首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study was to investigate amplitude and frequency content of single motor unit (MU) electromyographic (EMG) and mechanomyographic (MMG) responses. Multi-channel surface EMG and MMG signals were detected from the dominant biceps brachii muscle of 10 volunteers during isometric voluntary contractions at 20%, 50%, and 80% of the maximal voluntary contraction (MVC) force. Each contraction was performed three times in the experimental session which was repeated in three non-consecutive days. Single MU action potentials were identified from the surface EMG signals and their times of occurrence used to trigger the averaging of the MMG signal. At each contraction level, the MUs with action potentials of highest amplitude were identified. Single MU EMG and MMG amplitude and mean frequency were estimated with normalized standard error of the mean within subjects (due to repetition of the measure in different trials and experimental sessions) smaller than 15% and 7%, respectively, in all conditions. The amplitude of the action potentials of the detected MUs increased with increasing force (mean +/- SD, 244 +/- 116 microV at 20% MVC, and 1426 +/- 638 microV at 80% MVC; P < 0.001) while MU MMG amplitude increased from 20% to 50% MVC (40.5 +/- 20.9 and 150 +/- 88.4 mm/s(2), respectively; P<0.001) and did not change significantly between 50% and 80% MVC (129 +/ -82.7 mm/s(2) at 80% MVC). MU EMG mean frequency decreased with contraction level (20% MVC: 97.2 +/- 13.9 Hz; 80% MVC: 86.2 +/- 11.4 Hz; P < 0.001) while MU MMG mean frequency increased (20% MVC: 33.2 +/- 6.8 Hz; 80% MVC: 40.1 +/- 6.1 Hz; P < 0.001). EMG peak-to-peak amplitude and mean frequency of individual MUs were not correlated with the corresponding variables of MMG at any contraction level.  相似文献   

2.
To determine the non-uniform surface mechanical activity of human quadriceps muscle during fatiguing activity, surface mechanomyogram (MMG), or muscle sound, and surface electromyogram (EMG) were recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles of seven subjects during unilateral isometric knee extension exercise. Time- and frequency-domain analyses of MMG and of EMG fatigued by 50 repeated maximal voluntary contractions (MVC) for 3 s, with 3-s relaxation in between, were compared among the muscles. The mean MVC force fell to 49.5 (SEM 2.0)% at the end of the repeated MVC. Integrated EMG decreased in a similar manner in each muscle head, but a marked non-uniformity was found for the decline in integrated MMG (iMMG). The fall in iMMG was most prominent for RF, followed by VM and VL. Moreover, the median frequency of MMG and the relative decrease in that of EMG in RF were significantly greater (P < 0.05) than those recorded for VL and VM. These results would suggest a divergence of mechanical activity within the quadriceps muscle during fatiguing activity by repeated MVC. Accepted: 19 January 1999  相似文献   

3.
The purpose of this study was to investigate systematically if complementary knowledge could be obtained from the recordings of electromyography (EMG) and mechanomyography (MMG) signals. EMG and MMG activities were recorded from the first dorsal interosseous muscle during slow concentric, isometric, and eccentric contraction at 0, 25, 50, 75 and 100% of the maximal voluntary contraction (MVC). The combination of the EMG and MMG recordings during voluntary concentric-isometric-eccentric contraction showed significant different non-linear EMG/force and MMG/force relationships (P<0.001). The EMG root mean square (rms) values increased significantly from 0 to 50% MVC during concentric and isometric contraction and up to 75% MVC during eccentric contraction (P<0.05). The MMG rms values increased significantly from 0 to 50% MVC during concentric contraction (P<0.05). The non-linear relationships depended mainly on the type and the level of contraction together with the angular velocity. Furthermore, the type of contraction, the contraction level, and the angular velocity influenced the electromechanical efficiency evaluated as the MMG to EMG ratio (P<0.05). These results highlight that EMG and MMG provide complementary information about the electrical and mechanical activity of the muscle. Different activation strategies seem to be used during graded isometric and anisometric contraction.  相似文献   

4.
The focus of the present study is the long term element of muscle fatigue provoked by prolonged intermittent contractions at submaximal force levels and analysed by force, surface electromyography (EMG) and mechanomyogram (MMG). It was hypothesized that fatigue related changes in mechanical performance of the biceps muscle are more strongly reflected in low than in high force test contractions, more prominent in the MMG than in the EMG signal and less pronounced following contractions controlled by visual compared to proprioceptive feedback. Further, it was investigated if fatigue induced by 30 min intermittent contractions at 30% as well as 10% of maximal voluntary contraction (MVC) lasted more than 30 min recovery. In six male subjects the EMG and MMG were recorded from the biceps brachii muscle during three sessions with fatiguing exercise at 10% with visual feedback and at 30% MVC with visual and proprioceptive feedback. EMG, MMG, and force were evaluated during isometric test contractions at 5% and 80% MVC before prolonged contraction and after 10 and 30 min of recovery. MVC decreased significantly after the fatiguing exercise in all three sessions and was still decreased even after 30 min of recovery. In the time domain significant increases after the fatiguing exercise were found only in the 5% MVC tests and most pronounced for the MMG. No consistent changes were found for neither EMG nor MMG in the frequency domain and feedback mode did not modify the results. It is concluded that long term fatigue after intermittent contractions at low force levels can be detected even after 30 min of recovery in a low force test contraction. Since the response was most pronounced in the MMG this may be a valuable variable for detection of impairments in the excitation-contraction coupling.  相似文献   

5.
This study was to investigate the properties of mechanomyography (MMG), or muscle sound, of the paretic muscle in the affected side of hemiplegic subjects after stroke during isometric voluntary contractions, in comparison with those from the muscle in the unaffected side of the hemiplegic subjects and from the healthy muscle of unimpaired subjects. MMG and electromyography (EMG) signals were recorded simultaneously from the biceps brachii muscles of the dominant arm of unimpaired subjects (n=5) and the unaffected and affected arms of subjects after stroke (n=8), when performing a fatiguing maximal voluntary contraction (MVC) associated with the decrease in elbow flexion torque, and then submaximal elbow flexions at 20%, 40%, 60% and 80% MVCs. The root mean squared (RMS) values, the mean power frequencies (MPF, in the power density spectrum, PDS) of the EMG and MMG, and the high frequency rate (HF-rate, the ratio of the power above 15Hz in the MMG PDS) were used for the analysis. The MMG RMS decreased more slowly during the MVC in the affected muscle compared to the healthy and unaffected muscles. A transient increase could be observed in the MMG MPFs from the unaffected and healthy muscles during the MVC, associated with the decrease in their simultaneous EMG MPFs due to the muscular fatigue. No significant variation could be seen in the EMG and MMG MPFs in the affected muscles during the MVC. The values in the MPF and HF-rate of MMG from the affected muscles were significantly lower than those from the healthy and unaffected muscles (P<0.05) at the high contraction level (80% MVC). Both the MMG and EMG RMS values in the healthy and unaffected groups were found to be significantly higher than the affected group (P<0.05) at 60% and 80% MVCs. These observations were related to an atrophy of the fast-twitch fibers and a reduction of the neural input in the affected muscles of the hemiplegic subjects. The results in this study suggested MMG could be used as a complementary to EMG for the analysis on muscular characteristics in subjects after stroke.  相似文献   

6.
Controversies exist regarding objective documentation of fatigue development with low-force contractions. We hypothesized that non-exhaustive, low-force muscle contraction may induce prolonged low-frequency fatigue (LFF) that in the subsequent recovery period is detectable by electromyography (EMG) and in particular mechanomyography (MMG) during low-force rather than high-force test contractions. Seven subjects performed static wrist extension at 10% maximal voluntary contraction (MVC) for 10 min (10%MVC10 min). Wrist force response to electrical stimulation of extensor carpi radialis muscle (ECR) quantified LFF. EMG and MMG were recorded from ECR during static test contractions at 5% and 80% MVC. Electrical stimulation, MVC, and test contractions were performed before 10%MVC10 min and at 10, 30, 90 and 150 min recovery. In spite of no changes in MVC, LFF persisted up to 150 min recovery but did not develop in a control experiment omitting 10%MVC10 min. In 5% MVC tests significant increase was found in time domain of EMG from 0.067+/-0.028 mV before 10%MVC10 min to 0.107+/-0.049 and 0.087+/-0.05 mV at 10 and 30 min recovery, respectively, and of the MMG from 0.054+/-0.039 ms(-2) to 0.133+/-0.104 and 0.127+/-0.099 ms(-2), respectively. No consistent changes were found in 80% MVC tests. In conclusion, non-exhaustive low-force muscle contraction resulted in prolonged LFF that in part was identified by the EMG and MMG signals.  相似文献   

7.
The purpose of this study was to investigate the influence of eccentric contractions (ECC) on the biceps (BB) and triceps brachii (TB) muscles during maximal voluntary contraction (MVC) of elbow flexors using electrical (EMG) and mechanomyographical activities (MMG). Each of 18 male students performed 25 submaximal contractions (50% MVC) of the elbow flexors. Root mean square amplitude (RMS) and median frequency (MDF) were calculated for the EMG and MMG signals recorded during MVC. All measurements were taken before, immediately after, 24, 48, 72, and 120 h post-ECC from the BB and TB muscles. MVC was reduced by 34% immediately after exercise and did not return to the resting value within 120 h (P0.05). The EMG MDF decreased significantly (P< or =0.05) in both muscles after ECC. The MMG RMS at 24h, 48, 72 and 120 h post-ECC was significantly lower compared to that recorded immediately after ECC in both muscles (P< or =0.05). The present research showed that (i) there were similar changes in electrical and mechanical activities during MVC after submaximal ECC in agonist and antagonist muscles suggesting a common drive controlling the agonist and antagonist motoneuron pool, (ii) the ECC induced different changes in EMG than in MMG immediately after ECC and during 120 h of recovery that suggested an increased tremor and contractile impairments, i.e., reduced rate of calcium release from the sarcoplasmic reticulum (acute effect), and changes in motor control mechanisms of agonist and antagonist muscles, and increased muscle stiffness (chronic effect).  相似文献   

8.
The purpose of this investigation was to examine mechanomyographic (MMG) and electromyographic (EMG) amplitude responses of the superficial quadriceps femoris muscles during the Wingate Anaerobic Test (WAnT). Ten healthy adults (age 21 +/- 1.2 years) volunteered to perform the WAnT on a calibrated Monark 894E cycle ergometer while the EMG and MMG signals were recorded. The EMG and MMG amplitude and power output (W) values per 5-second segments of the test were averaged and normalized to the highest value found during the test, respectively. The statistical analysis indicated that EMG amplitude did not change significantly over the 30-second test, but W and MMG amplitude decreased significantly. There is dissociation between EMG and MMG amplitude over the 30-second anaerobic test, providing evidence that MMG amplitude could be used as a monitor of W during such a task. MMG amplitude could potentially be used as a direct monitor of mechanical activity, which could be of benefit to those who train athletes when a direct assessment of mechanical contribution from a given muscle to a fatiguing activity is desired (such as when monitoring an injury), but it must be studied under various conditions, such as the current study, before such applications are made.  相似文献   

9.
The purposes of this study were to examine the mechanomyographic (MMG) and electromyographic (EMG) time and frequency domain responses of the vastus lateralis (VL) and rectus femoris (RF) muscles during isometric ramp contractions and compare the time-frequency of the MMG and EMG signals generated by the short-time Fourier transform (STFT) and continuous wavelet transform (CWT). Nineteen healthy subjects (mean+/-SD age=24+/-4 years) performed two isometric maximal voluntary contractions (MVCs) before and after completing 2-3, 6-s isometric ramp contractions from 5% to 100% MVC with the right leg extensors. MMG and surface EMG signals were recorded from the VL and RF muscles. Time domains were represented as root mean squared amplitude values, and time-frequency representations were generated using the STFT and CWT. Polynomial regression analyses indicated cubic increases in MMG amplitude, MMG frequency, and EMG frequency, whereas EMG amplitude increased quadratically. From 5% to 24-28% MVC, MMG amplitude remained stable while MMG frequency increased. From 24-28% to 76-78% MVC, MMG amplitude increased rapidly while MMG frequency plateaued. From 76-78% to 100% MVC, MMG amplitude plateaued (VL) or decreased (RF) while MMG frequency increased. EMG amplitude increased while EMG frequency changed only marginally across the force spectrum with no clear deflection points. Overall, these findings suggested that MMG may offer more unique information regarding the interactions between motor unit recruitment and firing rate that control muscle force production during ramp contractions than traditional surface EMG. In addition, although the STFT frequency patterns were more pronounced than the CWT, both algorithms produced similar time-frequency representations for tracking changes in MMG or EMG frequency.  相似文献   

10.
The purpose of this study was to examine the patterns for the mechanomyographic (MMG) and electromyographic (EMG) amplitude and mean power frequency (MPF) vs. torque relationships during submaximal to maximal isometric and isokinetic muscle actions. Seven men (mean +/- SD age, 22.4 +/- 1.3 years) volunteered to perform isometric and concentric isokinetic leg extension muscle actions at 20, 40, 60, 80, and 100% of maximal voluntary contraction (MVC) and peak torque (PT) on a Cybex II dynamometer. A piezoelectric MMG recording sensor was placed between bipolar surface EMG electrodes on the vastus medialis. Polynomial regression and separate 1-way repeated-measures analysis of variance were used to analyze the EMG amplitude, MMG amplitude, EMG MPF, and MMG MPF data for the isometric and isokinetic muscle actions. For the isometric muscle actions, EMG amplitude (R(2) = 0.999) and MMG MPF (R(2) = 0.946) increased to MVC, mean MMG amplitude increased to 60% MVC and then plateaued, and mean EMG MPF did not change (p > 0.05) across torque levels. For the isokinetic muscle actions, EMG amplitude (R(2) = 0.988) and MMG amplitude (R(2) = 0.933) increased to PT, but there were no significant mean changes with torque for EMG MPF or MMG MPF. The different torque-related responses for EMG and MMG amplitude and MPF may reflect differences in the motor control strategies that modulate torque production for isometric vs. dynamic muscle actions. These results support the findings of others and suggest that isometric torque production was modulated by a combination of recruitment and firing rate, whereas dynamic torque production was modulated primarily through recruitment.  相似文献   

11.
The primary purpose of the present study was to compare the fast Fourier transform (FFT) with the discrete wavelet transform (DWT) for determining the mechanomyographic (MMG) and electromyographic (EMG) center frequency [mean power frequency (mpf), median frequency (mdf), or wavelet center frequency (cf)] patterns during fatiguing isokinetic muscle actions of the biceps brachii. Seven men (mean+/-SD age=23+/-3 years) volunteered to perform 50 consecutive maximal, concentric isokinetic muscle actions of the dominant forearm flexors at a velocity of 180 degrees s(-1). Non-parametric "run" tests indicated significant (p<0.05) trends in the MMG and EMG signals for the 5th, 25th, and 45th muscle actions for all subjects, thereby confirming non-stationarity of the MMG and EMG signals. There were significant (p<0.05) correlations among the average normalized mpf, mdf, and cf values for contractions 1-50 for both MMG (r=0.671-0.935) and EMG (r=0.956-0.987). Polynomial regression analyses demonstrated quadratic decreases in normalized MMG mpf (R2=0.439), MMG mdf (R2=0.258), MMG cf (R2=0.359), EMG mpf (R2=0.952), EMG mdf (R2=0.914) and EMG cf (R2=0.888) across repetitions. The primary finding of this study was the similarity in the mpf, mdf, and cf patterns for both MMG and EMG, which suggested that, despite the concerns over non-stationarity, Fourier based methods are acceptable for determining the patterns for normalized MMG and EMG center frequency during fatiguing dynamic muscle actions at moderate velocities.  相似文献   

12.
The aim of the present study was to elucidate the electrophysiological manifestations of selective fast motor unit (MU) activation by electrical stimulation (ES) of knee extensor muscles. In six male subjects, test contraction measurement at 40% maximal voluntary contraction (MVC) was performed before and at every 5 min (5, 10, 15 and 20 min) during 20-min low intensity intermittent exercise of either ES or voluntary contractions (VC) at 10% MVC (5-s isometric contraction and 5-s rest cycles). Both isolated intramuscular MU spikes obtained from three sets of bipolar fine-wire electrodes and surface electromyogram (EMG) were simultaneously recorded and were analyzed by means of a computer-aided intramuscular spike amplitude-frequency analysis and frequency power spectral analysis, respectively. Results indicated that mean MU spike amplitude, particularly those MUs with relatively large amplitude, was significantly reduced while those MUs with small spike amplitude increased their firing rate during the 40% MVC test contraction after the ES. This was accompanied by the increased amplitude of surface EMG (rmsEMG). However, no such significant changes in the intramuscular and surface EMGs were observed after VC. These findings indicated differential MU activation patterns in terms of MU recruitment and rate coding characteristics during ES and VC, respectively. Our data strongly suggest the possibility of "an inverse size principle" of MU recruitment during ES.  相似文献   

13.
The objective of this study was to examine the effect of joint angle on the electromyogram (EMG) and mechanomyogram (MMG) during maximal voluntary contraction (MVC). Eight subjects performed maximal isometric plantar flexor torque productions at varying knee and/or ankle angles. Maximal voluntary torque, EMG, and MMG from the soleus (Sol), medial (MG) and lateral gastrocnemius (LG) muscles were measured at different joint angles. At varying knee angles, the root mean squared (rms) MMG amplitude of the MG and LG increased with knee joint extension from 60 degrees to 180 degrees (full extension) in steps of 30 degrees, whereas that of the Sol was constant. At varying ankle angles, the rms-MMG of all muscles (Sol, MG, and LG) decreased with torque as ankle joint extending from 80 degrees (10 degrees dorsiflexion position) to 120 degrees (30 degrees plantar flexion position) in steps of 10 degrees. In each case, changes in the rms-MMG of the three muscles were almost parallel to those in torque. In contrast, there were no significant differences in the rms-EMG of all muscles among all joint angles. Our data suggest that the MMG amplitudes recorded from individual muscles during MVCs can represent relative torque-angle relationships that cannot be represented by the EMG signals.  相似文献   

14.
Although mechanomyography (MMG) reflects local vibrations from contracting muscle fibers, it also includes bulk movement: deformation in global soft tissue around measuring points. To distinguish between them, we compared the multi-channel MMG of resting muscle, which dominantly reflected the bulk movement caused by arterial pulsations, to that of the contracting muscle. The MMG signals were measured at five points around the upper arms of 10 male subjects during resting and during isometric ramp contraction from 5% to 85% of maximal voluntary contraction (MVC) of the biceps brachii muscle. The characteristics of bulk movement were defined as the amplitude distribution and phase relation among the five MMG signals. The bulk movement characteristics during the rest state were not necessarily the same among the subjects. However, below 30 Hz, each subject’s characteristics remained the same from the rest state (0% MVC) to the contracting state (80% MVC), at which the bulk movement mainly originates from muscle contraction activity. Results show that the MMG of the low frequency domain (<30 Hz) includes bulk movement depending on the mechanical deformation characteristics of each subject’s body, for a wide range of muscle contraction intensities.  相似文献   

15.
The purpose of this study was to describe and examine the variations in recruitment patterns of motor units (MUs) in biceps brachii (BB) through a range of joint motion during dynamic eccentric and concentric contractions. Twelve healthy participants (6 females, 6 males, age = 30 ± 8.5 years) performed concentric and eccentric contractions with constant external loading at different levels. Surface electromyography (EMG) and mechanomyography (MMG) were recorded from BB. The EMGs and MMGs were decomposed into their intensities in time–frequency space using a wavelet technique. The EMG and MMG spectra were then compared using principal component analysis. Variations in total intensity, first principal component (PCI), and the angle θ formed by first component (PCI) and second component (PCII) loading scores were explained in terms of MU recruitment patterns and elbow angles. Elbow angle had a significant effect on dynamic concentric and eccentric contractions. The EMG total intensity was greater for concentric than for eccentric contractions in the present study. MMG total intensity, however, was lower during concentric than during eccentric contractions. In addition, there was no significant difference in θ between concentric and eccentric contractions for both EMG and MMG. Selective recruitment of fast MUs from BB muscle during eccentric muscle contractions was not found in the present study.  相似文献   

16.
The purpose of this study was to investigate the influence of force tremor (FT) on the mechanomyogram (MMG) recorded by a condenser microphone (MIC) and an accelerometer (ACC) for the measurement of agonist and antagonist muscles during submaximal isometric contractions. Following determination of the isometric maximum voluntary contraction (MVC), 10 male subjects were asked to perform elbow flexion and extension at 20%, 40%, 60%, and 80% MVC. Surface electromyogram (EMG) and MMG of the biceps brachii (BB) and triceps brachii (TB) were recorded simultaneously using a MIC (MMG-(MIC)) and an ACC (MMG-(ACC)). We analyzed the root mean square (RMS) for all signals and compared the sum of the power spectrum amplitude (SPA) at 3-6 Hz and 8-12 Hz between the MMG-(MIC) and the MMG-(ACC). During elbow flexion and extension, the RMS of the EMG and the MMG-(MIC) of the agonist were significantly (p<0.05) higher than those of the antagonist in each contraction level. The RMS of the MMG-(ACC) of the antagonist showed no significant (p>0.05) difference from that of the agonist, or tended to be higher than the agonist. The SPA of the MMG-(MIC) of the agonist at 3-6 Hz and 8-12 Hz tended to be higher than the antagonist in elbow flexion and extension at each contraction level. The SPA of the MMG-(ACC) of the agonist and that of the antagonist showed no significant (p>0.05) difference, or the antagonist MMG-(ACC) tended to be higher than that of the agonist. These results suggest the MMG detected by a MIC appears to be less affected by FT than is the ACC because of its inherent characteristic to reduce FT in simultaneously evaluated agonist and antagonist muscles by means of MMG during submaximal isometric contraction.  相似文献   

17.
To investigate the behavior of mechanomyogram (MMG) and electromyogram (EMG) signals in the time and frequency domains during sustained isometric contraction, MMG and surface EMG were obtained simultaneously from four muscles: upper trapezius (TP), anterior deltoid (DL), biceps brachii (BB), and brachioradialis (BR) of 10 healthy male subjects. Experimental conditions consisted of 27 combinations of 9 postures [3 shoulder angles (SA): 0 degree, 30 degrees, 60 degrees and 3 elbow angles (EA): 120 degrees, 90 degrees, 60 degrees] and 3 contraction levels: 20%, 40%, and 60% of maximum voluntary contraction (MVC). Subjective evaluations of fatigue were also assessed using the Borg scale at intervals of 60, 30, and 10 sec at 20%, 40%, and 60% MVC tests, respectively. The mean power frequency (MPF) and root mean square (RMS) of both signals were calculated. The current study found clear and significant relationships among physiological and psychological parameters on the one hand and SA and EA on the other. EA's effect on MVC was found to be significant. SA had a highly significant effect on both endurance time and Borg scale. In all experimental conditions, significant correlations were found between the changes in MPF and RMS of EMG in BB with SA and EA (or muscle length). In all four muscles, MMG frequency content was two or three times lower than EMG frequency content. During sustained isometric contraction, the EMG signal showed the well-known shift to lower frequencies (a continuous decrease from onset to completion of the contraction). In contrast, the MMG spectra did not show any shift, although its form changed (generally remaining about constant). Throughout the contraction, increased RMS of EMG was found for all tests, whereas in the MMG signal, a significant progressive increase in RMS was observed only at 20% MVC in all four muscles. This supports the hypothesis that the RMS amplitude of the MMG signal produced during contraction is highly correlated with force production. Possible explanations for this behavioral difference between the MMG and EMG signals are discussed.  相似文献   

18.
Twelve male subjects were tested to determine the relationship between motor unit (MU) activities and surface electromyogram (EMG) power spectral parameters with contractions increasing linearly from zero to 80% of maximal voluntary contraction (MVC). Intramuscular spike and surface EMG signals recorded simultaneously from biceps brachii were analyzed by means of a computer-aided intramuscular MU spike amplitude-frequency (ISAF) histogram and an EMG frequency power spectral analysis. All measurements were made in triplicate and averaged. Results indicate that there were highly significant increases in surface EMG amplitude (71 +/- 31.3 to 505 +/- 188 microV, p less than 0.01) and mean power frequency (89 +/- 13.3 to 123 +/- 23.5 Hz, p less than 0.01) with increasing force. These changes were accompanied by progressive increases in the firing frequency of MU's initially recruited, and of newly recruited MU's with relatively larger spike amplitudes. The group data in the ISAF histograms revealed significant increases in mean spike amplitude (412 +/- 79 to 972 +/- 117 microV, p less than 0.01) and mean firing frequency (17.8 +/- 5.4 to 24.7 +/- 4.1 Hz, p less than 0.01). These data suggest that surface EMG spectral analysis can provide a sensitive measure of the relative changes in MU activity during increasing force output.  相似文献   

19.
The purpose of the study was to examine the potential for using the mechanomyographic (MMG) signal as a biofeedback method to enhance muscular relaxation and to improve performance during forearm flexion repetitions to fatigue. Twelve adult (mean +/- SD; age: 22.0 +/- 1.1 years) moderately trained subjects (weight: 82.3 +/- 29.2 kg; height: 165.7 +/- 49.0 cm) were instructed to relax the biceps brachii muscle using MMG biofeedback (BIO) provided by viewing a computer screen graphically displaying the MMG signal and then without using MMG biofeedback (NOBIO). Electromyographic (EMG) and MMG signals were detected midway over the biceps brachii during the relaxation protocol. In subsequent visits to the laboratory, subjects performed as many repetitions as possible at 85% of 1 repetition maximum with BIO and NOBIO using the seated preacher curl exercise. Two-way (biofeedback x gender) mixed factorial analyses of variance revealed significantly (p < 0.05) lower MMG (mean +/- SEM; BIO = 0.6 +/- 0.1 mV; NOBIO = 1.1 +/- 0.2 mV) and EMG amplitudes (BIO = 6.6 +/- 0.6 microV; NOBIO = 9.4 +/- 1.4 microV) for BIO when subjects were instructed to relax the biceps brachii muscle. There was no significant difference in the number of forearm flexion repetitions performed for BIO (mean +/- SD; 7.9 +/- 0.4 reps) vs. NOBIO (8.1 +/- 0.6 reps). The results of the present study revealed that using MMG as a biofeedback technique can enhance the development of muscle relaxation, but is not useful in delaying fatigue during forearm flexion repetitions. Our results may have been influenced by a relatively short training phase designed to teach subjects to use the MMG signal as a biofeedback method. Future studies are needed to determine whether MMG biofeedback can be used for other purposes. If MMG is found to be useful as a biofeedback method, it has some distinct practical advantages over EMG that the strength and conditioning athlete and professional may find appealing.  相似文献   

20.
Intramuscular and surface electromyogram changes during muscle fatigue   总被引:9,自引:0,他引:9  
Twelve male subjects were tested to determine the effects of motor unit (MU) recruitment and firing frequency on the surface electromyogram (EMG) frequency power spectra during sustained maximal voluntary contraction (MVC) and 50% MVC of the biceps brachii muscle. Both the intramuscular MU spikes and surface EMG were recorded simultaneously and analyzed by means of a computer-aided intramuscular spike amplitude-frequency histogram and frequency power spectral analysis, respectively. Results indicated that both mean power frequency (MPF) and amplitude (rmsEMG) of the surface EMG fell significantly (P less than 0.001) together with a progressive reduction in MU spike amplitude and firing frequency during sustained MVC. During 50% MVC there was a significant decline in MPF (P less than 0.001), but this decline was accompanied by a significant increase in rmsEMG (P less than 0.001) and a progressive MU recruitment as evidenced by an increased number of MUs with relatively large spike amplitude. Our data suggest that the surface EMG amplitude could better represent the underlying MU activity during muscle fatigue and the frequency powers spectral shift may or may not reflect changes in MU recruitment and rate-coding patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号