首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct acting antivirals have dramatically increased the efficacy and tolerability of hepatitis C treatment, but drug resistance has emerged with some of these inhibitors, including nonstructural protein 3/4?A protease inhibitors (PIs). Although many co-crystal structures of PIs with the NS3/4A protease have been reported, a systematic review of these crystal structures in the context of the rapidly emerging drug resistance especially for early PIs has not been performed. To provide a framework for designing better inhibitors with higher barriers to resistance, we performed a quantitative structural analysis using co-crystal structures and models of HCV NS3/4A protease in complex with natural substrates and inhibitors. By comparing substrate structural motifs and active site interactions with inhibitor recognition, we observed that the selection of drug resistance mutations correlates with how inhibitors deviate from viral substrates in molecular recognition. Based on this observation, we conclude that guiding the design process with native substrate recognition features is likely to lead to more robust small molecule inhibitors with decreased susceptibility to resistance.  相似文献   

2.
《The Journal of cell biology》1986,102(4):1378-1383
A series of protease inhibitors were tested on the motility of human, rat, bull, and rabbit demembranated reactivated spermatozoa. Some inhibitors, including aprotinin, boc-gln-leu-lys-H, and D-phe-pro-arg- H, could inhibit motility as well as prevent initiation of motility. In general, with the exception of aprotinin, protease inhibitors were more potent in preventing the initiation of movement than in blocking motility of demembranated spermatozoa. Protease substrates could also block sperm motility. Of the substrates tested only those with arg or lys ester bonds were active. The inhibition of motility by protease substrates was reversible, as once spermatozoa hydrolyzed the added exogenous protease substrates, motility reappeared. The importance of ester bond in the inhibitory action of protease substrates was confirmed by experiments that showed the lack of effect of pre- hydrolyzed protease substrates. The results suggest that a serine protease with lys and arg ester bond specificity is involved in the control of sperm motility. The fact that protease substrates also block motility of intact spermatozoa further emphasizes the physiological relevance of this new regulatory system.  相似文献   

3.
Tomlinson SM  Watowich SJ 《Biochemistry》2008,47(45):11763-11770
West Nile virus (WNV) has recently emerged in North America as a significant disease threat to humans and animals. Unfortunately, no approved antiviral drugs exist to combat WNV or other members of the genus Flavivirus in humans. The WNV NS2B-NS3 protease has been one of the primary targets for anti-WNV drug discovery and design since it is required for virus replication. As part of our efforts to develop effective WNV inhibitors, we reexamined the reaction kinetics of the NS2B-NS3 protease and the inhibition mechanisms of newly discovered inhibitors. The WNV protease showed substrate inhibition in assays utilizing fluorophore-linked peptide substrates GRR, GKR, and DFASGKR. Moreover, a substrate inhibition reaction step was required to accurately model kinetic data generated from protease assays with a peptide inhibitor. The substrate inhibition model suggested that peptide substrates could bind to two binding sites on the protease. Reaction product analogues also showed inhibition of the protease, demonstrating product inhibition in addition to and distinct from substrate inhibition. We propose that small peptide substrates and inhibitors may interact with protease residues that form either the P3-P1 binding surface (i.e., the S3-S1 sites) or the P1'-P3' interaction surface (i.e., the S1'-S3' sites). Optimization of substrate analogue inhibitors that target these two independent sites may lead to novel anti-WNV drugs.  相似文献   

4.
The death of macrophages contributes to atheroma formation. Oxidation renders low-density lipoprotein (LDL) cytotoxic to human monocyte-macrophages. Lipoprotein-associated phospholipase A2 (Lp-PLA2), also termed platelet-activating factor acetylhydrolase, hydrolyses oxidised phospholipids. Inhibition of Lp-PLA2 by diisopropyl fluorophosphate or Pefabloc (broad-spectrum serine esterase/protease inhibitors), or SB222657 (a specific inhibitor of Lp-PLA2) did not prevent LDL oxidation, but diminished the ensuing toxicity and apoptosis induction when the LDL was oxidised, and inhibited the rise in lysophosphatidylcholine levels that occurred in the inhibitors' absence. Hydrolysis products of oxidised phospholipids thus account for over a third of the cytotoxic and apoptosis-inducing effects of oxidised LDL on macrophages.  相似文献   

5.
West Nile Virus is becoming a widespread pathogen, infecting people on at least four continents with no effective treatment for these infections or many of their associated pathologies. A key enzyme that is essential for viral replication is the viral protease NS2B-NS3, which is highly conserved among all flaviviruses. Using a combination of molecular fitting of substrates to the active site of the crystal structure of NS3, site-directed enzyme and cofactor mutagenesis, and kinetic studies on proteolytic processing of panels of short peptide substrates, we have identified important enzyme-substrate interactions that define substrate specificity for NS3 protease. In addition to better understanding the involvement of S2, S3, and S4 enzyme residues in substrate binding, a residue within cofactor NS2B has been found to strongly influence the preference of flavivirus proteases for lysine or arginine at P2 in substrates. Optimization of tetrapeptide substrates for enhanced protease affinity and processing efficiency has also provided important clues for developing inhibitors of West Nile Virus infection.  相似文献   

6.
The substrate specificity of a plant serine protease, cucumisin (EC 3.4.21.25), was studied by the use of synthetic oligopeptides and peptidyl-pNA substrates. Since P1'-Ser, Ala, and Gly substrates were hydrolyzed rapidly, cucumisin appears to prefer a small side chain at the P1' position of the oligopeptide substrate. The k(cat)/Km for the hydrolysis of P1-Leu, Ala, Phe, and Glu substrates demonstrated that they were preferentially cleaved over P1-Lys, diaminopropionic acid (Dap), Gly, Val, and Pro substrates. From the digestion of peptidyl-pNAs, the specificity of the protease was determined to be broad, but the preferential cleavage sites were hydrophobic amino acid residues at the P1 position.  相似文献   

7.
The interactions of the NS3 protease domain with inhibitors that are based on N-terminal cleavage products of peptide substrates were studied by NMR methods. Transferred nuclear Overhauser effect experiments showed that these inhibitors bind the protease in a well defined, extended conformation. Protease-induced line-broadening studies helped identify the segments of inhibitors which come into contact with the protease. A comparison of the NMR data of the free and protease-bound states suggests that these ligands undergo rigidification upon complexation. This work provides the first structure of an inhibitor when bound to NS3 protease and should be valuable for designing more potent inhibitors.  相似文献   

8.
Inhibition of urokinase has been shown to slow tumor growth and metastasis. To utilize structure-based drug design, human urokinase was re-engineered to provide a more optimal crystal form. The redesigned protein consists of residues Ile(16)-Lys(243) (in the chymotrypsin numbering system; for the urokinase numbering system it is Ile(159)-Lys(404)) and two point mutations, C122A and N145Q (C279A and N302Q). The protein yields crystals that diffract to ultra-high resolution at a synchrotron source. The native structure has been refined to 1.5 A resolution. This new crystal form contains an accessible active site that facilitates compound soaking, which was used to determine the co-crystal structures of urokinase in complex with the small molecule inhibitors amiloride, 4-iodo-benzo(b)thiophene-2-carboxamidine and phenylguanidine at 2. 0-2.2 A resolution. All three inhibitors bind at the primary binding pocket of urokinase. The structures of amiloride and 4-iodo-benzo(b)thiophene-2-carboxamidine also reveal that each of their halogen atoms are bound at a novel structural subsite adjacent to the primary binding pocket. This site consists of residues Gly(218), Ser(146), and Cys(191)-Cys(220) and the side chain of Lys(143). This pocket could be utilized in future drug design efforts. Crystal structures of these three inhibitors in complex with urokinase reveal strategies for the design of more potent nonpeptidic urokinase inhibitors.  相似文献   

9.
Rapidly developing viral resistance to licensed human immunodeficiency virus type 1 (HIV-1) protease inhibitors is an increasing problem in the treatment of HIV-infected individuals and AIDS patients. A rational design of more effective protease inhibitors and discovery of potential biological substrates for the HIV-1 protease require accurate models for protease cleavage specificity. In this study, several popular bioinformatic machine learning methods, including support vector machines and artificial neural networks, were used to analyze the specificity of the HIV-1 protease. A new, extensive data set (746 peptides that have been experimentally tested for cleavage by the HIV-1 protease) was compiled, and the data were used to construct different classifiers that predicted whether the protease would cleave a given peptide substrate or not. The best predictor was a nonlinear predictor using two physicochemical parameters (hydrophobicity, or alternatively polarity, and size) for the amino acids, indicating that these properties are the key features recognized by the HIV-1 protease. The present in silico study provides new and important insights into the workings of the HIV-1 protease at the molecular level, supporting the recent hypothesis that the protease primarily recognizes a conformation rather than a specific amino acid sequence. Furthermore, we demonstrate that the presence of 1 to 2 lysine residues near the cleavage site of octameric peptide substrates seems to prevent cleavage efficiently, suggesting that this positively charged amino acid plays an important role in hindering the activity of the HIV-1 protease.  相似文献   

10.
The S1 site (Asp(189)) of factor Xa (fXa) is located on a loop (residues 185-189) that contains three solvent-exposed charged residues (Asp(185), Lys(186), and Glu(188)) below the active-site pocket of the protease. To investigate the role of these residues in the catalytic function of fXa, we expressed three mutants of the protease in which the charges of these residues were neutralized by their substitutions with Ala (D185A, K186A, and E188A). Kinetic studies revealed that E188A has a normal catalytic activity toward small synthetic and natural substrates and inhibitors of fXa; however, the same activities were slightly ( approximately 2-fold) and dramatically ( approximately 20-50-fold) impaired for the D185A and K186A mutants, respectively. Further studies revealed that the affinity of D185A and K186A for interaction with Na(+) has also been altered, with a modest impairment ( approximately 2-fold) for the former and a dramatic impairment for the latter mutant. Both prothrombinase and direct binding studies indicated that K186A also has an approximately 6-fold impaired affinity for factor Va. Interestingly, a saturating concentration of factor Va restored the catalytic defect of K186A in reactions with prothrombin and the recombinant tick anticoagulant peptide that is known to interact with the Na(+) loop of fXa, but not with other substrates. These results suggest that factor Va interacts with 185-189-loop for fXa, which is energetically linked to the Na(+)-binding site of the protease.  相似文献   

11.
Crystallographic data show that various substrates of HIV protease occupy a remarkably uniform region within the binding site; this region has been termed the substrate envelope. It has been suggested that an inhibitor that fits within the substrate envelope should tend to evade viral resistance because a protease mutation that reduces the affinity of the inhibitor will also tend to reduce the affinity of substrate, and will hence decrease the activity of the enzyme. Accordingly, inhibitors that fit the substrate envelope better should be less susceptible to clinically observed resistant mutations, since these must also allow substrates to bind. The present study describes a quantitative measure of the volume of a bound inhibitor falling outside the substrate envelope, and observes that this quantity correlates with the inhibitor's losses in affinity to clinically relevant mutants. This measure may thus be useful as a penalty function in the design of robust HIV protease inhibitors.  相似文献   

12.
Bacteria produce a range of proteolytic enzymes. In an attempt to detect and identify bacteria on the basis of their protease activity, a panel of protease substrates was investigated. Peptides conjugated to the fluorophore 7-amino-4-methylcoumarin (AMC) are well-established substrates for measuring protease activity. Although peptide-AMC substrates are generally not specific for a single protease, a unique pattern can be achieved for both highly specific enzymes and those with a broader substrate range by comparing different peptide substrates. The panel of 7 peptide-AMC substrates chosen exhibited a unique pattern for nine microbial proteases. The selected peptides were used to determine protease activity in cultured strains of Pseudomonas aeruginosa and Staphylococcus aureus. A signal pattern obtained with peptides with arginine, lysine, and tyrosine in the P1 position characterized the bacterial protease activities in these samples. The kinetic parameters for the three best substrates for the P. aeruginosa sample were calculated. Further information about substrate specificity was gained by the selective use of protease inhibitors. The results presented show that peptide-AMC substrates provide a simple and sensitive tool to characterize protease activity in microbiological samples and that they have the potential to identify and distinguish different bacterial species.  相似文献   

13.
We recently reported a new class of inhibitors of the chymotrypsin-like serine protease NS3 of the hepatitis C virus. These inhibitors exploit the binding potential of the S' site of the protease, which is not generally used by the natural substrates. The effect of prime-site occupancy was analyzed by circular dichroism spectroscopy and limited proteolysis-mass spectrometry. Generally, nonprime inhibitors cause a structural change in NS3. Binding in the S' site produces additional conformational changes with different binding modes, even in the case of the NS3/4A cofactor complex. Notably, inhibitor binding either in the S or S' site also has profound effects on the stabilization of the protease. In addition, the stabilization propagates to regions not in direct contact with the inhibitor. In particular, the N-terminal region, which according to structural studies is endowed with low structural stability and is not stabilized by nonprime inhibitors, was now fully protected from proteolytic degradation. From the perspective of drug design, P-P' inhibitors take advantage of binding pockets, which are not exploited by the natural HCV substrates; hence, they are an entry point for a novel class of NS3/4A inhibitors. Here we show that binding of each inhibitor is associated with a specific structural rearrangement. The development of a range of inhibitors belonging to different classes and an understanding of their interactions with the protease are required to address the issue of the most likely outcome of viral protease inhibitor therapy, that is, viral resistance.  相似文献   

14.
A recombinant dengue 2 virus NS2B-NS3 protease (NS means non-structural virus protein) was compared with human furin for the capacity to process short peptide substrates corresponding to seven native substrate cleavage sites in the dengue viral polyprotein. Using fluorescence resonance energy transfer peptides to measure kinetics, the processing of these substrates was found to be selective for the Dengue protease. Substrates containing two or three basic amino acids (Arg or Lys) in tandem were found to be the best, with Abz-AKRRSQ-EDDnp being the most efficiently cleaved. The hydrolysis of dipeptide substrates Bz-X-Arg-MCA where X is a non-natural basic amino acid were also kinetically examined, the best substrates containing aliphatic basic amino acids. Our results indicated that proteolytic processing by dengue NS3 protease, tethered to its activating NS2B co-factor, was strongly inhibited by Ca2+ and kosmotropic salts of the Hofmeister's series, and significantly influenced by substrate modifications between S4 and S6'. Incorporation of basic non-natural amino acids in short peptide substrates had significant but differential effects on Km and k(cat), suggesting that further dissection of their influences on substrate affinity might enable the development of effective dengue protease inhibitors.  相似文献   

15.
Retroviruses code for a virus-specific protease which is essential for polyprotein processing and viral infectivity. The human immune deficiency virus-1 protease is an aspartic protease of 9 kDa which was synthesized by recombinant DNA technology and arises by autocatalytic processing from a polyprotein precursor which has recently been demonstrated by use of a protease-specific monoclonal antibody. The protease was shown to form dimers. Here we demonstrate that synthetic peptides can be used as both model substrates as well as inhibitors for investigation of the protease. 14 synthetic peptides, 7-18 amino acids in length, containing putative protease cleavage sites of the viral polyprotein gag and pol precursors, have been analyzed with the partially purified protease by the use of high performance liquid chromatography. In seven cases, where cleavage was observed, the length of the peptides did not significantly influence the cleavage efficiencies, heptapeptides being large enough as model substrates. No cleavage was observed with a protein preparation purified in parallel from control bacteria not expressing the human immune deficiency virus-1 protease. The protease was not only able to cut next to a proline but also between other peptides indicating that the proline is not a prerequisite. Three peptides with either reduced bonds at the cleavage site or a substitution by statin were inhibitory while another uncleaved substrate was not. The usefulness of small model substrates for characterization of the protease is further demonstrated by determination of a kinetic optimum pH (3.5-5.5) and incubation temperature (37 degrees C).  相似文献   

16.
A gelatin-specific protease from the culture media of human pulmonary alveolar macrophages has been partial purified by gel filtration and characterized. The macrophages were obtained by bronchopulmonary lavage from the lungs of disease-free smoking volunteers. The gelatin-specific protease initially requires trypsin activation. After chromatographing the culture media on a Sephadex G-200 column, trypsin is no longer required for activation. The gelatin-specific protease reported here shares many properties of previously reported gelatinases. It is inhibited by EDTA, cysteine, dithiothreitol and serum. It is unaffected by other protease inhibitors: phenylmethylsulfonyl fluoride, tosyllysine chloromethyl ketone and p-chloromercuribenzoate. Of all substrates tested activity was observed only with gelatin. It was inactive toward collagen, elastin and methemoglobin. This enzyme may have a role in the digestion of collagen which has been cleaved by a mammalian collagenase.  相似文献   

17.
A fibrinolytic enzyme was purified from the cultured mycelia of Armillaria mellea by ion-exchange chromatography followed by gel filtration, and was designated A. mellea metalloprotease (AMMP). The purification protocol resulted in a 627-fold purification of the enzyme, with a final yield of 6.05%. The apparent molecular mass of the purified enzyme was estimated to be 21kDa by SDS-PAGE, fibrin-zymography and gel filtration chromatography, which revealed a monomeric form of the enzyme. The optimal reaction pH value and temperature were, pH 6.0, and 33 degrees C, respectively. This protease effectively hydrolyzed fibrinogen, preferentially digesting the Aalpha-chain over the Bbeta- and r-chains. Enzyme activity was inhibited by Cu(2+) and Co(2+), but enhanced by the addition of Ca(2+) and Mg(2+) ions. Furthermore, AMMP activity was potently inhibited by EDTA, and was found to exhibit a higher specificity for the substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like metalloprotease. The first 24 amino acid residues of the N-terminal sequence were MFSLSSRFFLYTLCL SAVAVSAAP, which is extremely similar to the 24 amino acid residues of the N-terminal sequence of the fruiting body of A. mellea. These data suggest that the fibrinolytic enzyme AMMP, obtained from the A. mellea exhibits a profound fibrinolytic activity. The mycelia of A. mellea may thus represent a potential source of new therapeutic agents to treat thrombosis.  相似文献   

18.
Understanding the factors that affect the activity of Human T-cell Leukemia Virus type I (HTLV-I) protease is essential for the discovery of inhibitors to be used for the treatment of HTLV-I infection, but little has been reported on the protease to date. Here we report the production of HTLV-I protease in purified yields greater than 150 mg/L, determination of its extinction coefficient, and determination of the optimum conditions for cleavage of the p19/24 substrates (DABCYL)-(GABA)-PQVL-Nph-VMH-(EDANS), (DABSYL)-(GABA)-PQVL-Nph-VMH-(EDANS), and (DABSYL)-(GABA)-PQVLPVMH-(EDANS). The highest activity was found at pH 5.2-5.3 and 37 degrees C. There was no effect on activity upon change in sodium chloride concentration from 0 to 1500 mM. The values of K(m) and k(cat) for cleavage of these substrates by the protease with and without the histidine tag were determined.  相似文献   

19.
P A Mallory  J Travis 《Biochemistry》1975,14(4):722-730
?An enzyme with proteolytic activity has been isolated from activated extracts of human pancreatic tissue. The purification procedure included salt fractionation followed by ion-exchange chromatography on SE-TSephadex C-25 and on DEAE-Sephadex A-50. The homogeneity of this enzyme, designated protease te, was demonstrated by disc electrophoresis and by sedimentation equilibrium centrifugation stidues. The homogeneous enzyme shows the ability to hydrolyze many of the conventional synthetic substrates used for the identification of elastase activity; however, it demonstrates no significant elastolytic activity. A comparison of human protease E with porcine elastase reveals a high degree of similarity between the two proteases with respect to inhibition by active-site directed peptide chloromethyl ketones, stability, decreased susceptibility to naturally occurring proteinase inhibitors, and specificity for synthetic substrates as well as several other physical properties. The major difference between human protease E and porcine elastase, other than the lack of elastolytic activity by human protease E, seems to be in the ionic character and the amino acid composition of these two proteins. Porcine elastase is a cationic enzyme, while human protease E appears to be anionic in nature. These dissimilarities concerning elastolytic activity and ionic character appear to be directly related.  相似文献   

20.
Proteases are enzymes that cleave peptide bonds in protein substrates. This process can be important for regulated turnover of a target protein but it can also produce protein fragments that then perform other functions. Because the last few decades of protease research have confirmed that proteolysis is an essential regulatory process in both normal physiology and in multiple disease-associated conditions, there has been an increasing interest in developing methods to image protease activity. Proteases are also considered to be one of the few 'druggable' classes of proteins and therefore a large number of small molecule based inhibitors of proteases have been reported. These compounds serve as a starting point for the design of probes that can be used to target active proteases for imaging applications. Currently, several classes of fluorescent probes have been developed to visualize protease activity in live cells and even whole organisms. The two primary classes of protease probes make use of either peptide/protein substrates or covalent inhibitors that produce a fluorescent signal when bound to an active protease target. This review outlines some of the most recent advances in the design of imaging probes for proteases. In particular, it highlights the strengths and weaknesses of both substrate-based and activity-based probes and their applications for imaging cysteine proteases that are important biomarkers for multiple human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号