effects of the chronic exposure of brain to ammonia on cellular glutamate transport are less clear. The loss of glutamate transporter activity in brain in acute liver failure and hyperammonemia is associated with increased extracellular brain glutamate concentrations which may be responsible for the hyperexcitability and cerebral edema observed in hyperammonemic disorders.  相似文献   

2.
Hyperammonemia is the main responsible for the neurological alterations in hepatic encephalopathy in patients with liver failure. We studied the function of the glutamate-nitric oxide (NO)-cGMP pathway in brain in animal models of hyperammonemia and liver failure and in patients died with liver cirrhosis. Activation of glutamate receptors increases intracellular calcium that binds to calmodulin and activates neuronal nitric oxide synthase, increasing nitric oxide, which activates soluble guanylate cyclase (sGC), increasing cGMP. This glutamate-NO-cGMP pathway modulates cerebral processes such as circadian rhythms, the sleep-waking cycle, and some forms of learning and memory. These processes are impaired in patients with hepatic encephalopathy. Activation of sGC by NO is significantly increased in cerebral cortex and significantly reduced in cerebellum from cirrhotic patients died in hepatic coma. Portacaval anastomosis in rats, an animal model of liver failure, reproduces the effects of liver failure on modulation of sGC by NO both in cerebral cortex and cerebellum. In vivo brain microdialisis studies showed that sGC activation by NO is also reduced in vivo in cerebellum in hyperammonemic rats with or without liver failure. The content of alpha but not beta subunits of sGC are increased both in frontal cortex and cerebellum from patients died due to liver disease and from rats with portacaval anastomosis. We assessed whether determination of activation of sGC by NO-generating agent SNAP in lymphocytes could serve as a peripheral marker for the impairment of sGC activation by NO in brain. Chronic hyperammonemia and liver failure also alter sGC activation by NO in lymphocytes from rats or patients. These findings show that the content and modulation by NO of sGC are strongly altered in brain of patients with liver disease. These alterations could be responsible for some of the neurological alterations in hepatic encephalopathy such as sleep disturbances and cognitive impairment.  相似文献   

3.
A large body of experimental data and preliminary clinical studies point to the induction of mild hypothermia (32-35 °C) as a valuable approach to control the development of brain edema and intracranial hypertension in acute liver failure (ALF). The ability of hypothermia to affect multiple processes probably explains its efficacy to prevent these cerebral complications. Remarkably, mild hypothermia has been shown to prevent or attenuate most of the major alterations involved in the pathogenesis of the cerebral complications of ALF, including the accumulation of ammonia in the brain and the circulation, the alterations of brain glucose metabolism, the brain osmotic disturbances, the accumulation of glutamate and lactate in brain extracellular space, the development of inflammation and oxidative/nitrosative stress, and others. Limited information suggests that the systemic effects of hypothermia may also be beneficial for some peripheral complications of ALF. Translation of the beneficial effects of therapeutic hypothermia into standard clinical practice, however, needs to be confirmed in adequately designed clinical trials. Such trials will be important to determine the safety of therapeutic hypothermia, to identify which patients might benefit from it, and to provide the optimal guidelines for its use in patients with ALF.  相似文献   

4.
Increased brain ammonia concentrations are a hallmark feature of several neurological disorders including congenital urea cycle disorders, Reye's syndrome and hepatic encephalopathy (HE) associated with liver failure. Over the last decade, increasing evidence suggests that hyperammonemia leads to alterations in the glutamatergic neurotransmitter system. Studies utilizing in vivo and in vitro models of hyperammonemia reveal significant changes in brain glutamate levels, glutamate uptake and glutamate receptor function. Extracellular brain glutamate levels are consistently increased in rat models of acute liver failure. Furthermore, glutamate transport studies in both cultured neurons and astrocytes demonstrate a significant suppression in the high affinity uptake of glutamate following exposure to ammonia. Reductions in NMDA and non-NMDA glutamate receptor sites in animal models of acute liver failure suggest a compensatory decrease in receptor levels in the wake of rising extracellular levels of glutamate. Ammonia exposure also has significant effects on metabotropic glutamate receptor activation with implications, although less clear, that may relate to the brain edema and seizures associated with clinical hyperammonemic pathologies. Therapeutic measures aimed at these targets could result in effective measures for the prevention of CNS consequences in hyperammonemic syndromes.  相似文献   

5.
There is increasing evidence to suggest that hepatic encephalopathy in acute liver failure is the result of altered glutamatergic function. In particular, the high affinity uptake of glutamate is decreased in brain slices and synaptosomes from rats with acute liver failure as well as by exposure of cultured astrocytes to concentrations of ammonia equivalent to those reported in brain in acute liver failure. Both protein and gene expression of the recently cloned and sequenced astrocytic glutamate transporter GLT-1 are significantly reduced in the brains of rats with acute liver failure. Decreased expression of GLT-1 in brain in acute liver failure results in increased extracellular brain glutamate concentrations which correlates with arterial ammonia concentrations and with the appearance of severe encephalopathy and brain edema in these animals. Ammonia-induced reductions in expression of GLT-1 resulting in increased extracellular glutamate concentrations could explain some of the symptoms (hyperexcitability, cerebral edema) characteristic of hepatic encephalopathy in acute liver failure.  相似文献   

6.
Hepatic encephalopathy (HE) is a neuropsychiatric disorder that occurs in both acute and chronic liver failure. Although the precise pathophysiologic mechanisms responsible for HE are not completely understood, a deficit in neurotransmission rather than a primary deficit in cerebral energy metabolism appears to be involved. The neural cell most vulnerable to liver failure is the astrocyte. In acute liver failure, the astrocyte undergoes swelling resulting in increased intracranial pressure; in chronic liver failure, the astrocyte undergoes characteristic changes known as Alzheimer type II astrocytosis. In portal-systemic encephalopathy resulting from chronic liver failure, astrocytes manifest altered expression of several key proteins and enzymes including monoamine oxidase B, glutamine synthetase, and the so-called peripheral-type benzodiazepine receptors. In addition, expression of some neuronal proteins such as monoamine oxidase A and neuronal nitric oxide synthase are modified. In acute liver failure, expression of the astrocytic glutamate transporter GLT-1 is reduced, leading to increased extracellular concentrations of glutamate. Many of these changes have been attributed to a toxic effect of ammonia and/or manganese, two substances that are normally removed by the hepatobiliary route and that in liver failure accumulate in the brain. Manganese deposition in the globus pallidus in chronic liver failure results in signal hyperintensity on T1-weighted Magnetic Resonance Imaging and may be responsible for the extrapyramidal symptoms characteristic of portal-systemic encephalopathy. Other neurotransmitter systems implicated in the pathogenesis of hepatic encephalopathy include the serotonin system, where a synaptic deficit has been suggested, as well as the catecholaminergic and opioid systems. Further elucidation of the precise nature of these alterations could result in the design of novel pharmacotherapies for the prevention and treatment of hepatic encephalopathy.  相似文献   

7.
Abstract: Brain edema in hepatic encephalopathy has been associated with circulating ammonia that is metabolized to glutamine. We measured alterations in blood chemistry and brain regional specific gravity and ion and amino acid contents in models of simple hyperammonemia and liver failure induced by daily administrations of ammonium acetate (AAc) or thioacetamide (TAA), respectively. Serum and brain ammonia increased to similar levels (200 and 170% of control, respectively) in both experimental groups. Serum transaminase activities increased 10-fold in animals injected with TAA but were unchanged in animals given AAc injections. In both experimental groups glutamine was elevated in cerebral white matter, cerebral gray matter, and basal ganglia, whereas brain tissue specific gravity decreased in all brain regions, indicating edema formation. In the AAc group, we observed a decrease in glutamate and taurine contents concomitant with the development of brain edema. In these animals, cerebral gray matter specific gravity and taurine contents returned to control levels 24 h after the third AAc injection. TAA-injected animals demonstrated similar decreases in brain tissue specific gravity, whereas glutamine, glutamate, and taurine contents were all elevated. During hepatic encephalopathy, ammonia-induced changes in brain amino acid content may contribute to brain edema development.  相似文献   

8.
It has been proposed that impairment of the glutamate-nitric oxide-cyclic guanosine monophosphate (cGMP) pathway in brain contributes to cognitive impairment in hepatic encephalopathy. The aims of this work were to assess whether the function of this pathway and of nitric oxide synthase (NOS) are altered in cerebral cortex in vivo in rats with chronic liver failure due to portacaval shunt (PCS) and whether these alterations are due to hyperammonemia. The glutamate-nitric oxide-cGMP pathway function and NOS activation by NMDA was analysed by in vivo microdialysis in cerebral cortex of PCS and control rats and in rats with hyperammonemia without liver failure. Similar studies were done in cortical slices from these rats and in cultured cortical neurons exposed to ammonia. Basal NOS activity, nitrites and cGMP are increased in cortex of rats with hyperammonemia or liver failure. These increases seem due to increased inducible nitric oxide synthase expression. NOS activation by NMDA is impaired in cerebral cortex in both animal models and in neurons exposed to ammonia. Chronic liver failure increases basal NOS activity, nitric oxide and cGMP but reduces activation of NOS induced by NMDA receptors activation. Hyperammonemia is responsible for both effects which will lead, independently, to alterations contributing to neurological alterations in hepatic encephalopathy.  相似文献   

9.
Diabetes mellitus is known to impair glucose metabolism. The fundamental mechanism underlying hyperglycaemia in diabetes mellitus involves decreased utilization of glucose by the brain. However, mechanisms responsible for progressive failure of glycaemic regulation in type I (IDDM) diabetes need extensive and proper understanding. Hence the present study was initiated. Type I diabetes was induced in albino rat models with alloxan monohydrate (40 mg/Kg iv). Cerebral cortex and medulla oblongata were studied 48 h after alloxanisation. Diabetes caused an elevation in glucose, glutamate, aspartate, GABA and taurine levels and a decline in the glutamine synthetase activity. The activities of brain lactate dehydrogenase (LDH) and pyruvate dehydrogenase (PDH) exhibited significant decrease during diabetes. Ammonia content increased (P < 0.01) as a function of diabetes. Na(+)-K(+) ATPase showed an elevation (P < 0.01) and Ca(++)-ATPase activity decreased (P < 0.01). Calcium content enhanced (P < 0.05) in the brain of diabetic rats. A General increase in the brain AMP, ADP and ATP was found on inducing diabetes. Impaired cerebral glucose metabolism accounts for the failure of cerebral glucose homeostasis. The impairment in the glycaemic control leads to disturbances in cerebral glutamate content (resulting in calcium overload and excitotoxic injury) and brain energy metabolism as reflected by alterations occurring in adenine nucleotide and the ATPases. The failure in the maintenance of normal energy metabolism during diabetes might affect glucose homeostasis leading to gross cerebral dysfunction during diabetes.  相似文献   

10.
Acute liver failure was induced in rats by a single intragastric dose of carbon tetrachloride. This causes hepatic centrilobular necrosis, as indicated by histological examinations, and produces a large increase in the activity of serum alanine aminotransferase. The plasma NH4+ level (mean +/- SEM) was 123 +/- 10 microM in the control group and 564 +/- 41 microM in animals with acute liver failure (each n = 5). 31P nuclear magnetic resonance (NMR) was used to monitor brain cortical high-energy phosphate compounds, Pi, and intracellular pH. 1H NMR spectroscopy was utilised to detect additional metabolites, including glutamate, glutamine, and lactate. The results show that the forebrain is capable of maintaining normal phosphorus energy metabolite ratios and intracellular pH despite the metabolic challenge by an elevated blood NH4+ level. There was a significant increase in the brain glutamine level and a concomitant decrease in the glutamate level during hyperammonaemia. The brain lactate level increased twofold in rats with acute liver failure. The results indicate that 1H NMR can be used to detect cerebral metabolic changes in this model of hyperammonaemia, and our observations are discussed in relation to compartmentation of NH4+ metabolism.  相似文献   

11.
A knowledge of events accompanying the acute coronary failure may help understanding the acute cerebral blood flow insufficiency leading to brain infarction. Cerebral blood flow should be treated as an integral part of the systemic blood circulation. It is of importance when the disease produces lesions to the vascular wall, and the brain looses its autoregulation functions. In such a situation every extracerebral disorders--even slight--may produce extensive lesions to nervous tissue. Therefore, the treatment of the acute cerebral circulation failure requires proper functioning of all factors which may affect hemodynamics and tissue metabolism. Duration of cerebral flow disorders plays an important role in the avoidance of unfavourable complications such as brain infarction. Therefore, every physician is obliged to undertake any possible actions preventing such complications.  相似文献   

12.
Activation of metabotropic glutamate receptors by injecting (S)3,5-dihydroxyphenylglycine (DHPG) in nucleus accumbens (NAcc) increases motor activity by different mechanisms in control rats and in rats with chronic liver failure due to portacaval shunt. In control rats DHPG increases extracellular dopamine in NAcc and induces locomotion by activating the 'normal' circuit: NAcc-->ventral pallidum-->medial-dorsal thalamus-->prefrontal cortex, which is not activated in portacaval shunt rats. In these rats, DHPG activates an 'alternative' circuit: NAcc-->substantia nigra pars reticulata-->ventro-medial thalamus-->prefrontal cortex, which is not activated in control rats. The reasons by which liver failure leads to activation of this 'alternative' circuit remain unclear. The aim of this work was to assess whether hyperammonaemia could be responsible for the alterations found in chronic liver failure. We injected DHPG in NAcc of control or hyperammonaemic rats and analysed, by in vivo brain microdialysis, the neurochemical responses of the 'normal' and 'alternative' circuits. In hyperammonaemic rats DHPG injection in NAcc activates both the 'normal' and 'alternative' circuits. In hyperammonaemia, activation of the 'alternative' circuit and increased motor response following metabotropic glutamate receptors activation in NAcc seem due to an increase in extracellular glutamate which activates AMPA receptors.  相似文献   

13.
—Rats undernourished from the first to the ninth day of life exhibited no decrease in the energy reserve (P-creatine, ATP, glucose and glycogen) of the brain, although they underwent a 41 per cent decrease in body weight. The apparent increase in the cerebral levels of glucose-6-phosphate and the decreases in hepatic glucose and lactate in the starved animals were probably a consequence of the fact that they froze faster than the control animals rather than of any essential differences in vivo. However, decreases in cerebral glutamate (11 per cent) and hepatic glutamate (33 per cent) in the undernourished animals cannot be explained on this basis. Possible explanations for this decrease in cerebral glutamate content are: a decreased supply of glutamate from the liver, a decreased synthesis of glutamate by the brain, or an increased use of glutamate as an energy source. Since levels of glutamate in the brain increase progressively during the first weeks of life, another interesting possibility is that the lower level of cerebral glutamate in undernourished rats represents a biochemical indicator of a delay in the maturation of specific morphological components which are rich in glutamate and are characteristic of the brain.  相似文献   

14.
15.
Glutamate is a major excitatory neurotransmitter in the mammalian brain. Nevertheless, high extracellular levels of this amino acid have been shown to be toxic to several neuronal populations, but no data are available to show how glutamate homeostasis is altered in response to local infusion of glutamate. In the present study, 1 M of glutamate was stereotactically injected into cerebral cortex, striatum, and hippocampus of adult rat brain, and the activities of key metabolic enzymes, lactate dehydrogenase, glutamate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase were evaluated by postmortem analysis in tissue homogenates. The results show that glutamate bolus, induced significant alterations in vivo glutamate and energy metabolism, as evidenced by marked alterations in these enzyme activities, whereas dizocilpine, a glutamate receptor antagonist, negated many of the effects induced by high glutamate. However, the degree of involvement of these observations in glutamate-induced neurotoxicity remains to be ascertained.  相似文献   

16.
Hepatic encephalopathy is a complex neuropsychiatric syndrome present in patients with liver disease that includes impaired intellectual function and alterations in personality and neuromuscular coordination. Hyperammonemia and liver failure result in altered glutamatergic neurotransmission, which contributes to hepatic encephalopathy. Alterations in the function of the glutamate-nitric oxide-cGMP pathway may be responsible for some of the neurological alterations found in hepatic encephalopathy. The function of this pathway is altered in brain from patients died with liver cirrhosis and one altered step of the pathway is the activation of soluble guanylate cyclase by nitric oxide, which is increased in cerebral cortex and reduced in cerebellum from these patients. Portacaval anastomosis and bile duct ligation plus hyperammonemia in rats reproduce the alterations in the activation of soluble guanylate cyclase by NO both in cerebellum and cerebral cortex. We assessed whether hyperammonemia is responsible for the region-selective alterations in guanylate cyclase modulation in liver cirrhosis and whether the alteration occurs in neurons or in astrocytes. Activation of guanylate cyclase by nitric oxide is lower in cerebellar neurons exposed to ammonia (1.5-fold) than in control neurons (3.3-fold). The activation of guanylate cyclase by nitric oxide is higher in cortical neurons exposed to ammonia (8.7-fold) than in control neurons (5.5-fold). The activation is not affected in cerebellar or cortical astrocytes. These findings indicate that hyperammonemia is responsible for the differential alterations in the modulation of soluble guanylate cyclase by nitric oxide in cerebellum and cerebral cortex of cirrhotic patients. Moreover, under the conditions used, the alterations occur selectively in neurons and not in astrocytes.  相似文献   

17.
Acute effects of intraperitoneal administration of ammonium chloride (200 mg/kg) on Na+,K+-ATPase and amino acid content of the glutamate family (glutamate, aspartate, alanine, glutamine, and GABA), as well as the enzymes involved in the metabolism of these amino acids, have been studied in the different regions of brain and liver in mice. A significant increase in the activity of Na+,K+-ATPase was observed in the cerebellum, cerebral cortex, and brain stem. A similar increase in the activity of glutamate dehydrogenase was observed in the brain stem, while a moderate increase in the activity of this enzyme was observed in the cerebral cortex and liver in the mice treated with ammonium chloride. In all three regions of brain, a 50% decrease was observed in the activity of alanine aminotransferase, while the activity of aspartate aminotransferase significantly rose in the brain stem. The activity of glutamine synthetase did not change much in the three regions of brain, and a significant fall was registered in the liver. The activity of tyrosine aminotransferase showed a rise in the cerebellum, brain stem, and in liver. Not much change was observed in the protein content in either brain or liver, whereas there was a 1.5-fold increase in the total RNA content in the liver of the animals treated with ammonium chloride. Under the experimental conditions, there was an increase only in the content of glutamine, of all the amino acids tested, in the cerebral cortex and liver. Similar results were obtained with homogenates of tissues enriched with ammonium chloride (in vitro) for the enzyme systems studied. These results are discussed, and the probable metabolic and functional significance of ammonia in brain is indicated.  相似文献   

18.

Background and Purpose

Liver dysfunction led hyperammonemia (HA) causes a nervous system disorder; hepatic encephalopathy (HE). In the brain, ammonia induced glutamate-excitotoxicity and oxidative stress are considered to play important roles in the pathogenesis of HE. The brain ammonia metabolism and antioxidant enzymes constitute the main components of this mechanism; however, need to be defined in a suitable animal model. This study was aimed to examine this aspect in the rats with acute liver failure (ALF).

Methods

ALF in the rats was induced by intraperitoneal administration of 300 mg thioacetamide/Kg. b.w up to 2 days. Glutamine synthetase (GS) and glutaminase (GA), the two brain ammonia metabolizing enzymes vis a vis ammonia and glutamate levels and profiles of all the antioxidant enzymes vis a vis oxidative stress markers were measured in the cerebral cortex and cerebellum of the control and the ALF rats.

Results

The ALF rats showed significantly increased levels of ammonia in the blood (HA) but little changes in the cortex and cerebellum. This was consistent with the activation of the GS-GA cycle and static levels of glutamate in these brain regions. However, significantly increased levels of lipid peroxidation and protein carbonyl contents were consistent with the reduced levels of all the antioxidant enzymes in both the brain regions of these ALF rats.

Conclusion

ALF activates the GS-GA cycle to metabolize excess ammonia and thereby, maintains static levels of ammonia and glutamate in the cerebral cortex and cerebellum. Moreover, ALF induces oxidative stress by reducing the levels of all the antioxidant enzymes which is likely to play important role, independent of glutamate levels, in the pathogenesis of acute HE.  相似文献   

19.
Chronic ammonia toxicity in experimental mice was induced by exposing them for 2 and 5 days to 5 % (v/v) ammonia solution. The enzymes concerned with glutamate metabolism (aspartate-, alanine- and tyrosine aminotransferases, glutamate dehydrogenase and glutamine synthetase) and (Na+ + K+)-ATPase were estimated in the three regions of brain (cerebellum, cerebral cortex and brain stem) and in liver. Glutamate, aspartate, alanine, glutamine and GABA, RNA and protein were also estimated in the three regions of brain and liver. A significant rise in the activity of (Na+ + K+)-ATPase in all the three regions of brain along with a fall in the activity of alanine aminotransferase was noticed. Changes in the activities of other enzymes were also observed. A significant increase in alanine and a decrease in glutamic acid was observed while no change was observed in the content of other amino acids belonging to the glutamate family. As a result of this, changes in the ratios of glutamate/glutamine and glutamate + aspartate/GABA was observed. The results indicated that the brain was in a state of more depression and less of excitation. Under these conditions the liver tissue was showing a profound rise in the activity of the enzymes of glutamate metabolism. The results are further discussed.  相似文献   

20.
Acute liver failure (ALF) is characterized neuropathologically by cytotoxic brain edema and biochemically by increased brain ammonia and its detoxification product, glutamine. The osmotic actions of increased glutamine synthesis in astrocytes are considered to be causally related to brain edema and its complications (intracranial hypertension, brain herniation) in ALF. However studies using multinuclear (1)H- and (13)C-NMR spectroscopy demonstrate that neither brain glutamine concentrations per se nor brain glutamine synthesis rates correlate with encephalopathy grade or the presence of brain edema in ALF. An alternative mechanism is now proposed whereby the newly synthesized glutamine is trapped within the astrocyte as a consequence of down-regulation of its high affinity glutamine transporter SNAT5 in ALF. Restricted transfer out of the cell rather than increased synthesis within the cell could potentially explain the cell swelling/brain edema in ALF. Moreover, the restricted transfer of glutamine from the astrocyte to the adjacent glutamatergic nerve terminal (where glutamine serves as immediate precursor for the releasable/transmitter pool of glutamate) could result in decreased excitatory transmission and excessive neuroinhibition that is characteristic of encephalopathy in ALF. Paradoxically, in spite of renewed interest in arterial ammonia as a predictor of raised intracranial pressure and brain herniation in ALF, ammonia-lowering agents aimed at reduction of ammonia production in the gut have so far been shown to be of limited value in the prevention of these cerebral consequences. Mild hypothermia, shown to prevent brain edema and intracranial hypertension in both experimental and human ALF, does so independent of effects on brain glutamine synthesis; whether or not hypothermia restores expression levels of SNAT5 in ALF awaits further studies. While inhibitors of brain glutamine synthesis such as methionine sulfoximine, have been proposed for the prevention of brain edema in ALF, potential adverse effects have so far limited their applicability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号