首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modifications induced by abscisic acid (ABA) on the senescence of oat leaves in darkness have been studied and are compared with its well-known effects in light. Contrary to the action in light, ABA preserves chlorophyll (Chl) in the dark almost as well as kinetin. Chlorophylla is decolorized more extensively thanb, and the content ofb is maintained by ABA almost at its initial level for 4 days. ABA also prevents proteolysis in darkness just as completely as chlorophyll loss, the relationship of both breakdown processes to ABA concentration being strictly log-linear over the range from 1 to 100 M. In line with this action, ABA inhibits formation of the neutral protease in the dark but not in the light. The data suggest that ABA and kinetin operate to preserve chlorophyll and protein by different mechanisms, since their actions are neither independent nor synergistic but actually interfere with one another. In this connection, protein values given by the Lowry and Bradford methods have been compared. In parallel with the effect on senescence, ABA slowly opens the stomata in the dark. This effect increases with time, and by day 3 the stomata in ABA are as open as in leaves on water in light. Thus all these effects of ABA in darkness are strikingly opposite to those commonly observed on leaves in natural lighting. In addition, ABA powerfully inhibits the formation of ethylene in the dark by the detached oat leaves, and this inhibition also tends to increase with time. Finally, a slight antagonism to ABA's action on senescence is exerted byp-coumaric acid in the light but not in the dark.  相似文献   

2.
The influence of phytohormones on chlorophyll and carotenoid formation during the greening of irradiated dark grown wheat leaves (Triticum aestivum L. cv. Starke II Weibull) was studied. Leaves were floated on solutions of abscisic acid, gibberellic acid and kinetin for 24 h. The chlorophyll and carotenoid contents were determined during a subsequent period of 48 h of continuous irradiation. Leaves treated with abscisic acid showed a longer lag phase and a lower rate of accumulation of chlorophyll as compared to the control than did leaves treated with gibberellic acid and kinetin. The carotenoid content was low both in leaves treated with abscisic acid and in those treated with gibberellic acid. Treatment with abscisic acid lowered the protochlorophyllide regeneration after a saturating light flash while gibberellic acid as well as kinetin had no effect. The influence of ABA was partly dependent on an increase of the wounded part of the cut leaf segments. The accumulation of protochlorophyllide in leaves treated with δ-aminolevulinic acid was not affected by the different hormonal treatments. These results suggest that the main effect of abscisic acid is probably outside the chloroplast, i.e. on the formation or transport of δ-aminolevulinic acid.  相似文献   

3.
Aharoni N 《Plant physiology》1978,62(2):224-228
Levels of gibberillins (GAs) and of abscisic acid (ABA) in attached leaves of romaine lettuce (Lactuca sativa L.) declined as the leaf became older. The time course of changes in hormone levels, determined in detached lettuce leaves kept in darkness, revealed that a sharp decline in GAs accompanied by a moderate rise in ABA occurred before the onset of chlorophyll degradation. As senescence advanced, no GAs could be detected and a considerable rise of ABA was observed. A similar sequence of hormonal modifications, but more pronounced, was observed in the course of accelerated senescence induced by either Ethephon or water stress. When kinetin or GA3 was applied to detached leaves, the loss of chlorophyll and the rise in ABA were reduced. Bound GAs were detected in senescent leaves. They were not found in the kinetin-treated leaves, which contained a relatively high level of free GAs. The results suggest that senescence in detached romaine lettuce leaves is connected with a depletion of free GAs and cytokinins, which is thereafter followed by a great surge in ABA.  相似文献   

4.
The rate of senescence and the two-dimensional pattern of soluble proteins from detached oat leaves senescing in either darkness or light were analyzed, and compared to those of leaves in which senescence was delayed by application of the cytokinin benzyladenine or enhanced through the action of abscisic acid.Senescence of detached leaves in light did not differ significantly from senescence in attached leaves on intact plants. In darkness, protein was lost at a higher rate than in light, but several individual proteins showed relative increases. Notably, proteins previously characterized as high-molecular-weight proteins and senescence-associated proteins (Klerk et al., 1992) increased. Changes observed during incubation in light or darkness appeared to be related to this condition rather than the rate or progress of senescence. Cytokinins delayed and abscisic acid accelerated the changes in protein pattern compared to water. Beside changes previously identified in leaves senescing on the plant, detached leaves show alterations that reflect their condition of incubation rather than their developmental progress.Abbreviations 2D-PAG two-dimensional polyacrylamide gel electrophoresis - ABA abscisic acid - BA N6-benzyladenine - BSA bovine serum albumin - EDTA ethylenediamine tetraacetic acid - IEF isoelectric focusing - Rubisco ribulosebisphosphate carboxylase/oxygenase - SDS sodium dodecyl sulfate - Tris tris (hydroxymethyl) aminomethane  相似文献   

5.
Senescence of rice ( Oryza sativa L. cv. Jaya) leaves was regulated with kinetin and abscisic acid (ABA) sprays at the reproductive stage. The effect of such sprays on grain-filling and yield was analyzed. Spraying 100-day-old plants with kinetin solution (100 μg ml-1) significantly delayed senescence as indicated by higher total chlorophyll and protein levels in the three uppermost leaves compared with the controls. In contrast, spraying with ABA (15 μg ml-1) significantly promoted foliar senescence. The number of spikelets per panicle, number of panicles, percentage filled grains, panicle weight and grain yield per plant and the mobilization and harvest indices were significantly increased by kinetin treatment, while ABA decreased most of them. The possibility of increased grain-filling and thus, yield due to delayed foliar senescence by kinetin treatment and decreased grain-filling due to hastening of senescence by ABA is discussed.  相似文献   

6.
The work concerns the senescence of isolated young leaves of oats (Avena sativa) floated on water or solutions. Senescence is rapid in darkness but slow in white light; the effect of light is not due to photosynthesis, but is paralleled by stomatal opening. Closure of the stomata by osmotic or chemical means makes senescence in light proceed as fast as in darkness, while opening the stomata in darkness by cytokinins, fusicoccin,etc., delays senescence to rates typical of light. The osmotic closure in light is mediated by abscisic acid, and since this also accumulates in darkness it appears as a major factor controlling senescence. Efflux of ions into the solution; indicating increased permeability, occurs almost in parallel with senescence. Senescence in light is accelerated by 1-aminocyclopropane-l-carboxylic acid (ACC) and inhibited by cobalt, silver or aminoethoxyvinyl glycine (AVG) which interfere with ethylene production or action; however, ethylene’s role is unclear because some reagents, including kinetin, that delay senescence, actually increase ethylene production. At the endogenous level, therefore, ethylene may not be a limiting factor. Finally, a new ethylene-generating system is described in which the dehydrogenation of linoleic acid is coupled through manganese to the oxidation of ACC; it is probably activein vivo.  相似文献   

7.
Mechanism of monocarpic senescence in rice   总被引:15,自引:1,他引:14       下载免费PDF全文
During grain formation stage (90 to 110 days), the youngest flag leaf of rice (Oryza sativa L. cv. Jaya) remained metabolically most active (as indicated by cellular constituents and enzyme activities) and the third leaf the least active. At the grain development stage (110 to 120 days) the above pattern of age-related senescence of the flag leaf completely changed and it senesced at a faster rate than the second leaf which remained metabolically active even up to grain maturation time (120 to 130 days), when both the flag and the third leaf partially senesced. Removal of any leaf temporarily arrested senescence of the remaining attached leaves, that of flag leaf did not hasten senescence of the second leaf, while that of either the second or the third accelerated senescence of the flag. Removal of the inflorescence after emergence or foliar treatment of intact plant with kinetin equally delayed senescence and produced an age-related, sequential mode of senescence or leaves. Both translocation and retention of 32P by the flag leaf were maximum at the time of grain formation and that by the second leaf was maintained even up to grain maturation time. The induction of senescence of the flag leaf was preceded by a plentiful transport of 32P to the grains. Kinetin treatment decreased the transport of 32P, prolonged its duration, and almost equally involved all of the leaves in this process. The pattern of senescence of isolated leaf tips was similar to that of attached leaves. The level of endogenous abscisic acid-like substance(s) maintained a close linearity with the senescence behavior of the leaves of intact and defruited plants during aging, and the rise in abscisic acid in the flag leaf was also preceded by higher 32P transport to the grains.  相似文献   

8.
The exudation of solutes during senescence of oat leaves   总被引:3,自引:0,他引:3  
Exudation of cations and of amino acids from detached oat seedling leaves ( Avena sativa L. cv. Victory) floated on water or solutions was measured under varied conditions. A small amount of exudation in the first 4 h, greater in the dark than in white light, is followed, one to 8 days later, by a relatively great increase which approximately accompanies senescence. This second increase is delayed by kinetin and is accelerated by abscisic acid or methyl jasmonate. both of which accelerate senescence. A nitrogen atmosphere (in darkness) causes immediate large exudation, mainly of potassium ions, and this is effectively delayed by light. There are two exceptions to the parallel between exudation and senescence; n-pentanol, which strongly delays senescence in darkness, nevertheless increases exudation both of potassium and of amino acids, probably due to a direct effect on the plasmalemma. Cycloheximide, which also delays senescence, increases the exudation somewhat. Kinetin prevents or delays exudation under all conditions. Thus, the permeability of the plasmalemma increases greatly along with other criteria of senescence, but this change is probably not the principal cause of the senescence syndrome. Some of the effects are considered to result from reduction in available energy and others from a direct influence on plasmalemma permeability.  相似文献   

9.
The relation between abscisic acid (ABA) and proline accumulation was investigated in detached rice (Oryza sativa L.) leaves. In darkness, proline content increased about 2-, 2,5- and 6-fold after 24, 48 and 72 h. ABA content reached maximum after 48 h. In the light, proline content remained almost unchanged until 48 h and subsequently increased slightly. ABA content in the light was lower than in darkness, but the maximum was also after 48 h. During 12-h exposure to decreased air humidity, proline content gradually increased, but ABA content increased about 25-fold after 4 h and declined thereafter. Exogenous application of ABA resulted in an increase in proline content in detached rice leaves under both light and darkness.  相似文献   

10.
Effects of kinetin on transpiration rate and abscisic acid content were determined. Leaves from 9-day-old wheat plants (Triticum aestivum L. cv. Weibull's Starke II) were used. —Transpiration rate decreased in excised leaves put in water, but it was maintained at a higher rate when kinetin was supplied. When excised leaves were water stressed by air-drying for 1 h, addition of kinetin resulted in a considerable stimulation of transpiration rate. The effect reached its maximum after 15 h and this level remained relatively unchanged for at least 10 h. Intact seedlings which were stressed before leaf excision, showed only a slight stimulation of kinetin on transpiration rate. — Abscisic acid content slowly increased up to three-fold in 2 days in excised leaves put in water. In excised and water-stressed leaves the abscisic acid content was reduced during the first 24 h and then increased. As the leaves were fully turgid, the increase could not have been caused by water stress. However, both in stressed and unstressed leaves kinetin addition reduced the increase in abscisic acid content. — It is suggested that the stimulation by kinetin on transpiration rate in excised and water stressed leaves was mainly due to the combined effect of (1) a reduction in the activity of endogenous cytokinins, (2) kinetin acting as a ‘substitute’ for the inactivated cytokinins but exerting a stronger effect on transpiration than the endogenous cytokinins, and (3) the ‘extra’ reduction in abscisic acid content caused by the kinetin treatment. Furthermore, the results indicate that changes in cytokinins might be partly responsible for the aftereffect on transpiration.  相似文献   

11.
The relation between nitrogen deficiency and leaf senescence   总被引:1,自引:0,他引:1  
Because the "mobilization" of nitrogen resulting from nutritional nitrogen deficiency is also prominent during leaf senescence, the characteristics of these two syndromes were compared. Oat plants ( Avena sativa L. cv. Victory) were raised on a nutrient solution, complete except for nitrogen supply (i.e., with only the seed protein as nitrogen source), and the senescence of their leaves was compared with that of controls grown on a full nutrient solution. The N-deficient plants flowered after forming only 4 leaves and each set a single seed. The nitrogen lack affected the content of chlorophyll somewhat more than the content of the amino acids or protein nitrogen. However, spraying the plants with kinetin solution was able to retain 20–30% of the chlorophyll and protein. During senescence, the chlorophyll appears to be less stable in the N-deficient leaves than in the controls, while the protein is somewhat more stable than in the controls. Also, when the detached leaves from N-deficient plants senesced in white light or in darkness, kinetin delayed their senescence almost as effectively as that of control leaves. Most strikingly, the stomata of N-deficient leaves after detachment and floating on water were largely closed in light, just as in senescence, but could be partially induced to open by kinetin treatment. Since stomatal closure has earlier been shown to cause senescence, the characteristic syndrome of foliar nitrogen deficiency is concluded to be partly that of senescence.  相似文献   

12.
In air largely freed from CO2, senescence of isolated oat (Avena sativa cv Victory) seedling leaves is no longer prevented by white light; instead, the leaves lose both chlorophyll and protein as rapidly as in the dark. Senescence in light is also accelerated in pure O2, but it is greatly delayed in N2; 100% N2 preserves both protein and chlorophyll in light and in darkness. In light in air, most of the compounds tested that had previously been found to delay or inhibit senescence in darkness actually promote the loss of chlorophyll, but they do not promote proteolysis. Under these conditions, proteolysis can therefore be separated from chlorophyll loss. But in light minus CO2, where chlorophyll loss is rapid in controls, two of these same reagents prevent the chlorophyll loss. Unlike the many reagents whose action in light is thus the opposite of that in darkness, abscisic acid, which promotes chlorophyll loss in the dark, also promotes it in light with or without CO2. Kinetin, which prevents chlorophyll loss in the dark, also prevents it in light minus CO2. In general, therefore, the responses to light minus CO2 are similar to the responses to darkness, and (with the exception of abscisic acid and kinetin) opposite to the response to light in air.  相似文献   

13.
In rice (Oryza saliva L. ev. Java), the first (younger) leaf senesced later than the second (older) leaf as shown by the decline in chlorophyll and protein contents. Kinetin treatment significantly retarded senescence of leaves, while abscisic acid (ABA) treatment promoted it. The second leaf exported more32P to the newly emerged growing leaf at the early stages than the first leaf, which always showed higher retention of32P than the second one. Kinetin treatment lengthened the duration of32P export and also increased the retention capacity of both leaves, while ABA had the opposite effect. The second leaf showed a higher depletion of nitrogen and phosphorus but à lower depletion of potassium than the first leaf. Kinetin treatment retarded the decline in nutrient content (N and P) while ABA treatment hastened it. Neither growth substance had any effect on potassium content. The content(s) of endogenous eytokinin-like substance(s) decreased while ABA-like substance(s) increased in the two leaves with senescence: these changes in the second leaf took place earlier than in the first leaf.  相似文献   

14.
Both abscisic acid (ABA) and jasmonates are known to promote leaf senescence. Since ABA and jasmonates have both chemical and physiological similarities, we are interested to know whether senescence of detached rice leaves induced by methyl jasmonate (MJ) is mediated through an increase in endogenous ABA levels. In darkness, the endogenous level of ABA in detached rice leaves remained unchanged in the first day of incubation in water and increased about 5 times its initial value in the second day. However, the pattern of senescence, as judged by protein loss, was rapid during the first day. MJ significantly promoted senescence of detached rice leaves. Contrary to our expectation, endogenous ABA levels decreased in MJ-treated detached rice leaves. Similar to the effect of MJ, endogenous ABA levels decreased in detached rice leaves which were induced to senesce by treatment with NH4Cl. These results suggest that endogenous ABA levels are not linked to MJ-induced senescence of detached rice leaves.  相似文献   

15.
The physiological effects of storing plants under hypobaric conditions were studied using oat ( Avena sativa L. cv. Victory) leaf segments as a test system. The segments from seven day old plants were floated on water and stored in darkness at 12°C, 1.6 kPa or at 25°C, 6 kPa. Low temperature or hypobaric conditions delayed senescence, whereas the combination arrested the syndrome at an early stage. One of the effects of low pressure was to force the stomata open. The hormones abscisic acid and kinetin, which affect the stomatal aperture and also senescence, did not show any effect in hypobarically stored plant material. The stomata were forced open in darkness when the pressure was lower than 77 kPa and opening time was 8 h. The senescence syndrome in hypobarically stored segments developed similar to those treated with kinetin at 101 kPa.  相似文献   

16.
Gladiolus flowers are ethylene insensitive and the signals that start catabolic changes during senescence of gladiolus flower are largely not known. Therefore, experiments were performed to understand the role of abscisic acid (ABA) in ethylene insensitive floral senescence in gladiolus (Gladiolus grandiflora Hort.). It was observed that ABA accumulation increased in attached petals of gladiolus flowers as they senesced. Exogenous application of ABA in vase solution accelerated senescence process in the flowers due to change in various senescence indicators such as enhanced membrane leakage, reduced water uptake, reduced fresh weight and ultimately vase life. Enhancement of in vivo ABA level in petals by creating osmotic stress also upregulates the same parameters of flower senescence as those occurring during natural senescence and also akin to exogenous application of ABA. Attempts to increase vase life of flowers by application of putative ABA biosynthesis inhibitor fluridone in vase solution to counteract ABA effect were unsuccessful. In contrast, ABA action was mitigated by application of GA3 in holding solution along with ABA which is basically an antagonist of ABA action. The present study provides valuable insights into the role of ABA as a hormonal trigger in ethylene insensitive senescence process and therefore would be helpful for dissecting the complex mechanism underlying ABA-regulated senescence process in gladiolus.  相似文献   

17.
Leaf Senescence and Abscisic Acid in Leaves of Field-grown Soybean   总被引:1,自引:0,他引:1       下载免费PDF全文
Leaf senescence in field-grown soybean (Merrill) as defined by the period after full expansion, was studied by measuring abscisic acid (ABA), total soluble protein, and chlorophyll in leaves through the later part of the growing season. ABA concentrations increased significantly at the end of the season when leaves had started to turn yellow, well after total soluble protein and chlorophyll had started to decline. The results indicate that events occurring before leaf yellowing are more significant in evaluating leaf senescence since the yellowing condition and rise in ABA are effects of changes in physiological activity beginning when leaves are still green.  相似文献   

18.
The senescence of detached leaves of tropaeolum   总被引:1,自引:0,他引:1       下载免费PDF全文
Thimann KV 《Plant physiology》1985,79(4):1107-1110
The senescence of detached Tropaeolum majus leaves was compared with that described earlier for Avena. Tropaeolum was chosen as being not only a dicot but also as having a nearly circular leaf, thus needing only the smallest minimum of wounding, since wounding delays the loss of chlorophyll and protein in darkness. Tropaeolum resembles Avena in that closing the stomata osmotically or with ABA causes rapid senescence in light. As in Avena also, n-hexanol and α,α′-dipyridyl delay senescence in darkness but cause `bleaching' of chlorophyll in light. Unlike Avena, however, kinetin and gibberellic acid, which delay senescence in the dark in both species, do so in Tropaeolum without causing any significant stomatal opening. The senescence of Tropaeolum leaves is actually promoted by fusicoccin, which powerfully delays senescence in Avena, although fusicoccin does cause stomatal opening in darkness in both species. Thus, many of the phenomena of senescence are alike in the monocot and dicot, but there are several significantly different responses to the senescence-modifying reagents. It is concluded that while stomatal closure accelerates senescence in both species, stomatal opening is not directly linked to the prevention of leaf senescence.  相似文献   

19.
Leaf senescence is induced or accelerated when leaves are detached. However, the senescence process and expression pattern of senescence-associated genes (SAGs) when leaves are detached are not clearly understood. To detect senescence-associated physiological changes and SAG expression, wheat (Triticum aestivum L.) leaves were detached and treated with light, darkness, low temperature (4 C), jasmonic acid (JA), abscisic acid (ABA), and salicylic acid (SA). The leaf phenotypes, chlorophyll content, delayed fluorescence (DF), and expression levels of two SAGs, namely, TaSAG3 and TaSAG5, were analyzed. Under these different treatments, the detached leaves turned yellow with different patterns and varying chlorophyll content. DF significantly decreased after the dark, ABA, JA and SA treatments. TaSAG3 and TaSAG5, which are expressed in natural senescent leaves, showed different expression patterns under various treatments. However, both TaSAG3 and TaSAG5 were upregulated after leaf detachment. Our results revealed senescence-associated physiological changes and molecular differences in leaves, which induced leaf senescence during different stress treatments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号