首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feng J  Goswami S  Howell EE 《Biochemistry》2008,47(2):555-565
R67 dihydrofolate reductase (DHFR) bears no sequence or structural homologies with chromosomal DHFRs. The gene for this enzyme produces subunits that are 78 amino acids long, which assemble into a homotetramer possessing 222 symmetry. More recently, a tandem array of four gene copies linked in-frame was constructed, which produces a monomer containing 312 amino acids named Quad3. Asymmetric mutations in Quad3 have also been constructed to probe the role of Q67 and K32 residues in catalysis. This present study mixes and matches mutations to determine if the Q67H mutation, which tightens binding approximately 100-fold to both dihydrofolate (DHF) and NADPH, can help rescue the K32M mutation. While the latter mutation weakens DHF binding over 60-fold, it concurrently increases kcat by a factor of 5. Two Q67H mutations were added to gene copies 1 and 4 in conjunction with the K32M mutation in gene copies 1 and 3. Addition of these Q67H mutations tightens binding 40-fold, and the catalytic efficiency (kcat/Km(DHF)) of the resulting protein is similar to that of Quad3. Since these Q67H mutations can mostly compensate for the K32M lesion, K32 must not be necessary for DHF binding. Another multimutant combines the K32M mutation in gene copies 1 and 3 with the Q67H mutation in all gene copies. This mutant is inhibited by DHF but not NADPH, indicating that NADPH binds only to the wild type half of the pore, while DHF can bind to either the wild type or mutant half of the pore. This inhibition pattern contrasts with the mutant containing only the Q67H substitution in all four gene copies, which is severely inhibited by both NADPH and substrate. Since gene duplication and divergence are evolutionary tools for gaining function, these constructs are a first step toward building preferences for NADPH and DHF in each half of the active site pore of this primitive enzyme.  相似文献   

2.
Hicks SN  Smiley RD  Hamilton JB  Howell EE 《Biochemistry》2003,42(36):10569-10578
R67 dihydrofolate reductase (DHFR), which catalyzes the NADPH dependent reduction of dihydrofolate to tetrahydrofolate, belongs to a type II family of R-plasmid encoded DHFRs that confer resistance to the antibacterial drug trimethoprim. Crystal structure data reveals this enzyme is a homotetramer that possesses a single active site pore. Only two charged residues in each monomer are located near the pore, K32 and K33. Site-directed mutants were constructed to probe the role of these residues in ligand binding and/or catalysis. As a result of the 222 symmetry of this enzyme, mutagenesis of one residue results in modification at four related sites. All mutants at K32 affected the quaternary structure, producing an inactive dimer. The K33M mutant shows only a 2-4-fold effect on K(m) values. Salt effects on ligand binding and catalysis for K33M and wildtype R67 DHFRs were investigated to determine if these lysines are involved in forming ionic interactions with the negatively charged substrates, dihydrofolate (overall charge of -2) and NADPH (overall charge of -3). Binding studies indicate that two ionic interactions occur between NADPH and R67 DHFR. In contrast, the binding of folate, a poor substrate, to R67 DHFR.NADPH appears weak as a titration in enthalpy is lost at low ionic strength. Steady-state kinetic studies for both wild type (wt) and K33M R67 DHFRs also support a strong electrostatic interaction between NADPH and the enzyme. Interestingly, quantitation of the observed salt effects by measuring the slopes of the log of ionic strength versus the log of k(cat)/K(m) plots indicates that only one ionic interaction is involved in forming the transition state. These data support a model where two ionic interactions are formed between NADPH and symmetry related K32 residues in the ground state. To reach the transition state, an ionic interaction between K32 and the pyrophosphate bridge is broken. This unusual scenario likely arises from the constraints imposed by the 222 symmetry of the enzyme.  相似文献   

3.
R67 dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate using NADPH as a cofactor. This enzyme is a homotetramer possessing 222 symmetry, and a single active site pore traverses the length of the protein. A promiscuous binding surface can accommodate either DHF or NADPH, thus two nonproductive complexes can form (2NADPH or 2DHF) as well as a productive complex (NADPH.DHF). The role of water in binding was monitored using a number of different osmolytes. From isothermal titration calorimetry (ITC) studies, binding of NADPH is accompanied by the net release of 38 water molecules. In contrast, from both steady state kinetics and ITC studies, binding of DHF is accompanied by the net uptake of water. Although different osmolytes have similar effects on NADPH binding, variable results are observed when DHF binding is probed. Sensitivity to water activity can also be probed by an in vivo selection using the antibacterial drug, trimethoprim, where the water content of the media is decreased by increasing concentrations of sorbitol. The ability of wild type and mutant clones of R67 DHFR to allow host Escherichia coli to grow in the presence of trimethoprim plus added sorbitol parallels the catalytic efficiency of the DHFR clones, indicating water content strongly correlates with the in vivo function of R67 DHFR.  相似文献   

4.
Smiley RD  Stinnett LG  Saxton AM  Howell EE 《Biochemistry》2002,41(52):15664-15675
R67 dihydrofolate reductase (DHFR) is an enzyme, encoded by an R-plasmid, that confers resistance to the antibacterial agent trimethoprim. This homotetramer possesses a single active site pore and exact 222 symmetry. The symmetry imposes constraints on the ability of the enzyme to optimize binding of the substrate, dihydrofolate (DHF), and the cofactor, NADPH, resulting in a "one site fits both ligands" approach. This approach allows formation of either a NADPH.NADPH, dihydrofolate.dihydrofolate, or NADPH.dihydrofolate complex. The first two complexes are nonproductive, while the third is the productive catalytic species. To break the symmetry of the active site, a tandem array of four R67 DHFR genes has been linked in frame, allowing individual manipulation of each gene copy. Various numbers and combinations of asymmetric Q67H mutations have been engineered into the tandem gene array. The Q67H mutation was chosen for investigation as it was previously found to tighten binding to both dihydrofolate and NADPH by approximately 100-fold in homotetrameric R67 DHFR [Park, H., Bradrick, T. D., and Howell, E. E. (1997) Protein Eng. 10, 1415-1424]. Nonadditive effects on ligand binding are observed when one to four mutations are inserted, indicating either conformational changes in the protein or different cooperativity patterns in the ligand-ligand interactions. From steady state kinetics, addition of Q67H mutations does not drastically affect formation of the NADPH.dihydrofolate complex; however, a large energy difference between the productive and nonproductive complexes is no longer maintained. A role for Q67 in discriminating between these various states is proposed. Since theories of protein evolution suggest gene duplication followed by accumulation of mutations can lead to divergence of activity, this study is a first step toward asking if introduction of asymmetric mutations in the quadrupled R67 DHFR gene can lead to optimization of ligand binding sites.  相似文献   

5.
R67 dihydrofolate reductase (DHFR) shares no sequence or structural homology with chromosomal DHFRs. This enzyme arose recently in response to the clinical use of the antibacterial drug trimethoprim. R67 DHFR is a homotetramer possessing a single active site pore. A high-resolution crystal structure shows the homotetramer possesses exact 222 symmetry [Narayana, N., et al. (1995) Nat. Struct. Biol. 2, 1018-1025]. This symmetry dictates four symmetry-related binding sites must exist for each substrate as well as each cofactor. Isothermal titration calorimetry studies, however, indicate only two molecules bind: either two dihydrofolate molecules, two NADPH molecules, or one substrate and one cofactor [Bradrick, T. D., et al. (1996) Biochemistry 35, 11414-11424]. The latter is the productive ternary complex. To evaluate the role of S65, Q67, I68, and Y69 residues, located near the center of the active site pore, site-directed mutagenesis was performed. One mutation in the gene creates four mutations per active site pore which typically result in large cumulative effects. Steady state kinetic data indicate the mutants have altered K(m) values for both cofactor and substrate. For example, the Y69F R67 DHFR displays an 8-fold increase in the K(m) for dihydrofolate and a 20-fold increase in the K(m) for NADPH. Residues involved in ligand binding in R67 DHFR display very little, if any, specificity, consistent with their possessing dual roles in binding. These results support a model where R67 DHFR utilizes an unusual "hot spot" binding surface capable of binding both ligands and indicate this enzyme has adopted a novel yet simple approach to catalysis.  相似文献   

6.
R67 dihydrofolate reductase (DHFR) is a novel protein that possesses 222 symmetry. A single active site pore traverses the length of the homotetramer. Although the 222 symmetry implies that four symmetry-related binding sites should exist for each substrate as well as each cofactor, isothermal titration calorimetry (ITC) studies indicate only two molecules bind. Three possible combinations include two dihydrofolate molecules, two NADPH molecules, or one substrate with one cofactor. The latter is the productive ternary complex. To evaluate the roles of A36, Y46, T51, G64, and V66 residues in binding and catalysis, a site-directed mutagenesis approach was employed. One mutation per gene produces four mutations per active site pore, which often result in large cumulative effects. Conservative mutations at these positions either eliminate the ability of the gene to confer trimethoprim resistance or have no effect on catalysis. This result, in conjunction with previous mutagenesis studies on K32, K33, S65, Q67, I68, and Y69 [Strader, M. B., et al. (2001) Biochemistry 40, 11344-11352; Hicks, S. N., et al. (2003) Biochemistry 42, 10569-10578; Park, H., et al. (1997) Protein Eng. 10, 1415-1424], allows mapping of the active site surface. Residues for which conservative mutations have large effects on binding and catalysis include K32, Q67, I68, and Y69. These residues form a stripe that establishes the ligand binding surface. Residues that accommodate conservative mutations that do not greatly affect catalysis include K33, Y46, T51, S65, and V66. Isothermal titration calorimetry studies were also conducted on many of the mutants described above to determine the enthalpy of folate binding to the R67 DHFR.NADPH complex. A linear correlation between this DeltaH value and log k(cat)/K(m) is observed. Since structural tightness appears to be correlated with the exothermicity of the binding interaction, this leads to the hypothesis that enthalpy-driven formation of the ternary complex in these R67 DHFR variants plays a strong role in catalysis. Use of the alternate cofactor, NADH, extends this correlation, indicating preorganization of the ternary complex determines the efficiency of the reaction. This hypothesis is consistent with data suggesting R67 DHFR uses an endo transition state (where the nicotinamide ring of cofactor overlaps the more bulky side of the substrate's pteridine ring).  相似文献   

7.
R67 dihydrofolate reductase (R67 DHFR) catalyzes the transfer of a hydride ion from NADPH to dihydrofolate, generating tetrahydrofolate. The homotetrameric enzyme provides a unique environment for catalysis as both ligands bind within a single active site pore possessing 222 symmetry. Mutation of one active site residue results in concurrent mutation of three additional symmetry-related residues, causing large effects on binding of both ligands as well as catalysis. For example, mutation of symmetry-related tyrosine 69 residues to phenylalanine (Y69F), results in large increases in Km values for both ligands and a 2-fold rise in the kcat value for the reaction (Strader, M. B., Smiley, R. D., Stinnett, L. G., VerBerkmoes, N. C., and Howell, E. E. (2001) Biochemistry 40, 11344-11352). To understand the interactions between specific Tyr-69 residues and each ligand, asymmetric Y69F mutants were generated that contain one to four Y69F mutations. A general trend observed from isothermal titration calorimetry and steady-state kinetic studies of these asymmetric mutants is that increasing the number of Y69F mutations results in an increase in the Kd and Km values. In addition, a comparison of steady-state kinetic values suggests that two Tyr-69 residues in one half of the active site pore are necessary for NADPH to exhibit a wild-type Km value. A tyrosine 69 to leucine mutant was also generated to approach the type(s) of interaction(s) occurring between Tyr-69 residues and the ligands. These studies suggest that the hydroxyl group of Tyr-69 is important for interactions with NADPH, whereas both the hydroxyl group and hydrophobic ring atoms of the Tyr-69 residues are necessary for proper interactions with dihydrofolate.  相似文献   

8.
Human dihydrofolate reductase-like 1 (DHFRL1) has been identified as a second human dihydrofolate reductase (DHFR) enzyme. Although DHFRL1 have high sequence homology with human DHFR, dihydrofolate (DHF) exhibits a lowered binding affinity to DHFRL1 and the corresponding molecular mechanism is still unknown. To address this question, we studied the binding of DHF to DHFRL1 and DHFR by using molecular dynamics simulation. Moreover, to investigate the role the 24th residue of DHFR/DHFRL1 plays in DHF binding, R24W DHFRL1 mutant was also studied. The van der Waals interaction are more crucial for the total DHF binding energies, while the difference between the DHF binding energies of human DHFR and DHFRL1 can be attributed to the electrostatic interaction and the polar desolvation free energy. More specifically, lower DHF affinity to DHFRL1 can be mainly attributed to the reduction of net electrostatic interactions of residues Arg32 and Gln35 of DHFRL1 with DHF as being affected by Arg24. The side chain of Arg24 in DHFRL1 can extend deeply into the binding sites of DHF and NADPH, and disturb the DHF binding by steric effect, which rarely happens in human DHFR and R24W DHFRL1 mutant. Additionally, the conformation of loop I in DHFRL1 was also studied in this work. Interestingly, the loop conformation resemble to normal closed state of Escherichia coli DHFR other than the closed state of human DHFR. We hope this work will be useful to understand the general characteristics of DHFRL1.  相似文献   

9.
Chopra S  Lynch R  Kim SH  Jackson M  Howell EE 《Biochemistry》2006,45(21):6596-6605
R67 dihydrofolate reductase (DHFR) is a novel homotetrameric protein that possesses 222 symmetry and a single, voluminous active site pore. This symmetry poses numerous limitations on catalysis; for example, two dihydrofolate (DHF) molecules or two NADPH molecules, or one substrate plus one cofactor can bind. Only the latter combination leads to catalysis. To garner additional information on how this enzyme facilitates transition-state formation, the temperature dependence of binding and catalysis was monitored. The binding of NADPH and DHF is enthalpy-driven. Previous primary isotope effect studies indicate hydride transfer is at least partially rate-determining. Accordingly, the activation energy associated with transition-state formation was measured and is found to be 6.9 kcal/mol (DeltaH(++)(25) = 6.3 kcal/mol). A large entropic component is also found associated with catalysis, TDeltaS(++)(25) = -11.3 kcal/mol. The poor substrate, dihydropteroate, binds more weakly than dihydrofolate (DeltaDeltaG = 1.4 kcal/mol) and displays a large loss in the binding enthalpy value (DeltaDeltaH = 3.8 kcal/mol). The k(cat) value for dihydropteroate reduction is decreased 1600-fold compared to DHF usage. This effect appears to derive mostly from the DeltaDeltaH difference in binding, demonstrating that the glutamate tail is important for catalysis. This result is surprising, as the para-aminobenzoyl-glutamate tail of DHF has been previously shown to be disordered by both NMR and crystallography studies. Viscosity studies were also performed and confirmed that the hydride transfer rate is not sensitive to sucrose addition. Surprisingly, binding of DHF, by both K(m) and K(d) determination, was found to be sensitive to added viscogens, suggesting a role for water in DHF binding.  相似文献   

10.
R67 is a Type II dihydrofolate reductase (DHFR) that catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate by facilitating the addition of a proton to N5 of DHF and the transfer of a hydride ion from NADPH to C6. Because this enzyme is a plasmid-encoded DHFR from trimethoprim-resistant bacteria, extensive studies on R67 with various methods have been performed to elucidate its reaction mechanism. Here, Raman difference measurements, conducted on the ternary complex of R67.NADP(+).DHF believed to be an accurate mimic of the productive DHFR.NADPH.DHF complex, show that the pK(a) of N5 in the complex is less than 4. This is in clear contrast to the behavior observed in Escherichia coli DHFR, a substantially more efficient enzyme, where the pK(a) of bound DHF at N5 is increased to 6.5 compared with its solution value of 2.6. A comparison of the ternary complexes in R67 and E. coli DHFRs suggests that enzymic raising of the pK(a) at N5 can significantly increase the catalytic efficiency of the hydride transfer step. However, R67 shows that even without such a strategy an effective DHFR can still be designed.  相似文献   

11.
Plasmid-encoded bacterial R67 dihydrofolate reductase (DHFR) is a NADPH-dependent enzyme unrelated to chromosomal DHFR in amino acid sequence and structure. R67 DHFR is insensitive to the bacterial drug trimethoprim in contrast to chromosomal DHFR. The crystal structure of Q67H mutant of R67 DHFR bound to NADP(+) has been determined at 1.15 angstroms resolution. The cofactor assumes an extended conformation with the nicotinamide ring bound near the center of the active site pore, the ribose and pyrophosphate group (PP(i)) extending toward the outer pore. The ribonicotinamide exhibits anti conformation as in chromosomal DHFR complexes. The relative orientation between the PP(i) and the nicotinamide ribose differs from that observed in chromosomal DHFR-NADP(+) complexes. The coenzyme displays symmetrical binding mode with several water-mediated hydrogen bonds with the protein besides ionic, stacking, and van der Waals interactions. The structure provides a molecular basis for the observed stoichiometry and cooperativity in ligand binding. The ternary model based on the present structure and the previous R67 DHFR-folate complex provides insight into the catalytic mechanism and indicates that the relative orientation of the reactants in plasmid DHFR is different from that seen in chromosomal DHFRs.  相似文献   

12.
E E Howell  C Booth  M Farnum  J Kraut  M S Warren 《Biochemistry》1990,29(37):8561-8569
The adaptability of Escherichia coli dihydrofolate reductase (DHFR) is being explored by identifying second-site mutations that can partially suppress the deleterious effect associated with removal of the active-site proton donor aspartic acid-27. The Asp27----serine mutant DHFR (D27S) was previously characterized and the catalytic activity found to be greatly decreased at pH 7.0 [Howell et al. (1986) Science 231, 1123-1128]. Using resistance to trimethoprim (a DHFR inhibitor) in a genetic selection procedure, we have isolated a double-mutant DHFR gene containing Asp27----Ser and Phe137----Ser mutations (D27S+F137S). The presence of the F137S mutation increases kcat approximately 3-fold and decreases Km(DHF) approximately 2-fold over D27S DHFR values. The overall effect on kcat/Km(DHF) is a 7-fold increase. The D27S+F137S double-mutant DHFR is still 500-fold less active than wild-type DHFR at pH 7. Surprisingly, Phe137 is approximately 15 A from residue 27 in the active site and is part of a beta-bulge. We propose the F137S mutation likely causes its catalytic effect by slightly altering the conformation of D27S DHFR. This supposition is supported by the observation that the F137S mutation does not have the same kinetic effect when introduced into the wild-type and D27S DHFRs, by the altered distribution of two conformers of free enzyme [see Dunn et al. (1990)] and by a preliminary difference Fourier map comparing the D27S and D27S+F137S DHFR crystal structures.  相似文献   

13.
Krahn JM  Jackson MR  DeRose EF  Howell EE  London RE 《Biochemistry》2007,46(51):14878-14888
Type II dihydrofolate reductase (DHFR) is a plasmid-encoded enzyme that confers resistance to bacterial DHFR-targeted antifolate drugs. It forms a symmetric homotetramer with a central pore which functions as the active site. Its unusual structure, which results in a promiscuous binding surface that accommodates either the dihydrofolate (DHF) substrate or the NADPH cofactor, has constituted a significant limitation to efforts to understand its substrate specificity and reaction mechanism. We describe here the first structure of a ternary R67 DHFR.DHF.NADP+ catalytic complex, resolved to 1.26 A. This structure provides the first clear picture of how this enzyme, which lacks the active site carboxyl residue that is ubiquitous in Type I DHFRs, is able to function. In the catalytic complex, the polar backbone atoms of two symmetry-related I68 residues provide recognition motifs that interact with the carboxamide on the nicotinamide ring, and the N3-O4 amide function on the pteridine ring. This set of interactions orients the aromatic rings of substrate and cofactor in a relative endo geometry in which the reactive centers are held in close proximity. Additionally, a central, hydrogen-bonded network consisting of two pairs of Y69-Q67-Q67'-Y69' residues provides an unusually tight interface, which appears to serve as a "molecular clamp" holding the substrates in place in an orientation conducive to hydride transfer. In addition to providing the first clear insight regarding how this extremely unusual enzyme is able to function, the structure of the ternary complex provides general insights into how a mutationally challenged enzyme, i.e., an enzyme whose evolution is restricted to four-residues-at-a-time active site mutations, overcomes this fundamental limitation.  相似文献   

14.
We have applied site-directed mutagenesis methods to change the conserved tryptophan-22 in the substrate binding site of Escherichia coli dihydrofolate reductase to phenylalanine (W22F) and histidine (W22H). The crystal structure of the W22F mutant in a binary complex with the inhibitor methotrexate has been refined at 1.9-A resolution. The W22F difference Fourier map and least-squares refinement show that structural effects of the mutation are confined to the immediate vicinity of position 22 and include an unanticipated 0.4-A movement of the methionine-20 side chain. A conserved bound water-403, suspected to play a role in the protonation of substrate DHF, has not been displaced by the mutation despite the loss of a hydrogen bond with tryptophan-22. Steady-state kinetics, stopped-flow kinetics, and primary isotope effects indicate that both mutations increase the rate of product tetrahydrofolate release, the rate-limiting step in the case of the wild-type enzyme, while slowing the rate of hydride transfer to the point where it now becomes at least partially rate determining. Steady-state kinetics show that below pH 6.8, kcat is elevated by up to 5-fold in the W22F mutant as compared with the wild-type enzyme, although kcat/Km(dihydrofolate) is lower throughout the observed pH range. For the W22H mutant, both kcat and kcat/Km(dihydrofolate) are substantially lower than the corresponding wild-type values. While both mutations weaken dihydrofolate binding, cofactor NADPH binding is not significantly altered. Fitting of the kinetic pH profiles to a general protonation scheme suggests that the proton affinity of dihydrofolate may be enhanced upon binding to the enzyme. We suggest that the function of tryptophan-22 may be to properly position the side chain of methionine-20 with respect to N5 of the substrate dihydrofolate.  相似文献   

15.
L J Reece  R Nichols  R C Ogden  E E Howell 《Biochemistry》1991,30(45):10895-10904
R67 dihydrofolate reductase (DHFR) is a novel protein that provides clinical resistance to the antibacterial drug trimethoprim. The crystal structure of a dimeric form of R67 DHFR indicates the first 16 amino acids are disordered [Matthews et al. (1986) Biochemistry 25, 4194-4204]. To investigate whether these amino acids are necessary for protein function, the first 16 N-terminal residues have been cleaved off by chymotrypsin. The truncated protein is fully active with kcat = 1.3 s-1, Km(NADPH) = 3.0 microM, and Km(dihydrofolate) = 5.8 microM. This result suggests the functional core of the protein resides in the beta-barrel structure defined by residues 27-78. To study this protein further, synthetic genes coding for full-length and truncated R67 DHFRs were constructed. Surprisingly, the gene coding for truncated R67 DHFR does not produce protein in vivo or confer trimethoprim resistance upon Escherichia coli. Therefore, the relative stabilities of native and truncated R67 DHFR were investigated by equilibrium unfolding studies. Unfolding of dimeric native R67 DHFR is protein concentration dependent and can be described by a two-state model involving native dimer and unfolded monomer. Using absorbance, fluorescence, and circular dichroism techniques, an average delta GH2O of 13.9 kcal mol-1 is found for native R67 DHFR. In contrast, an average delta GH2O of 11.3 kcal mol-1 is observed for truncated R67 DHFR. These results indicate native R67 DHFR is 2.6 kcal mol-1 more stable than truncated protein. This stability difference may be part of the reason why protein from the truncated gene is not found in vivo in E. coli.  相似文献   

16.
The human fatty-acid synthase (HFAS) is a potential target for anti-tumor drug discovery. As a prelude to the design of compounds that target the enoyl reductase (ER) component of HFAS, the recognition of NADPH and exogenous substrates by the ER active site has been investigated. Previous studies demonstrate that modification of Lys-1699 by pyridoxal 5'-phosphate results in a specific decrease in ER activity. For the overall HFAS reaction, the K1699A and K1699Q mutations reduced kcat and kcat/KNADPH by 8- and 600-fold, respectively (where KNADPH indicates the Km value for NADPH). Thus, Lys-1699 contributes 4 kcal/mol to stabilization of the rate-limiting transition state following NADPH binding, while also stabilizing the most stable ground state after NADPH binding by 3 kcal/mol. A similar effect of the mutations on the ER partial reaction was observed, in agreement with the proposal that Lys-1699 is located in the ER NADPH-binding site. Most unexpectedly, however, both kcat and kcat/KNADPH for the beta-ketoacyl reductase (BKR) reaction were also impacted by the Lys-1699 mutations, raising the possibility that the ER and BKR activities share a single active site. However, based on previous data indicating that the two reductase activities utilize distinct cofactor binding sites, mutagenesis of Lys-1699 is hypothesized to modulate BKR activity via allosteric effects between the ER and BKR NADPH sites.  相似文献   

17.
Chromosomal dihydrofolate reductase from Escherichia coli catalyzes the reduction of dihydrofolate to tetrahydrofolate using NADPH as a cofactor. The thermodynamics of ligand binding were examined using an isothermal titration calorimetry approach. Using buffers with different heats of ionization, zero to a small, fractional proton release was observed for dihydrofolate binding, while a proton was released upon NADP(+) binding. The role of water in binding was additionally monitored using a number of different osmolytes. Binding of NADP(+) is accompanied by the net release of ~5-24 water molecules, with a dependence on the identity of the osmolyte. In contrast, binding of dihydrofolate is weakened in the presence of osmolytes, consistent with "water uptake". Different effects are observed depending on the identity of the osmolyte. The net uptake of water upon dihydrofolate binding was previously observed in the nonhomologous R67-encoded dihydrofolate reductase (dfrB or type II enzyme) [Chopra, S., et al. (2008) J. Biol. Chem. 283, 4690-4698]. As R67 dihydrofolate reductase possesses a nonhomologous sequence and forms a tetrameric structure with a single active site pore, the observation of weaker DHF binding in the presence of osmolytes in both enzymes implicates cosolvent effects on free dihydrofolate. Consistent with this analysis, stopped flow experiments find betaine mostly affects DHF binding via changes in k(on), while betaine mostly affects NADPH binding via changes in k(off). Finally, nonadditive enthalpy terms when binary and ternary cofactor binding events are compared suggest the presence of long-lived conformational transitions that are not included in a simple thermodynamic cycle.  相似文献   

18.
R67 dihydrofolate reductase (DHFR) is a novel bacterial protein that possesses 222 symmetry and a single active site pore. Although the 222 symmetry implies that four symmetry-related binding sites must exist for each substrate as well as for each cofactor, various studies indicate only two molecules bind. Three possible combinations include two dihydrofolate molecules, two NADPH molecules, or one substrate plus one cofactor. The latter is the productive ternary complex. To explore the role of various ligand substituents during binding, numerous analogues, inhibitors, and fragments of NADPH and/or folate were used in both isothermal titration calorimetry (ITC) and K(i) studies. Not surprisingly, as the length of the molecule is shortened, affinity is lost, indicating that ligand connectivity is important in binding. The observed enthalpy change in ITC measurements arises from all components involved in the binding process, including proton uptake. As a buffer dependence for binding of folate was observed, this likely correlates with perturbation of the bound N3 pK(a), such that a neutral pteridine ring is preferred for pairwise interaction with the protein. Of interest, there is no enthalpic signal for binding of folate fragments such as dihydrobiopterin where the p-aminobenzoylglutamate tail has been removed, pointing to the tail as providing most of the enthalpic signal. For binding of NADPH and its analogues, the nicotinamide carboxamide is quite important. Differences between binary (binding of two identical ligands) and ternary complex formation are observed, indicating interligand pairing preferences. For example, while aminopterin and methotrexate both form binary complexes, albeit weakly, neither readily forms ternary complexes with the cofactor. These observations suggest a role for the O4 atom of folate in a pairing preference with NADPH, which ultimately facilitates catalysis.  相似文献   

19.
Type II dihydrofolate reductases (DHFRs) encoded by the R67 and R388 plasmids are sequence and structurally different from known chromosomal DHFRs. These plasmid-derived DHFRs are responsible for confering trimethoprim resistance to the host strain. A derivative of R388 DHFR, RBG200, has been cloned and its physical properties have been characterized. This enzyme has been shown to transfer the pro-R hydrogen of NADPH to its substrate, dihydrofolate, making it a member of the A-stereospecific class of dehydrogenases [Brito, R. M. M., Reddick, R., Bennett, G. N., Rudolph, F. B., & Rosevear, P. R. (1990) Biochemistry 29,9825]. Two distinct binary RBG200.NADP+ complexes were detected. Addition of NADP+ to RBG200 DHFR results in formation of an initial binary complex, conformation I, which slowly interconverts to a second more stable binary complex, conformation II. The binding of NADP+ to RBG200 DHFR in the second binary complex was found to be weak, KD = 1.9 +/- 0.4 mM. Transferred NOEs were used to determine the conformation of NADP+ bound to RBG200 DHFR. The initial slope of the NOE buildup curves, measured from the intensity of the cross-peaks as a function of the mixing time in NOESY spectra, allowed interproton distances on enzyme-bound NADP+ to be estimated. The experimentally measured distances were used to define upper and lower bound distance constraints between proton pairs in distance geometry calculations. All NADP+ structures consistent with the experimental distance bounds were found to have a syn conformation about the nicotinamide-ribose (X = 94 +/- 26 degrees) and an anti conformation about the adenine-ribose (X = -92 +/- 32 degrees) glycosidic bonds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The variable residue Leu-28 of Escherichia coli dihydrofolate reductase (DHFR) and the corresponding residue Phe-31 in murine DHFR were interchanged, and the impact on catalysis was evaluated by steady-state and pre-steady-state analysis. The E. coli L28F mutant increased the pH-independent kcat from 11 to 50 s-1 but had little effect on Km(H2F). An increase in the rate constant for dissociation of H4F from E.H4F.NH (from 12 to 80 s-1) was found to be largely responsible for the increase in kcat. Unexpectedly, the rate constant for hydride transfer increased from 950 to 4000 s-1 with little perturbation of NADPH and NADP+ binding to E. Consequently, the flux efficiency of the E. coli L28F mutant rose from 15% to 48% and suggests a role in genetic selection for this variable side chain. The murine F31L mutant decreased the pH-independent kcat from 28 to 4.8 s-1 but had little effect on Km(H2F). A decrease in the rate constant for dissociation of H4F from E.H4F.NH (from 40 to 22 s-1) and E.H4F (from 15 to 0.4 s-1) was found to be mainly responsible for the decrease in kcat. The rate constant for hydride transfer decreased from 9000 to 5000 s-1 with minor perturbation of NADPH binding. Thus, the free energy differences along the kinetic pathway were generally similar in magnitude but opposite in direction to those incurred by the E. coli L28F mutant. This conclusion implies that DHFR hydrophobic active-site side chains impart their characteristics individually and not collectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号