首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immediate early response gene IEX-1 is involved in the regulation of apoptosis and cell growth. In order to increase the apoptotic sensitivity to chemotherapeutic drugs and gamma-ray, we attempted to establish U87-MG human glioma cell line expressing IEX-1. Unexpectedly, however, transfection of IEX-1 into U87-MG glioma cells resulted in morphological changes to astrocytic phenotype and increase in glial differentiation marker proteins, S-100 and glial fibrillary acidic protein (GFAP). Glial cell differentiation was used to examine in rat C6 glioma cell line, since this cell line express astrocytic phenotypes by increase in intracellular cAMP concentration. Stimulation of human U87-MG glioma cells by membrane-permeable dibutyryl cAMP (dbcAMP) not only elicited their morphological changes but also induced expression of IEX-1 as well as S-100 and GFAP. H89, an inhibitor of protein kinase A (PKA), blocked dbcAMP-induced morphological changes of U87-MG cells and expression of IEX-1. In contrast, morphological changes and expression of S-100 and GFAP induced by IEX-1 were not affected by H89. Morphological changes induced by dbcAMP were totally abolished by functional disruption of IEX-1 expression by anti-sense RNA. These results indicate that IEX-1 plays an important role in astrocytic differentiation of human glioma cells and that IEX-1 functions at downstream of PKA.  相似文献   

2.
Intermediate filaments (IFs) compose, together with actin filaments and microtubules, the cytoskeleton and they exhibit a remarkable but still enigmatic cell-type specificity. In a number of cell types, IFs seem to be instrumental in the maintenance of the mechanical integrity of cells and tissues. The function of IFs in astrocytes has so far remained elusive. We have recently reported that glial scar formation following brain or spinal cord injury is impaired in mice deficient in glial fibrillary acidic protein and vimentin. These mice lack IFs in reactive astrocytes that are normally pivotal in the wound repair process. Here we show that reactive astrocytes devoid of IFs exhibit clear morphological changes and profound defects in cell motility thereby revealing a novel function for IFs.  相似文献   

3.
S100B is an astrocyte calcium-binding protein that plays a regulatory role in the cytoskeleton and cell cycle. Moreover, extracellular S100B, a marker of glial activation in several conditions of brain injury, has a trophic or apoptotic effect on neurons, depending on its concentration. Hyperglycemic rats show changes in glial parameters, including S100B expression. Here, we investigated cell density, morphological and biochemical alterations in primary cortical astrocytes from rats and C6 glioma cells cultured in high-glucose medium. Astrocytes and C6 glioma cells have a reduced content of S100B and glial fibrillary acidic protein when cultured in a high-glucose environment, as well as a reduced content of glutathione and cell proliferation rate. Although these cells have been used indistinctly to study S100B secretion, we observed a contrasting profile of S100B secretion in a high-glucose medium: a decrease in primary astrocytes and an increase in C6 glioma cells. Based on the in vitro neurotrophic effects of the S100B protein, our data suggest that chronic elevated glucose levels affect astrocyte activity, reducing extracellular secretion of S100B and that this, in turn, could affect neuronal activity and survival. Such astrocyte alterations could contribute to cognitive deficit and other impairments observed in diabetic patients.  相似文献   

4.
Abstract: Microtubules and their associated proteins play a prominent role in many physiological and morphological aspects of brain function. Abnormal deposition of the microtubule-associated proteins (MAPs), MAP2 and γ , is a prominent aspect of Alzheimer's disease. MAP2 and γ are heat-stable phosphoproteins subject to high rates of phosphorylation/dephosphorylation. The phosphorylation state of these proteins modulates their affinity for tubulin and thereby affects the structure of the neuronal cytoskeleton. The dinoflagellate toxin okadaic acid is a potent and specific inhibitor of protein phosphatases 1 and 2A. In cultured rat cortical neurons and a human neuroblastoma cell line (MSN), okadaic acid induces increased phosphorylation of MAP2 and γ concomitant with early changes in the neuronal cytoskeleton and ultimately leads to cell death. These results suggest that the diminished rate of MAP2 and γ dephosphorylation affects the stability of the neuronal cytoskeleton. The effect of okadaic acid was not restricted to neurons. Astrocytes stained with antibodies to glial fibrillary acidic protein (GFAP) showed increased GFAP staining and changes in astrocyte morphology from a flat shape to a stellate appearance with long processes.  相似文献   

5.
Peripheral glial cells in both vertebrates and insects are born centrally and travel large distances to ensheathe axons in the periphery. There is very little known about how this migration is carried out. In other cells, it is known that rearrangement of the Actin cytoskeleton is an integral part of cell motility, yet the distribution of Actin in peripheral glial cell migration in vivo has not been previously characterized. To gain an understanding of how glia migrate, we specifically labeled the peripheral glia of Drosophila melanogaster using an Actin-GFP marker and analyzed their development in the embryonic PNS. It was found that Actin cytoskeleton is dynamically rearranged during glial cell migration. The peripheral glia were observed to migrate as a continuous chain of cells, with the leading glial cells appearing to participate to the greatest extent in exploring the extracellular surroundings with filopodia-like Actin containing projections. We hypothesized that the small GTPases Rho, Rac and Cdc42 are involved in Actin cytoskeletal rearrangements that underlie peripheral glial migration and nerve ensheathement. To test this, transgenic forms of the GTPases were ectopically expressed specifically in the peripheral glia during their migration and wrapping phases. The effects on glial Actin-GFP distribution and the overall effects on glial cell migration and morphological development were assessed. We found that RhoA and Rac1 have distinct roles in peripheral glial cell migration and nerve ensheathement; however, Cdc42 does not have a significant role in peripheral glial development. RhoA and Rac1 gain-of-function and loss-of-function mutants had both disruption of glial cell development and secondary effects on sensory axon fasciculation. Together, Actin cytoskeletal dynamics is an integral part of peripheral glial migration and nerve ensheathement, and is mediated by RhoA and Rac1.  相似文献   

6.
Glial cells in the central nervous system(CNS) consist of a heterogeneous population of cell types,each characterized by distinct morphological features,physiological properties,and specific markers.In contrast to the previous view that glial cells were passive elements in the brain,accumulating evidence suggests that glial cells are active participants in various brain functions and brain disorders.This review summarizes recent progress of glial cell studies from several groups in China,ranging from studie...  相似文献   

7.
The myelin sheath forms by the spiral wrapping of a glial membrane around the axon. The mechanisms responsible for this process are unknown but are likely to involve coordinated changes in the glial cell cytoskeleton. We have found that inhibition of myosin II, a key regulator of actin cytoskeleton dynamics, has remarkably opposite effects on myelin formation by Schwann cells (SC) and oligodendrocytes (OL). Myosin II is necessary for initial interactions between SC and axons, and its inhibition or down-regulation impairs their ability to segregate axons and elongate along them, preventing the formation of a 1:1 relationship, which is critical for peripheral nervous system myelination. In contrast, OL branching, differentiation, and myelin formation are potentiated by inhibition of myosin II. Thus, by controlling the spatial and localized activation of actin polymerization, myosin II regulates SC polarization and OL branching, and by extension their ability to form myelin. Our data indicate that the mechanisms regulating myelination in the peripheral and central nervous systems are distinct.  相似文献   

8.
In the present study we analysed the changes in cytoskeleton actin in lymphoid cells following IL-2 activation and during cell interactions by means of light and electron microscopy, immunofluorescence and molecular analysis. By morphological analysis we observed a higher fluorescence in the activated cells than in the quiescent ones with no modifications in the cytoskeleton pattern comparing activated to resting cells. The results of molecular analysis indicate that, after IL-2 activation, there is a reorganisation of the actin component of the cell cytoskeleton accompanied by the differential expression of the corresponding genes. A future study will be extended to the analysis of others components of the cytoskeleton network.  相似文献   

9.
Chitosan is a polycationic compound widely employed as dietary supplement and also present in pharmaceutical preparations. Although it has been approved for human consumption, its possible side effects have not been widely investigated and the available data in the literature are still controversial. Several polycationic substances have been shown to affect tight junction permeability in epithelial cell models in vitro. In this study we have compared the effects of chitosan and other polycations (polyethylenimine, poly-L-lysines of different molecular weights) on the integrity of tight junctions and of the actin cytoskeleton in the human intestinal Caco-2 cell line. We have measured trans-epithelial electrical resistance and paracellular passage of the extracellular marker inulin, and we have localized F-actin and tight junctional proteins (ZO1 and occludin) in cell monolayers treated with various concentrations of each polycation. Fluorescent poly-L-lysines were also employed to determine their association with the cell monolayer. Our results indicate that all polycations investigated are able to induce a reversible increase in tight junction permeability. This effect is concentration and energy dependent, affected by the extracellular concentration of divalent cations (calcium, magnesium and manganese) and it is associated with morphological changes in the F-actin cytoskeleton, as well as in the localization of tight junctional proteins. Chitosan, in particular, was the only cationic polymer that displayed an irreversible effect on tight junctions at the highest concentration tested (0.01%). These results indicate that oral ingestion of chitosan may have more widespread health effects by altering intestinal barrier function, thus allowing the entrance into the circulation of potentially toxic and/or allergenic substances.  相似文献   

10.
11.
Intracellular signals are required to activate the leukocyte-specific adhesion receptor lymphocyte function-associated molecule-1 (LFA-1; CD11a/CD18) to bind its ligand, intracellular adhesion molecule-1 (ICAM-1). In this study, we investigated the role of the cytoskeleton in LFA-1 activation and demonstrate that filamentous actin (F-actin) can both enhance and inhibit LFA-1-mediated adhesion, depending on the distribution of LFA-1 on the cell surface. We observed that LFA-1 is already clustered on the cell surface of interleukin-2/phytohemagglutinin-activated lymphocytes. These cells bind strongly ICAM-1 and disruption of the actin cytoskeleton inhibits adhesion. In contrast to interleukin-2/phytohemagglutinin-activated peripheral blood lymphocytes, resting lymphocytes, which display a homogenous cell surface distribution of LFA-1, respond poorly to intracellular signals to bind ICAM-1, unless the actin cytoskeleton is disrupted. On resting peripheral blood lymphocytes, uncoupling of LFA-1 from the actin cytoskeleton induces clustering of LFA-1 and this, along with induction of a high-affinity form of LFA-1, via "inside-out" signaling, results in enhanced binding to ICAM-1, which is dependent on intact intermediate filaments, microtubules, and metabolic energy. We hypothesize that linkage of LFA-1 to cytoskeletal elements prevents movement of LFA-1 over the cell surface, thus inhibiting clustering and strong ligand binding. Release from these cytoskeletal elements allows lateral movement and activation of LFA-1, resulting in ligand binding and "outside-in" signaling, that subsequently stimulates actin polymerization and stabilizes cell adhesion.  相似文献   

12.
Infection of eukaryotic cells by pathogens requires the efficient use of host cell endocytic and cytoplasmic transport mechanisms. Understanding how these cellular functions are exploited by microorganisms allows us to better define the basic biology of pathogenesis while providing better insight into normal cellular functions. In this report we compare and contrast intracellular transport and trafficking of the human polyomavirus JC virus (JCV) with that of simian virus 40 (SV40). We have previously shown that infection of human glial cells by JCV requires clathrin-dependent endocytosis. In contrast, infection of cells by SV40 proceeds by caveola-dependent endocytosis. We now examine the roles of endosomal pH and the cellular cytoskeleton during infection of glial cells by both viruses. Our results demonstrate that JCV infection is sensitive to disruption of endosomal pH, whereas SV40 infection is pH independent. Infection by JCV is inhibited by treatment of glial cells with cytochalasin D, nocodazole, and acrylamide, whereas SV40 infection is affected only by nocodazole. These data point to critical differences between JCV and SV40 in terms of endocytosis and intracellular trafficking of their DNA genomes to the nucleus. These data also suggest a unique sequential involvement of cytoskeletal elements during infection of glial cells by JCV.  相似文献   

13.
Calcium-mobilizing hormones and neurotransmitters are known to affect cell morphology and function including cell differentiation or division. In this study, we examined vasopressin (AVP)-induced morphological changes in a polarized system of rat hepatocytes. Light and electron microscope observations showed that AVP induced microvilli formation and a remodeling of the isolated hepatocyte F-actin submembrane cytoskeleton, these two events being correlated. We showed that these effects were rapid, reversible, observed at nanomolar AVP concentration and mediated by the V(1a) receptor. On polarized multicellular systems of hepatocytes, we observed a rapid reduction of the bile canaliculi lumen at the apical pole and micovilli formation at the basolateral domain with an enlarged F-actin cytoskeleton. Neither activation of protein kinase C nor A via phorbol ester or dibutyryl cAMP induced such rapid morphological changes, at variance with ionomycin, suggesting that AVP-induced intracellular calcium rise plays a crucial role in those effects. By using spectrofluorimetry and cytochemistry, we showed that calcium release from intracellular stores was involved in bile canaliculus contraction, while calcium entry from the extracellular space controlled microvilli formation. Taken together, AVP and calcium-mobilizing agonists differentially regulate physiological hepatocyte plasma membrane events at the basal and the apical domains via topographically specialized calcium-dependent mechanisms.  相似文献   

14.
Methyl okadaate is a derivative of the lipophilic polyether okadaic acid (OA), a well-known inducer of apoptosis. OA inhibits Ser/Thr protein phosphatases (PPs), among them types 1 and 2A (PP1 and PP2A), whereas methyl okadaate lacks PP1/PP2A inhibitory activity in vitro. As progressive loss of neuronal cytoarchitecture is a major event that precedes neuronal death, in this work we studied comparatively the effects of both toxins on actin cytoskeleton organization in human neuroblastoma cells by filamentous actin (F-actin) labeling with the specific dye Oregon Green 514 Phalloidin. Neither methyl okadaate nor OA modified the amount of F-actin per cell. However, confocal microscopy imaging showed that methyl okadaate induced reorganization of actin cytoskeleton, loss of the typical flattened morphology and adoption of a round shape, and a reduction in the number of neurites, with a consequent loss of cell attachment. These effects were identical to those induced by OA, although methyl okadaate potency was approximately 10-fold lower. In order to investigate the role of membrane potential and cytosolic Ca2+ concentration in morphological changes induced by these toxins, the cells were stained with bis-(1,3-dibutylbarbituric acid)-trimethine oxonol and fura-2. No toxin effect was detected on membrane potential or calcium influx, indicating that these two signals are not responsible for cytoskeletal/morphological change induction. Methyl okadaate induced an increase of Ser/Thr phosphorylation of cellular proteins detected by western blot, showing similar phosphorylation profiles to OA. Our data suggest that methyl okadaate is an active compound that shares a pharmacological target with OA that may be a Ser/Thr phosphatase, probably different from PP1 and PP2A.  相似文献   

15.
Spatial correlation was observed between the localization of laminin-1 at the inner limiting membrane (ILM) and extensive Muller glial process arborization in the same area, as demonstrated by immunolabeling of Muller glial processes and laminin-1 in rat retinae in situ. To test if this spatial correlation is due to a functional relationship, we investigated the impact of laminin-1 on the motility of cultured primary rat and mouse retinal Muller glial cells by statistical analysis of computer-controlled videomicroscopic time-lapse images. We demonstrate that laminin-1 increases motility and path-searching activity of Muller cells in vitro and it also enhances the cells' process formation/withdrawal dynamism. The increase in path-searching activity and cell process dynamism indicates that there is a functional relationship between laminin-1 and Muller glial cells presumably involving signaling towards the cytoskeleton. We hypothesize that laminin-1 is involved in process arborization of Muller cells at the vitread border of the retina resulting in the formation of the functional barrier made up of Muller glial endfeet.  相似文献   

16.
The actin cytoskeleton of hepatic stellate cells (HSCs) is reorganized when they are cultured in 3D collagen matrices. Here, we investigated the molecular mechanism of actin cytoskeleton reorganization in HSCs cultured in 3D floating collagen matrices (FCM) compared to those on 2D polystyrene surfaces (PS). First, we found that the generation of dendritic cellular processes was controlled by Rac1. Next, we examined the differential gene expression of HSCs cultured on 2D PS and in 3D FCM by RNA-Seq and focused on the changes of actin cytoskeleton reorganization-related molecular components and guanine nucleotide exchange factors (GEFs). The results showed that the expression of genes associated with actin cytoskeleton reorganization-related cellular components, filopodia and lamellipodia, were significantly decreased, but podosome-related genes was significantly increased in 3D FCM. Furthermore, we found that a Rac1-specific GEF, ARHGEF4, played roles in morphological changes, migration and podosome-related gene expression in HSCs cultured in 3D FCM.

Abbreviations: 2D PS: 2-dimensional polystyrene surface; 3D FCM: 3-dimensional floating collagen matrices; ARHGEF4: Rho guanine nucleotide exchange factor 4; ARHGEF6: Rho guanine nucleotide exchange factor 6; GEF: guanine nucleotide exchange factor; HSC: hepatic stellate cell  相似文献   


17.
Platelet activating factor (PAF) is a key molecule for inflammation. To examine a role of peroxisome proliferator-activated receptor gamma (PPARgamma) in inflammatory reactions of atherosclerosis, we investigated the effects of 15-deoxy-(Delta12,14)-Prostaglandin J2 (15d-PGJ2) and pioglitazone, PPARgamma ligands, on plasma PAF-acetylhydrolase (PAF-AH) expression in THP-1 macrophages. PAF-AH mRNA and protein were up-regulated by the PPARgamma ligands. Prostaglandin F2alpha (PGF2alpha), a PARgamma inhibitor, abrogated the up-regulation of PAF-AH mRNA by pioglitazone, suggesting that PPARgamma activation is involved in the induction of PAF-AH by pioglitazone. As PAF promotes the cell motility with cytoskeletal reorganization, we investigated the effect of pioglitazone on PAF-mediated morphological changes in THP-1 macrophages. In the absence of pioglitazone, PAF promoted the elongation of actin cytoskeleton, which was inhibited by pretreatment with pioglitazone. In contrast, pioglitazone was not able to inhibit the morphological changes induced by C-PAF, a non-hydrolyzable PAF agonist. Thus, it is suggested that PAF-induced morphological changes could be inhibited by pioglitazone through PAF-AH, which rapidly hydrolyzed PAF. These data propose that PPARgamma/PAF-AH pathway is a clinical target for the prevention against atherosclerosis.  相似文献   

18.
Certain changes in human carcinoma A-431 are found by scanning electron microscopy. The early cell response to growth factor (after 10 minutes) involves a disappearance of microvilli, an appearance of ruffles and rounded cells, along with a decrease in cell attachment to the substrate. The cell surface changes correlate with the state of cytoskeleton elements: the material stained with iron hematoxylin is accumulated in ruffle formation sites. Retractional fibrils filled with the cytoskeleton material result from a decrease in the cell area.  相似文献   

19.
Chen  Suzanne  Hillman  Dean E. 《Brain Cell Biology》1999,28(3):187-196
Qualitative and quantitative changes were found in the cerebellar circuitry of old as compared to young rats. The old group had a reduced number of synapses (at least 30%), however, there was an increase in the size of remaining synaptic components (13.5% for spine head volume, 66% for bouton volume, and 17% for the area of synaptic contact zones). Furthermore, there were pronounced morphological changes in the older group appearing as: 1) prominent lipofuscin bodies in Purkinje cell somata, 2) numerous myelinated fibers in the lower part of the molecular layer, 3) tortuous Purkinje cell dendrites in a thinned molecular layer, and 4) abundant vacuolar profiles and membrane swirls in small and intermediate-sized dendrites. Our findings suggest that Purkinje cell dendrites are dying-back reducing the target field for granule cells and that remaining synaptic sites compensate by increasing synaptic contact area as well as the size of pre- and postsynaptic structures.  相似文献   

20.
Using the pulsed NMR-method with pulse gradient of the magnetic field, a study was made of changes in diffusional attenuation (DA) of proton echo in germs of triticum grains under the influence of agents depolymerizing cytoskeleton elements or inhibiting their ATP-activity. At a short diffusion time, we observed respective alterations of NMR-population in a fraction of cell water molecules contributing to DA at large values of pulse gradient. It is shown that the presence in DA of a site with essentially smaller coefficient of self-diffusion, as compared with basic cell water fraction, is not a consequence of restricted diffusion phenomenon. The observed changes in NMR-population of the appropriate fraction of cell water molecules are interpreted as changes in the level of cytoskeleton hydratation occurring under the influence of the used agents. A hypothesis is proposed for the functional role of similar changes in the level of hydratation of cytoskeleton elements located inside plamodesmata in the mechanism of plasmodesmatal water permeability regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号