首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical shifts of all the aromatic proton and anomeric proton resonances of NADP+, NADPH, and several structural analogues have been determined in their complexes with Lactobacillus casei dihydrofolate reductase by double-resonance (saturation transfer) experiments. The binding of NADP+ to the enzyme leads to large (0.9-1.6 ppm) downfield shifts of all the nicotinamide proton resonances and somewhat smaller upfield shifts of the adenine proton resonance. The latter signals show very similar chemical shifts in the binary and ternary complexes of NADP+ and the binary complexes of several other coenzymes, suggesting that the environment of the adenine ring is similar in all cases. In contrast, the nicotinamide proton resonances show much greater variability in position from one complex to another. The data show that the environments of the nicotinamide rings of NADP+, NADPH, and the thionicotinamide and acetylpyridine analogues of NADP+ in their binary complexes with the enzyme are quite markedly different from one another. Addition of folate or methotrexate to the binary complex has only modest effects on the nicotinamide ring of NADP+, but trimethoprim produces a substantial change in its environment. The dissociation rate constant of NADP+ from a number of complexes was also determined by saturation transfer.  相似文献   

2.
Enzyme-linked immunosorbent assay for the neuropeptide ''head activator''   总被引:2,自引:0,他引:2  
The conformation of NADP+ in glucose-6-phosphate-dehydrogenase--NADP+ binary complexes has been investigated using proton-proton transferred nuclear Overhauser enhancement measurements to determine interproton distance ratios between bound NADP+ protons. The enzymes from Saccharomyces cerevisiae (brewer's yeast and baker's yeast) and Hansenula jadinii (Candida utilis, Torula utilis) form binary complexes with NADP+ in which the glycosidic bond of the adenine moiety is in the anti conformation whereas that of the nicotinamide moiety exists as a syn (69-70%)/anti (30-40%) mixture. The enzymes have similar subunit sizes (Mr approximately 58 000) and it is shown that they bind NADP+ in essentially similar conformations. Inactivation of the baker's yeast enzyme with acetylsalicylic acid caused little if any alteration in the conformation of bound NADP+, and the presence of NADP+ during inactivation afforded very little protection to the enzyme. Inactivation rates were, however, lower in the presence of glucose 6-phosphate. It is concluded that the epsilon-amino group of the lysine residue that is acetylated during the inactivation reaction with acetylsalicylic acid is not necessary for binary complex formation between the enzyme and NADP+, but that it is situated in a part of the molecule affected by formation of the enzyme--glucose-6-phosphate complex. The implication of the findings for the catalytic process, and related evolutionary aspects, are discussed briefly.  相似文献   

3.
The complex of Lactobacillus casei dihydrofolate reductase with trimethoprim and NADP+ exists in solution as a mixture of approximately equal amounts of two slowly interconverting conformational states [Gronenborn, A., Birdsall, B., Hyde, E. I., Roberts, G. C. K., Feeney, J., & Burgen, A. S. V. (1981) Mol. Pharmacol. 20, 145]. These have now been further characterized by multinuclear NMR experiments, and a partial structural model has been proposed. 1H NMR spectra at 500 MHz show that the environments of six of the seven histidine residues differ between the two conformations. The characteristic 1H and 31P chemical shifts of nuclei of the coenzyme in the two conformations of the complex are identical in analogous complexes formed with a number of trimethoprim analogues, indicating that the nature of the two conformations is the same in each case. The pyrophosphate 31P resonances have been assigned to the two conformations, and integration of the 31P spectrum shows that the ratio of conformation I to conformation II varies from 0.4 to 2.3 in the complexes with the various trimethoprim analogues, the ratio for the trimethoprim complex itself being 1.2. Transferred NOE experiments, together with the 1H and 13C chemical shifts, indicate that in conformation II of the complex the nicotinamide ring of the coenzyme has swung away from the enzyme surface into solution; this is made possible by changes in the conformation of the pyrophosphate moiety. In conformation I, by contrast, the nicotinamide ring remains bound to the enzyme. 13C and 15N experiments show that trimethoprim is protonated on N1 in both conformations of the ternary complex. Analysis of the 1H chemical shifts of trimethoprim in terms of ring current effects shows that in conformation I of the ternary complex trimethoprim retains the same conformation as in its binary complex, but 13C, 15N, and 19F [using 2,4-diamino-5-(3,5-dimethoxy-4-fluoro-benzyl)pyrimidine] experiments show that the environment of both the pyrimidine ring and benzyl ring is affected by the proximity of the coenzyme. Less information is available about the conformation of the inhibitor in conformation II of the complex, but its environment is similar to that in the binary enzyme-inhibitor complex. The implications of the existence of these two conformations of the enzyme for understanding cooperativity in binding between NADP+ and trimethoprim are briefly discussed.  相似文献   

4.
G F Leanz  G G Hammes 《Biochemistry》1986,25(19):5617-5624
The ionic strength dependence of the second-order rate constant for the association of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and chicken liver fatty acid synthase was determined. This rate constant is 7.2 X 10(7) M-1 s-1 at zero ionic strength and 25 degrees C; the effective charge at the cofactor binding sites is +0.8. The conformations of nicotinamide adenine dinucleotide phosphate (NADP+) and NADPH bound to the beta-ketoacyl and enoyl reductase sites were determined from transferred nuclear Overhauser effect measurements. Covalent modification of the enzyme with pyridoxal 5'-phosphate abolished cofactor binding at the enoyl reductase site; this permitted the cofactor conformations at the beta-ketoacyl and enoyl reductase sites to be distinguished. For NADP+ bound to the enzyme, the conformation of the nicotinamide-ribose bond is anti at the enoyl reductase site and syn at the beta-ketoacyl reductase site; the adenine-ribose bond is anti, and the sugar puckers are C3'-endo. Nicotinamide-adenine base stacking was not detected. Structural models of NADP+ at the beta-ketoacyl and enoyl reductase sites were constructed by using the distances calculated from the observed nuclear Overhauser effects. Because of the overlap of the resonances of several nonaromatic NADPH protons with the resonances of HDO and ribose protons, less extensive structural information was obtained for NADPH bound to the enzyme. However, the conformations of NADPH bound to the two reductases are qualitatively the same as those of NADP+, except that the nicotinamide moiety of NADPH is closer to being fully anti at the enoyl reductase site.  相似文献   

5.
Two mutants of Lactobacillus casei dihydrofolate reductase, Trp 21----Leu and Asp 26----Glu, have been prepared by using site-directed mutagenesis methods, and their ligand binding and structural properties have been compared with those of the wild-type enzyme. 1H, 13C, and 31P NMR studies have been carried out to characterize the structural changes in the complexes of the mutant and wild-type enzymes. Replacement of the conserved Trp 21 by a Leu residue causes a decrease in activity of the enzyme and reduces the NADPH binding constant by a factor of 400. The binding of substrates and substrate analogues is only slightly affected. 1H NMR studies of the Trp 21----Leu enzyme complexes have confirmed the original resonance assignments for Trp 21. In complexes formed with methotrexate and the mutant enzyme, the results indicate some small changes in conformation occurring as much as 14 A away from the site of substitution. For the enzyme-NADPH complexes, the chemical shifts of nuclei in the bound coenzyme indicate that the nicotinamide ring binds differently in complexes with the mutant and the wild-type enzyme. There are complexes where the wild-type enzyme has been shown to exist in solution as a mixture of conformations, and studies on the corresponding complexes with the Trp 21----Leu mutant indicate that the delicately poised equilibria can be perturbed. For example, in the case of the ternary complex formed between enzyme, trimethoprim, and NADP+, two almost equally populated conformations (forms I and II) are seen with the wild-type enzyme but only form II (the one in which the nicotinamide ring of the coenzyme is extended away from the enzyme structure and into the solvent) is observed for the mutant enzyme complex. It appears that the Trp 21----Leu substitution has a major effect on the binding of the nicotinamide ring of the coenzyme. For the Asp 26----Glu enzyme there is a change in the bound conformation of the substrate folate. Further indications that some conformational adjustments are required to allow the carboxylate of Glu 26 to bind effectively to the N1 proton of inhibitors such as methotrexate and trimethoprim come from the observation of a change in the dynamics of the bound trimethoprim molecule as seen from the increased rate of the flipping of the 13C-labeled benzyl ring and the increased rate of the N1-H bond breaking.  相似文献   

6.
Comparison of AMP and NADH binding to glycogen phosphorylase b   总被引:3,自引:0,他引:3  
The binding sites for the allosteric activator, AMP, to glycogen phosphorylase b are described in detail utilizing the more precise knowledge of the native structure obtained from crystallographic restrained least-squares refinement than has hitherto been available. Localized conformational changes are seen at the allosteric effector site that include shifts of between 1 and 2 A for residues Tyr75 and Arg309 and very small shifts for the region of residues 42 to 44 from the symmetry-related subunit. Kinetic studies demonstrate that NADH inhibits the AMP activation of glycogen phosphorylase b. Crystallographic binding studies at 3.5 A resolution show that NADH binds to the same sites on the enzyme as AMP, i.e. the allosteric effector site N, which is close to the subunit-subunit interface, and the nucleoside inhibitor site I, which is some 12 A from the catalytic site. The conformations of NADH at the two sites are different but both conformations are "folded" so that the nicotinamide ring is close (approx. 6 A) to the adenine ring. These conformations are compared with those suggested from solution studies and with the extended conformations observed in the single crystal structure of NAD+ and for NAD bound to dehydrogenases. Possible mechanisms for NADH inhibition of phosphorylase activation are discussed.  相似文献   

7.
Interaction of ferredoxin-NADP+ reductase from Anabaena with its substrates   总被引:1,自引:0,他引:1  
The interaction of ferredoxin-NADP+ reductase from the cyanobacterium Anabaena variabilis with its substrates, NADP+ and ferredoxin, has been studied by difference absorption spectroscopy. Several structural analogs of NADP+ have been shown to form complexes the stabilities of which are strongly dependent on the ionic strength of the medium. In most cases the binding energy of these complexes and their difference absorption spectra are similar to those reported for the spinach enzyme. However, NADP+ perturbs the absorption spectra of the Anabaena and spinach enzymes in a different way. This difference has been shown to be related to the binding of the nicotinamide ring of NADP+ to the enzymes. These results are interpreted as being due to a different nicotinamide binding site in the two reductases. The enthalpic and entropic components of the Gibbs energy of formation of the NADP+ complex have been estimated. An increase in entropy on NADP+ binding seems to be the main source of stability for the complex. A shift of approximately 40 mV in the redox potential of the couple NADP+/NADPH has been observed to occur upon binding of NADP+ to the oxidized enzyme. This allows us to calculate the binding energy between the reductase and NADPH. The ability of the reductase, ferredoxin, and NADP+ to form a ternary complex indicates that the protein carrier binds to the reductase through a different site than that of the pyridine nucleotide.  相似文献   

8.
R S Ehrlich  R F Colman 《Biochemistry》1985,24(20):5378-5387
The binding of coenzymes, NADP+ and NADPH, and coenzyme fragments, 2'-phosphoadenosine 5'-(diphosphoribose), adenosine 2',5'-bisphosphate, and 2'-AMP, to pig heart NADP+-dependent isocitrate dehydrogenase has been studied by proton NMR. Transferred nuclear Overhauser enhancement (NOE) between the nicotinamide 1'-ribose proton and the 2-nicotinamide ring proton indicates that the nicotinamide-ribose bond assumes an anti conformation. For all nucleotides, a nuclear Overhauser effect between the adenine 1'-ribose proton and 8-adenine ring proton is observed, suggesting a predominantly syn adenine--ribose bond conformation for the enzyme-bound nucleotides. Transferred NOE between the protons at A2 and N6 is observed for NADPH (but not NADP+), implying proximity between adenine and nicotinamide rings in a folded enzyme-bound form of NADPH. Line-width measurements on the resonances of free nucleotides exchanging with bound species indicate dissociation rates ranging from less than 7 s-1 for NADPH to approximately 1600 s-1 for adenosine 2',5'-bisphosphate. Substrate, magnesium isocitrate, increases the dissociation rate for NADPH about 10-fold but decreases the corresponding rate for phosphoadenosine diphosphoribose and adenosine 2',5'-bisphosphate about 10-fold. These effects are consistent with changes in equilibrium dissociation constants measured under similar conditions. The 1H NMR spectrum of isocitrate dehydrogenase at pH 7.5 has three narrow peaks between delta 7.85 and 7.69 that shift with changes in pH and hence arise from C-4 protons of histidines. One of those, with pK = 5.35, is perturbed by NADP+ and NADPH but not by nucleotide fragments, indicating that this histidine is in the region of the nicotinamide binding site. Observation of nuclear Overhauser effects arising from selective irradiation at delta 7.55 indicates proximity of either a nontitrating histidine or an aromatic residue to the adenine ring of all nucleotides. In addition, selective irradiation of the methyl region of the enzyme spectrum demonstrates that the adenine ring is close to methyl side chains. The substrate magnesium isocitrate produces no observable differences in these protein--nucleotide interactions. The alterations in enzyme--nucleotide conformation that result in changes in affinity in the presence of substrate must involve either small shifts in the positions of amino acid side chains or changes in groups not visible in the proton NMR spectrum.  相似文献   

9.
R S Ehrlich  R F Colman 《Biochemistry》1990,29(21):5179-5187
NAD(+)-dependent isocitrate dehydrogenase from pig heart is an allosteric enzyme that is activated by ADP and is inhibited by NADPH in the presence of NADH. Transferred nuclear Overhauser effect measurements, made at a range of times to ensure that observed effects are due to direct dipole-dipole transfer and not to spin diffusion, were used to determine the conformations of pyridine nucleotide coenzymes and of the allosteric effector ADP. For NAD+, significant effects were observed on the N2 proton (on the nicotinamide ring) when the N1' proton (on the nicotinamide ribose) was saturated and on the N6 proton when the N2' proton was saturated, indicating that the conformation of the nicotinamide-ribose moiety is anti. The anti conformation is expected because of the stereospecificity of NAD(+)-dependent isocitrate dehydrogenase and is the same as for NADP(+)-dependent isocitrate dehydrogenase. For the adenosine moiety of NAD+, the predominant nuclear Overhauser effect on the A8 proton is found when the A2' proton is saturated. This result implies that the adenine-ribose bond is anti with respect to the ribose. Previous kinetic and binding studies of ADP activation have shown an influence of divalent metal ions. The conformation of bound ADP, in the presence of Mg2+ and/or Ca2+, is found to be anti about the adenine-ribose bond. The 3'H-8H distance increases when Ca2+ is added to the Mg-ADP-enzyme complex. Changes in the 4'H-1'H distance upon addition of isocitrate are indicative of interactions between the ADP activator site and the isocitrate site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The complex of Lactobacillus casei dihydrofolate reductase with the substrate folate and the coenzyme NADP+ has been shown to exist in solution as a mixture of three slowly interconverting conformations whose proportions are pH-dependent [Birdsall, B., Gronenborn, A. M., Hyde, E. I., Clore, G. M., Roberts, G. C. K., Feeney, J., & Burgen, A. S. V. (1982) Biochemistry 21, 5831]. The assignment of the resonances of all the aromatic protons of the ligand molecules in all three conformational states of the complex has now been completed by using a variety of NMR methods, particularly two-dimensional exchange experiments. The resonances of the nicotinamide protons of the coenzyme and the pteridine 7-proton of the folate have different chemical shifts in the three conformations, in some cases differing by more than 1 ppm. Comparison of the COSY spectra of the complex at low pH (conformation I) and high pH (conformations IIa and IIb) with that of the enzyme-methotrexate-NADP+ complex shows only slight differences in the conformation of the protein. The pattern of chemical shift changes in the ligand and the protein indicates that the structural differences are localized within the active site of the enzyme. Nuclear Overhauser effects (NOEs) are observed between the nicotinamide 5- and 6-protons and the methyl resonance of Thr 45 at both low and high pH, indicating that there is no major movement of the nicotinamide ring. By contrast, NOEs are observed between the pteridine 7-proton and the methyl protons of Leu 19 and Leu 27 in conformations I and IIa but not in conformation IIb.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The binding of NADP+ to dihydrofolate reductase (EC 1.5.1.3) in the presence and absence of substrate analogs has been studied using 1H and 13C nuclear magnetic resonance (NMR). NADP+ binds strongly to the enzyme alone and in the presence of folate, aminopterin, and methotrexate with a stoichiometry of 1 mol of NADP+/mol of enzyme. In the 13C spectra of the binary and ternary complexes, separate signals were observed for the carboxamide carbon of free and bound [13CO]NADP+ (enriched 90% in 13C). The 13C signal of the NADP+-reductase complex is much broader than that in the ternary complex with methotrexate because of exchange line broadening on the binary complex signal. From the difference in line widths (17.5 +/- 3.0 Hz) an estimate of the dissociation rate constant of the binary complex has been obtained (55 +/- 10 sec-1). The dissociation rate of the NADP+-reductase complex is not the rate-limiting step in the overall reaction. In the various complexes studied large 13C chemical shifts were measured for bound [13CO]NADP+ relative to free NADP+ (upfield shifts of 1.6-4.3 ppm). The most likely origin of the bound shifts lies in the effects on the shieldings of electric fields from nearby charged groups. For the NADP+-reductase-folate system two 13C signals from bound NADP+ are observed indicating the presence of more than one form of the ternary complex. The IH spectra of the binary and ternary complexes confirm both the stoichiometry and the value of the dissociation rate constant obtained from the 13C experiments. Substantial changes in the IH spectrum of the protein were observed in the different complexes and these are distinct from those seen in the presence of NADPH.  相似文献   

12.
Rubach JK  Plapp BV 《Biochemistry》2003,42(10):2907-2915
Amino acid residues Thr-178, Val-203, and Val-292, which interact with the nicotinamide ring of the coenzyme bound to alcohol dehydrogenase (ADH), may facilitate hydride transfer and hydrogen tunneling by orientation and dynamic effects. The T178S, T178V, V203A, V292A, V292S, and V292T substitutions significantly alter the steady state and transient kinetics of the enzyme. The V292A, V292S, and V292T enzymes have decreased affinity for coenzyme (NAD+ by 30-50-fold and NADH by 35-75-fold) as compared to the wild-type enzyme. The substitutions in the nicotinamide binding site decrease the rate constant of hydride transfer for benzyl alcohol oxidation by 3-fold (for V292T ADH) to 16-fold (for V203A ADH). The modest effects suggest that catalysis does not depend critically on individual residues and that several residues in the nicotinamide binding site contribute to catalysis. The structures of the V292T ADH-NAD+-pyrazole and wild-type ADH-NAD+-4-iodopyrazole ternary complexes are very similar. Only subtle changes in the V292T enzyme cause the large changes in coenzyme binding and the small change in hydride transfer. In these complexes, one pyrazole nitrogen binds to the catalytic zinc, and the other nitrogen forms a partial covalent bond with C4 of the nicotinamide ring, which adopts a boat conformation that is postulated to be relevant for hydride transfer. The results provide an experimental basis for evaluating the contributions of dynamics to hydride transfer.  相似文献   

13.
The nucleotides 8-amino-, 8-methylamino-, and 8-dimethylaminoadenylic acid have been synthesized and their preferred conformations about the glycosyl bond in qaueous solution have been determined by 1H nuclear magnetic resonance spectroscopy. Paramagnetic relaxation studies, nuclear Overhauser enhancement measurements, chemical shifts, and coupling constant comparisons indicate that their is rotation about the glycosyl bond and that preference for either the anti or syn conformation depends on the extent of alkyl substitution on the 8-amino group. The primary and secondary amines 8-amino- and 8-methylaminoadenylic acid adopt a perferential anti conformation about the glycosyl bond, while the tertiary amine 8-dimethylaminoadenylic acid exists predominantly in the syn form. These three analogs provide a system to study interactions of a dehydrogenase with coenzyme inhibitors having different glycosyl conformer populations. All three analogs are competitive inhibitors of NADH in reaction with chicken muscle lactate dehydrogenase, and the Ki values show little dependence on the nature of the amino substitution. This demonstrates that the distribution of conformations about the nucleotide glycosyl bond does not effect the competition of the nucleotide for lactate dehydrogenase apoenzyme. Several models for enzyme-coenzyme binding are discussed. The available data cannot distinguish whether the enzyme binds nucleotide in both the anti and syn conformations or in purely the anti conformation. However, at some stage of the enzyme-coenzyme interaction, there appears to be a strong stabilization of the nucleotide in the anti conformation about the glycosyl bond.  相似文献   

14.
Transhydrogenase couples the redox reaction between NADH and NADP+ to proton translocation across a membrane. The enzyme comprises three components; dI binds NAD(H), dIII binds NADP(H), and dII spans the membrane. The 1,4,5,6-tetrahydro analogue of NADH (designated H2NADH) bound to isolated dI from Rhodospirillum rubrum transhydrogenase with similar affinity to the physiological nucleotide. Binding of either NADH or H2NADH led to closure of the dI mobile loop. The 1,4,5,6-tetrahydro analogue of NADPH (H2NADPH) bound very tightly to isolated R. rubrum dIII, but the rate constant for dissociation was greater than that for NADPH. The replacement of NADP+ on dIII either with H2NADPH or with NADPH caused a similar set of chemical shift alterations, signifying an equivalent conformational change. Despite similar binding properties to the natural nucleotides, neither H2NADH nor H2NADPH could serve as a hydride donor in transhydrogenation reactions. Mixtures of dI and dIII form dI2dIII1 complexes. The nucleotide charge distribution of complexes loaded either with H2NADH and NADP+ or with NAD+ and H2NADPH should more closely mimic the ground states for forward and reverse hydride transfer, respectively, than previously studied dead-end species. Crystal structures of such complexes at 2.6 and 2.3 A resolution are described. A transition state for hydride transfer between dihydronicotinamide and nicotinamide derivatives determined in ab initio quantum mechanical calculations resembles the organization of nucleotides in the transhydrogenase active site in the crystal structure. Molecular dynamics simulations of the enzyme indicate that the (dihydro)nicotinamide rings remain close to a ground state for hydride transfer throughout a 1.4 ns trajectory.  相似文献   

15.
Markham GD  Norrby PO  Bock CW 《Biochemistry》2002,41(24):7636-7646
S-Adenosylmethionine (AdoMet) and other sulfonium ions play central roles in the metabolism of all organisms. The conformational preferences of AdoMet and two other biologically important sulfonium ions, S-methylmethionine and dimethylsulfonioproprionic acid, have been investigated by NMR and computational studies. Molecular mechanics parameters for the sulfonium center have been developed for the AMBER force field to permit analysis of NMR results and to enable comparison of the relative energies of the different conformations of AdoMet that have been found in crystal structures of complexes with proteins. S-Methylmethionine and S-dimethylsulfonioproprionate adopt a variety of conformations in aqueous solution; a conformation with an electrostatic interaction between the sulfonium sulfur and the carboxylate group is not noticeably favored, in contrast to the preferred conformation found by in vacuo calculations. Nuclear Overhauser effect measurements and computational results for AdoMet indicate a predominantly anti conformation about the glycosidic bond with a variety of conformations about the methionyl C(alpha)-C(beta) and C(beta)-C(gamma) bonds. An AdoMet conformation in which the positively charged sulfonium sulfur is near an electronegative oxygen in the ribose ring is common. Comparisons of NMR results for AdoMet with those for the uncharged S-adenosylhomocysteine and 5'-methylthioadenosine, and the anionic ATP, indicate that the solution conformations are not dictated mainly by molecular charge. In 20 reported structures of AdoMet.protein complexes, both anti and syn glycosidic torsional angles are found. The methionyl group typically adopts an extended conformation in complexes with enzymes that transfer the methyl group from the sulfonium center, but is more folded in complexes with proteins that do not catalyze reactions involving the sulfur and which can use the sulfonium sulfur solely as a binding site. The conformational energies of AdoMet in these crystal structures are comparable to those found for AdoMet in solution. The sulfonium sulfur is in van der Waals contact with a protein heteroatom in the structures of four proteins, which reflects an energetically favorable contact. Interactions of the sulfonium with aromatic rings are rarely observed.  相似文献   

16.
The 2.1 A resolution crystal structure of flavin reductase P with the inhibitor nicotinamide adenine dinucleotide (NAD) bound in the active site has been determined. NAD adopts a novel, folded conformation in which the nicotinamide and adenine rings stack in parallel with an inter-ring distance of 3.6 A. The pyrophosphate binds next to the flavin cofactor isoalloxazine, while the stacked nicotinamide/adenine moiety faces away from the flavin. The observed NAD conformation is quite different from the extended conformations observed in other enzyme/NAD(P) structures; however, it resembles the conformation proposed for NAD in solution. The flavin reductase P/NAD structure provides new information about the conformational diversity of NAD, which is important for understanding catalysis. This structure offers the first crystallographic evidence of a folded NAD with ring stacking, and it is the first enzyme structure containing an FMN cofactor interacting with NAD(P). Analysis of the structure suggests a possible dynamic mechanism underlying NADPH substrate specificity and product release that involves unfolding and folding of NADP(H).  相似文献   

17.
D S Sem  C B Kasper 《Biochemistry》1992,31(13):3391-3398
The stereospecificity of hydride abstraction from NADPH and the conformation of the nicotinamide ring around the glycosidic bond have been determined for the flavoprotein NADPH-cytochrome P-450 oxidoreductase (P-450R). The A-side (pro-R) hydrogen is abstracted from NADPH, and the nicotinamide ring is in the anti conformation. These results are consistent with the apparently strong correlation between A-side stereospecificity and anti conformation and between B-side stereospecificity and syn conformation [You, K. (1985) CRC Crit. Rev. Biochem. 17, 313]. This correlation reveals how the flavin and nicotinamide rings are oriented relative to each other. In P-450R, the flavin is then "on top of" (on the exo side of) the nicotinamide ring. In another flavoprotein dehydrogenase, glutathione reductase, which is a B-side/anti enzyme [Pai, E. F., & Schulz, G. E. (1983) J. Biol. Chem. 258, 1752], the flavin is "underneath" (on the endo side of) the nicotinamide ring. We argue that all enzymes that are evolutionarily related to these two flavoproteins should have their respective overall configurations. The overall configuration is defined by the following five properties: (1) relative orientation of the isoalloxazine and nicotinamide rings, (2) stereospecificity of hydride transfer to/from the nicotinamide ring, (3) conformation of the nicotinamide ring around the glycosidic bond, (4) stereospecificity of hydride transfer to/from the flavin, and (5) conformation of the flavin around its N5-N10 axis. There are only eight possible overall configurations, and a knowledge of only three of the five properties is needed to determine which one is present (as long as the combination of properties is not 1, 2, 3 or 1, 4, 5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
1. The stoicheiometries and affinities of ligand binding to isocitrate dehydrogenase were studied at pH 7.0, mainly by measuring changes in NADPH and protein fluorescence. 2. The affinity of the enzyme for NADPH is about 100-fold greater than it is for NADP+ in various buffer/salt solutions, and the affinities for both coenzymes are decreased by Mg2+, phosphate and increase in ionic strength. 3. The maximum binding capacity of the dimeric enzyme for NADPH, from coenzyme fluorescence and protein-fluorescence measurements, and also for NADP+, by ultrafiltration, is 2 mol/mol of enzyme. Protein-fluorescence titrations of the enzyme with NADP+ are apparently inconsistent with this conclusion, indicating that the increase in protein fluorescence caused by NADP+ binding is not proportional to fractional saturation of the binding sites. 4. Changes in protein fluorescence caused by changes in ionic strength and by the binding of substrates, Mg2+ or NADP+ (but not NADPH) are relatively slow, suggesting conformation changes. 5. In the presence of Mg2+, the enzyme binds isocitrate very strongly, and 2-oxoglutarate rather weakly. 6. Evidence is presented for the formation of an abortive complex of enzyme-Mg2+-isocitrate-NADPH in which isocitrate and NADPH are bound much more weakly than in their complexes with enzyme and Mg2+ alone. 7. The results are discussed in relation to the interpretation of the kinetic properties of the enzyme and its behaviour in the mitochondrion.  相似文献   

19.
The ferredoxin nicotinamide adenine dinucleotide phosphate reductase from Pseudomonas aeruginosa ( pa-FPR) in complex with NADP (+) has been characterized by X-ray crystallography and in solution by NMR spectroscopy. The structure of the complex revealed that pa-FPR harbors a preformed NADP (+) binding pocket where the cofactor binds with minimal structural perturbation of the enzyme. These findings were complemented by obtaining sequential backbone resonance assignments of this 29518 kDa enzyme, which enabled the study of the pa-FPR-NADP complex by monitoring chemical shift perturbations induced by addition of NADP (+) or the inhibitor adenine dinucleotide phosphate (ADP) to pa-FPR. The results are consistent with a preformed NADP (+) binding site and also demonstrate that the pa-FPR-NADP complex is largely stabilized by interactions between the protein and the 2'-P AMP portion of the cofactor. Analysis of the crystal structure also shows a vast network of interactions between the two cofactors, FAD and NADP (+), and the characteristic AFVEK (258) C'-terminal extension that is typical of bacterial FPRs but is absent in their plastidic ferredoxin NADP (+) reductase (FNR) counterparts. The conformations of NADP (+) and FAD in pa-FPR place their respective nicotinamide and isoalloxazine rings 15 A apart and separated by residues in the C'-terminal extension. The network of interactions among NADP (+), FAD, and residues in the C'-terminal extension indicate that the gross conformational rearrangement that would be necessary to place the nicotinamide and isoalloxazine rings parallel and adjacent to one another for direct hydride transfer between NADPH and FAD in pa-FPR is highly unlikely. This conclusion is supported by observations made in the NMR spectra of pa-FPR and the pa-FPR-NADP complex, which strongly suggest that residues in the C'-terminal sequence do not undergo conformational exchange in the presence or absence of NADP (+). These findings are discussed in the context of a possible stepwise electron-proton-electron transfer of hydride in the oxidation of NADPH by FPR enzymes.  相似文献   

20.
A recent study suggested sheep liver 6-phosphogluconate dehydrogenase (6PGDH) sees the oxidized and reduced cofactor differently [Cervellati, C., Dallocchio, F., Bergamini, C. M., and Cook, P. F. (2005) Biochemistry 44, 2432-2440]. Data were consistent with a rotation into the active site of the nicotinamide ring of NADP upon its reduction, resulting in a displacement of the 1-carboxylate of 3-keto-6PG better positioning it for decarboxylation, and further suggested a role of the cofactor in generating the precatalytic conformation of the enzyme. To further probe the role of the cofactor, multiple isotope effects were measured for the enzyme with mutations of the two residues that directly interact with the nicotinamide ring of NADP+, methionine 13 and glutamate 131. Kinetic and isotope effect data obtained in this study will thus be interpreted in terms of a mechanism that includes the rotation of the nicotinamide ring. The M13V, M13Q, M13C, and E131A mutant enzymes were characterized with respect to their kinetic parameters, deuterium, 13C, multiple deuterium/13C isotope effects, and the kinetics of utilization of 2-deoxy-6PG. Data suggest the position of the nicotinamide ring is important in identifying the open and closed conformations of the enzyme, with the latter optimal for catalysis. The 6PGDH reaction provides an excellent example of the use of substrate binding energy to drive catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号