首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium filling of sarcoplasmic reticulum vesicles in the steady state is greatly increased by precipitation of lumenal calcium with oxalate. We find that low concentrations (1 mM) of Pi also allow greater loading by forming a soluble complex with lumenal calcium, an effect that is likely to be of physiological relevance. Furthermore, ADP scavenging by ATP regenerating systems favors calcium loading by preventing reversal of the pump. We also find that uncoupling of ATPase and transport activities is another factor limiting calcium loading. In fact, calcium uptake and ATP utilization occur with a molar ratio of 2:1 in the transient state following addition of ATP but decrease to much lower values in the steady state. Even in the absence of the highly conductive channel which is present only in "heavy" vesicles, "light" vesicles display calcium leakage which is inhibited by medium Ca2+ in the concentration range of ATPase activation and is likely related to an ATPase channel which is involved in calcium transport. It is apparent that, under conditions of ATPase turnover and in the presence of high lumenal Ca2+ and ADP, slippage of calcium through this channel produces true uncoupling of catalytic and transport activities. Coupling is improved by complexation of lumenal Ca2+ and by ATP regeneration and is influenced by the solvent characteristics of the reaction medium. The synergistic effects of lumenal Ca2+ and ADP, and the role of alternate pathways for phosphoenzyme cleavage, are clarified by steady state analysis of a multiple step reaction mechanism. It is concluded that the ideal (2:1) stoichiometric coupling of transport and ATPase activities is not insured by an obligatory pathway of catalysis (as predicted by all reaction schemes published so far); rather, coupling is influenced by the concentrations of ligands and their effects on second order reactions and the consequent distribution of intermediate states.  相似文献   

2.
Low levels of calcium (100 nmol/mg) added to beef heart mitochondria induced a configurational transition from the aggregated to the orthodox state and a simultaneous uncoupling of oxidative phosphorylation. The primary effect of calcium was to cause a nonspecific increase in the permeability of the inner membrane, resulting in entry of sucrose into the matrix space and the observed configurational transition. The uncoupling and permeability change induced by calcium could readily be reversed by lowering the calcium:magnesium ratio in the presence of either substrate or ATP. The configurational state, however, remained orthodox. This, along with studies of hypotonically induced orthodox mitochondria in which the membrane remained coupled and impermeable until after the addition of calcium, led to the conclusion that coupling was related to the permeability state of the inner membrane rather than the configurational state. Phosphate, arsenate, or oleic acid was found to cause a transition similar to that induced by calcium. Studies with the specific calcium transport inhibitors, EGTA, ruthenium red, and lanthanum revealed that endogenous calcium is required for the anion-induced transitions. A single mechanism was further indicated by a common sensitivity to N-ethylmaleimide. Strontium was ineffective as an inducer of the transition, even though it is transported by the same mechanism as calcium. This indicates that there are additional calcium-binding sites responsible for triggering the transition. Magnesium and calcium appeared to compete for these additional sites, since magnesium competitively inhibited the calcium-induced transition, but had no effect on calcium uptake. Calcium was found to potently inhibit the respiration of all NAD+-requiring substrates prior to the transition. Strontium also produced this inhibition without a subsequent transition. ATPase activity was induced at the exact time of transition with calcium and was not induced by strontium. This suggests that calcium-induced ATPase uniquely required the transition for activity, in contrast to the ATPase induced by uncoupler or valinomycin. The results of this work indicate that mitochondria have a built-in mechanism which responds to low levels of calcium, phosphate, and fatty acids, resulting in simultaneous changes, including increased permeability, inducation of ATPase, uncoupling of oxidative phosphorylation, and loss of respiratory control.  相似文献   

3.
1. The effect was studied of local anesthetics (tetracaine, dibucaine, procaine and xylocaine) on the forward and the backward reactions of the calcium pump of skeletal muscle sarcoplasmic reticulum. 2. The inhibition of the rate of calcium uptake, the rate of calcium-dependent ATP splitting and the rate of calcium-dependent ATP-ADP phosphate exchange by sarcoplasmic reticulum in the presence of the above drugs is at least partially due to the inhibition of the phosphoprotein formation from ATP. 3. The rate of the ADP-induced calcium release from sarcoplasmic reticulum and the rate of ATP synthesis driven by the calcium efflux are inhibited on account of a reduction of the phosphoprotein formation by orthophosphate. 4. The phosphorylation of calcium transport ATPase by either ATP or orthophosphate is diminished by the local anesthetics owing to a reduction in the apparent calcium affinity of sarcoplasmic reticulum emmbranes on the outside and on the inside, respectively. 5. The drug-induced calcium efflux from calcium-preloaded sarcoplasmic reticulum vesicles, a reaction not requiring ADP, is probably not mediated by calcium transport ATPase.  相似文献   

4.
Treatment of sarcoplasmic reticulum vesicles with aqueous n-alcohols caused inhibition of calcium uptake and enhancement of ATPase activity. With increasing alcohol concentration, the ATPase activity reached a maximum (in the case of n-butanol, at about 350 mM) and then decreased. The effect of n-butanol was extensively studied. The purified ATPase enzyme and leaky vesicles treated with Triton X-100 or phospholipase A showed high ATPase activity in the absence of n-butanol. With increasing n-butanol concentration, their atpase activities began to decrease above about 250 mM n-butanol, without any enhancement. In the presence of ATP, the turnover rate of calcium after calcium accumulation had reached a steady level was the same as that at the initial uptake. n-Butanol did not affect these rates. Kinetic analyses of these experiments were carried out. The mechanisms of calcium transport and of increase of ATPase activity in the presence of alcohol were interpreted as follows. After calcium accumulation had reached a steady level, fast influx and efflux continued; the influx was coupled with phosphorylated enzyme (E-P) formation and most of the efflux was coupled with rephosphorylation of ATP from ADP and E-P. The observed ATPase activity is the difference between these two reactions. If alcohol molecules make the vesicles leaky, calcium ions will flow out without ATP synthesis and the apparent ATPase activity will increase. The effect of alcohols on sarcoplasmic reticulum vesicles was separated into two actions. The enhancement of ATPase activity was attributed to a leakage of calcium ions from the vesicles, while the decrease of ATPase activity at higher concentrations of alcohols was attributed to denaturation of the ATPase enzyme itself. The two effects were interpreted in terms of equilibrium binding of alcohol molecules to two different sites of the vesicles; leakage and denaturation sites. Similar analysis was carried out for various n-alcohols from methanol to n-heptanol. The apparent free energies of binding of the methylene groups of n-alcohols were evaluated to be -863 cal/mol for the leakage site, and -732 cal/mol for the denaturation site.  相似文献   

5.
1. The myosin content of myofibrils was found to be 51% by SDS-gel electrophoresis. 2. The initial burst of Pi liberation of the ATPase [EC 3.6.1.3] of a solution of myofibrils in 1 M KCl was measured in 0.5 M KCl, and found to be 0.93 mole/mole of myosin. 3. The amount of ADP bound to myofibrils during the ATPase reaction and the ATPase activity were measured by coupling the myofibrillar ATPase reaction with sufficient amounts of pyruvate kinase [EC 2.7.1.40] and PEP to regenerate ATP. The maximum amount of ADP bound to myofibrils in 0.05M KCl and in the relaxed state was about 1.5 mole/mole of myosin. On the other hand, the ATPase activity exhibited substrate inhibition, and the amount of ATP required for a constant level of ATPase activity was smaller than that required for the maximum binding of ADP to myofibrils. 4. The maximum amount of ADP bound to myofibrils in 0.5 M KCl was about 1.9 mole/mole of myosin. When about one mole of ADP was found to 1 mole of myosin in myofibrils, the myofibrillar ATPase activity reached the saturated level, and with further increase in the concentration of ATP one more mole of ADP was found per mole of myosin.  相似文献   

6.
In many cells other than the erythrocyte, the relationship between ATP dependent calcium transport and calcium dependent ATP hydrolysis is complex. The characteristics of ATP hydrolysis often differ from those of calcium transport. Demonstration of a specific transport ATPase is complicated by heterogeneity and high background activity in the presence of magnesium. In basal plasma membrane of human placental syncytiotrophoblast, the addition of 5 mM GTP greatly reduces the background release of 32Pi from 0.1 mM [gamma, 32P]-ATP. The addition of GTP permits measurement of high affinity calcium dependent ATPase under conditions which support calcium uptake. GTP does not affect the velocity of calcium uptake, and in its presence the calcium and magnesium concentration dependence of calcium uptake and calcium dependent ATPase are similar.  相似文献   

7.
Adenine nucleotide and lysine transport in Chlamydia psittaci.   总被引:25,自引:12,他引:13       下载免费PDF全文
Isolated reticulate bodies of Chlamydia psittaci were found to transport ATP and ADP by an ATP-ADP exchange mechanism. ATP uptake activity was not detected in elementary bodies. The apparent Km of transport for both ATP and ADP was approximately 5 microM, and the calculated Vmax for both was about 1 nmol of nucleotide transported per min per mg of protein. ADP competitively inhibited ATP transport with a Ki of 4.5 microM. Other nucleotides tested had no effect on the uptake of ATP. A magnesium-dependent, oligomycin-sensitive ATPase (ATP phosphohydrolase, EC 3.6.1.3) was associated with reticulate bodies, and most of the transported ATP was hydrolyzed to ADP, which was exchanged for additional, extracellular nucleotide. Some ADP was hydrolyzed to AMP, which exited the cells slowly. Lysine was transported against the electrochemical gradient by reticulate bodies in the presence of ATP. Oligomycin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone inhibited ATP-dependent lysine transport. Lysine exited reticulate bodies when the reticulate bodies were incubated in the presence of ADP, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, or a reduced concentration of ATP. The results support the concept that chlamydiae are energy parasites which are capable of drawing upon the adenine nucleotides of their hosts, hydrolyzing ATP, and establishing an energized membrane.  相似文献   

8.
1. Adenine nucleotide exchange-transport was reconstituted in vesicles prepared from phospholipids and protein fractions derived from bovine heart submitochondrial particles. The transport, which was specific for ATP and ADP was measured either as ADP/ADP, ATP/ATP, or ADP/ATP exchange. The highest specific activity (370 nanomoles of ADP/ADP exchange/min/mg of protein at room temperature) was obtained with a protein fraction prepared by cholate extraction of partly resolved submitochondrial particles followed by ammonium sulfate fractionation. 2. At 200 muM external nucleotide, the exchange reactions were inhibited by low concentrations of bongkrekate, atractyloside, and palmitoyl-CoA, with Ki values of 1.8, 3.0, and 7.5 muM, respectively. The ADP/ADP nucleotide exchange was stimulated about 5-fold by 500 muM MgCl2 or MnCl2(km of 40 muM) and about 3-fold by 500 muM CaCl2(Km of 90 muM). It was optimal between pH 6.0 and 7.0 and decreased rapidly above pH 7.5. Arrhenius plots between 0 degrees and 40 degrees showed a break point at 15 degrees with soybean phospholipids and an activation energy of 29.5 kcal/mole from 0 degrees-15 degrees and 9.0 kcal/mole from 15 degrees-40 degrees. With mitochondrial phospholipids the break point was at 9 degrees and activation energies were 42.4 kcal/mole from 0 degrees-9 degrees and 7.6 kcal/mole from 9 degrees-40 degrees. 3. The phospholipid requirements for adenine nucleotide exchange were similar to those of oxidative phosphorylation. Optimal rates were observed with a phosphatidylethanolamine to phosphatidylcholine ratio of 4:1. Cardiolipin had a slight stimulatory effect. 4. The uptake of ADP into vesicles containing ATP was stimulated by KCl or by KPi as well as by hexafluoracetonylacetone, and uncoupler of oxidative phosphorylation. The uptake of ATP into vesicles containing ADP was inhibited by KCl or by KPi, but was also stimulated by hexafluoracetonylacetone. In both cases valinomycin reversed the effects of KCl, while mersalyl or N-ethylmaleimide prevented the effects of KPi. In contrast, none of these salts nor hexafluoracetonylactone affected the ADP/ADP or ATP/ATP exchange. These findings suggest that in the reconstituted system the ADP/ATP exchange is electrogenic.  相似文献   

9.
Strontium can replace calcium in triggering neurotransmitter release, although peak release is reduced and the duration of release is prolonged. Strontium has therefore become useful in probing release, but its mechanism of action is not well understood. Here we study the action of strontium at the granule cell to Purkinje cell synapse in mouse cerebellar slices. Presynaptic residual strontium levels were monitored with fluorescent indicators, which all responded to strontium (fura-2, calcium orange, fura-2FF, magnesium green, and mag-fura-5). When calcium was replaced by equimolar concentrations of strontium in the external bath, strontium and calcium both entered presynaptic terminals. Contaminating calcium was eliminated by including EGTA in the extracellular bath, or by loading parallel fibers with EGTA, enabling the actions of strontium to be studied in isolation. After a single stimulus, strontium reached higher peak free levels than did calcium (approximately 1.7 times greater), and decayed more slowly (half-decay time 189 ms for strontium and 32 ms for calcium). These differences in calcium and strontium dynamics are likely a consequence of greater strontium permeability through calcium channels, lower affinity of the endogenous buffer for strontium, and less efficient extrusion of strontium. Measurements of presynaptic divalent levels help to explain properties of release evoked by strontium. Parallel fiber synaptic currents triggered by strontium are smaller in amplitude and longer in duration than those triggered by calcium. In both calcium and strontium, release consists of two components, one more steeply dependent on divalent levels than the other. Strontium drives both components less effectively than does calcium, suggesting that the affinities of the sensors involved in both phases of release are lower for strontium than for calcium. Thus, the larger and slower strontium transients account for the prominent slow component of release triggered by strontium.  相似文献   

10.
Strontium will substitute for calcium in the activation of histamine secretion from human basophil leukocytes stimulated by an immunologic reaction or by the ionophore A23187. Strontium is required in 10-fold higher concentration (1 to 10 mM) to activate histamine release compared with calcium (0.1 to 1.0 mM). In terms of maximum release obtainable for a particular immunologic stimulus, strontium is more effective than calcium. Results are presented to show that calcium and strontium act at the same site but strontium is a more sensitive probe for that site. Strontium can be used to demonstrate that immunologic stimuli activate calcium-binding sites in basophils even when no secretion is observed in the presence of calcium. It is suggested that the degree of secretion observed from basophils depends on the number of occupied Fc receptors for IgE and the coupling of these Fc receptors to calcium transport sites.  相似文献   

11.
Lipid deprivation of the sarcoplasmic reticulum calcium-transport ATPase neither affects the enzyme's affinity for ATP nor that of calcium. In contrast, vanadate binding is almost completely abolished. Lipid substitution by oleic acid which at a ratio of 0.3 mg/mg protein completely reactivates the calcium-dependent ATP hydrolysis restores vanadate binding. Concomitantly the mutual interactions between vanadate and calcium or ATP and ADP, respectively are restored. The vanadate-induced disappearance of the enzyme's ATP binding sites as well as its high-affinity binding sites for calcium follow the same time course. Conversely, the displacement of vanadate by calcium proceeds in parallel with the recovery of ADP binding. In lipid-restituted preparations as well as in native membranes vanadate induces the disappearance of external high-affinity and simultaneously the appearance of internal low-affinity calcium binding sites.  相似文献   

12.
Summary Proteolytic digestion of sarcoplasmic reticulum vesicles with trypsin has been used as a structural modification with which to examine the interaction between the ATP hydrolysis site and calcium transport sites of the (Ca2++Mg2+)-ATPase. The kinetics of trypsin fragmentation were examined and the time course of fragment production compared with ATP hydrolytic and calcium uptake activities of the digested vesicles. The initial cleavage (TD 1) of the native ATPase to A and B peptides has no effect on the functional integrity of the enzyme, hydrolytic and transport activities remaining at the levels of the undigested control. Concomitant with the second tryptic cleavage (TD 2) of the A peptide to A1 and A2 fragments, calcium transport is inhibited. Kinetic analysis demonstrates that the rate constant for inhibition of calcium uptake is correlated with the rate constant of a fragment disappearance. Both Ca2+-dependent and total ATPase activities are unaffected by this second cleavage. Passive loading of vesicles with calcium and subsequent efflux measurements show that transport inhibition is not due to increased permeability of the membrane to calcium even at substantial extents of digestion. Steady-state levels of acidstable phosphoenzyme are unaffected by either TD 1 or TD 2, indicating that uncoupling of the hydrolytic and transport functions does not increase the turnover rate of the enzyme and that TD 2 does not change the essential characteristics of the ATP hydrolysis site. Sarcoplasmic reticulum (SR) vesicles were examined for the presence of tightly bound nucleotides and are shown to contain 2.8–3.0 nmol ATP and 2.6–2.7 nmol ADP per mg SR protein. The ADP content of SR remains essentially unchanged with TD 1 cleavage of the ATPase enzyme to A and B peptides, but declines upon TD 2 in parallel with the digestion of the A fragment and the loss of calcium uptake activity of the vesicles. The ATP content is essentially constant throughout the course of trypsin digestion. The results are discussed in terms of current models of the SR calcium pump and the molecular mechanism of energy transduction.  相似文献   

13.
Vesicles capable of phosphate-stimulated calcium uptake were isolated from the microsomal fraction of the smooth muscle of the pig stomach according to a previously described procedure which consists in increasing the density of the vesicles by loading them with calcium phosphate and isolating them by centrifugation [Raeymaekers, L., Agostini, B., and Hasselbach, W. (1981) Histochemistry, 70, 139--150]. These vesicles, which contain calcium phosphate deposits, are able to accumulate an additional amount of calcium. This calcium uptake is accompanied by calcium-stimulated ATPase activity and by the formation of an acid-stable phosphoprotein. The acid-denatured phosphoprotein is dephosphorylated by hydroxylamine, which indicates that an acylphosphate is formed. This phosphoprotein probably represents a phosphorylated transport intermediate similar to that seen with the Ca2+-ATPase of sarcoplasmic reticulum of skeletal muscle. As with the Ca2+-ATPase of sarcoplasmic reticulum vesicles, this vesicular fraction catalyses an exchange between inorganic phosphate and the gamma-phosphate of ATP (ATP-Pi exchange) which is dependent on the presence of intravesicular calcium, and an exchange of phosphate between ATP and ADP (ATP-ADP exchange). The results further indicate that the turnover rate of the calcium pump, calculated from the ratio of calcium-stimulated ATPase activity to the steady-state level of phosphoprotein, is similar to that of Ca2+-ATPase of sarcoplasmic reticulum of skeletal muscle.  相似文献   

14.
The sarcoplasmic reticulum Ca2+-ATPase is able to cleave ATP through two different catalytic routes. In one of them, a part of the chemical energy derived from ATP hydrolysis is used to transport Ca2+ across the membrane and part is dissipated as heat. In the second route, the hydrolysis of ATP is completed before Ca2+ transport and all the energy derived from ATP hydrolysis is converted into heat. The second route is activated by the rise of the Ca2+ concentration in the vesicle lumen. In vesicles derived from white skeletal muscle the rate of the uncoupled ATPase is several-fold faster than the rate of the ATPase coupled to Ca2+ transport, and this accounts for both the low Ca2+/ATP ratio usually measured during transport and for the difference of heat produced during the hydrolysis of ATP by intact and leaky vesicles. Different drugs were found to selectively inhibit the uncoupled ATPase activity without modifying the activity coupled to Ca2+ transport. When the vesicles are actively loaded, part of the Ca2+ accumulated leaks to the medium through the ATPase. Heat is either produced or released during the leakage, depending on whether or not the Ca2+ efflux is coupled to the synthesis of ATP from ADP and Pi.  相似文献   

15.
Sarcoplasmic reticulum vesicles of rabbit skeletal muscle accumulate Ca2+ at the expense of ATP hydrolysis. The heat released during the hydrolysis of each ATP molecule varies depending on whether or not a Ca2+ gradient is formed across the vesicle membrane. After Ca2+ accumulation, a part of the Ca2+-ATPase activity is not coupled with Ca2+ transport (Yu, X., and Inesi, G. (1995) J. Biol. Chem. 270, 4361-4367). I now show that both the heat produced during substrate hydrolysis and the uncoupled ATPase activity vary depending on the ADP/ATP ratio in the medium. With a low ratio, the Ca2+ transport is exothermic, and the formation of the gradient increases the amount of heat produced during the hydrolysis of each ATP molecule cleaved. With a high ADP/ATP ratio, the Ca2+ transport is endothermic, and formation of a gradient increased the amount of heat absorbed from the medium. Heat is absorbed from the medium when the Ca2+ efflux is coupled with the synthesis of ATP (5.7 kcal/mol of ATP). When there is no ATP synthesis, the Ca2+ efflux is exothermic (14-16 kcal/Ca2+ mol). It is concluded that in the presence of a low ADP concentration the uncoupled ATPase activity is the dominant route of heat production. With a high ADP/ATP ratio, the uncoupled ATPase activity is abolished, and the Ca2+ transport is endothermic. The possible correlation of these findings with thermogenesis and anoxia is discussed.  相似文献   

16.
The ATPase of matrix vesicles is not stimulated by calcium ions, nor do the vesicles have any capacity to metabolize glucose. ADPase of high activity is also present; thus vesicles cannot be a component of the conventional ATP cycle, in which energy is stored by phosphorylating ADP and released by hydrolyzing the resultant ATP. These results do not support speculations that matrix vesicles might function by concentrating calcium via an energy-dependent ion transport system such as those found in the plasma membrane and the sarcoplasmic reticulum. Matrix vesicles' alkaline phosphatase can be solubilized by treatment with certain detergents: sodium dodecyl sulfate (12 mM and 16 mM), cetylpyridinium chloride (14mM), and deoxycholic acid (DOC, 14 MM). The first two detergents denature the enzyme during storage whereas DOC does not. DOC will also solubilize ATPase and inorganic pyrophosphatase. Yields of the three enzymes are 85-95%. Dialysis of a DOC digest of vesicles removes DOC and 43% of protein, and also causes much of the alkaline phosphatase to become particulate once again.  相似文献   

17.
ADP and ATP were transported in Rickettsia prowazekii by an obligate exchange system without prior hydrolysis. The uptake of ATP and ADP by the obligate exchange system in R. prowazekii was dependent upon the anionic composition of the medium. The rate of transport of ATP was about three times greater than that of ADP in the absence of anions, and the rates of transport of both were about doubled by a variety of anions. However, phosphate anions were able to stimulate greatly the uptake of ADP so that in the presence of these anions, the uptake of ATP and that of ADP were about equal. Millimolar concentrations of anions were required to elicit the stimulation of ADP and ATP transport. The ADP-dependent efflux of ADP and ATP was also greatly stimulated by phosphate anions. The stimulation of ADP and ATP transport required that the anions be present in the external medium, as preincubation of the rickettsiae with phosphate anions was neither necessary nor sufficient. The competitive inhibition of ATP uptake by ADP required phosphate anions, indicating that phosphate anions increased the affinity of ADP for the transport system. The role of phosphate in the regulation of ATP and ADP exchange and its significance are discussed.  相似文献   

18.
Homogeneous ATPase from rat liver mitochondria binds one mole of ADP per mole of enzyme reversibly, and with high affinity (KD = 1–2 μM). The high affinity binding site is highly specific for ADP and dADP. AMP does not bind. Agents which inhibit ATP hydrolysis have little inhibitory effect on the high affinity binding of ADP. These agents include adenylyl imidodiphosphate (AMP-PNP), azide, sucrose, and the divalent cation Mg++. AMP-PNP inhibits ATPase activity in phosphorylating membrane preparations of rat liver mitochondria by about 90 percent, but is without effect on ATP synthesis. These results are consistent with the view that the purified soluble, and the membrane-bound ATPase of rat liver mitochondria contain separate sites involved in ATP hydrolysis and in the reversible, high affinity binding of ADP.  相似文献   

19.
In eukaryotic cells, uptake of cytosolic ATP into the endoplasmic reticulum (ER) lumen is critical for the proper functioning of chaperone proteins. The human transport protein SLC35B1 was recently postulated to mediate ATP/ADP exchange in the ER; however, the underlying molecular mechanisms mediating ATP uptake are not completely understood. Here, we extensively characterized the transport kinetics of human SLC35B1 expressed in yeast that was purified and reconstituted into liposomes. Using [α32P]ATP uptake assays, we tested the nucleotide concentration dependence of ATP/ADP exchange activity on both sides of the membrane. We found that the apparent affinities of SLC35B1 for ATP/ADP on the internal face were approximately 13 times higher than those on the external side. Because SLC35B1-containing liposomes were preferentially inside-out oriented, these results suggest a low-affinity external site and a high-affinity internal site in the ER. Three different experimental approaches indicated that ATP/ADP exchange by SLC35B1 was not strict, and that other di- and tri-nucleotides could act as suitable counter-substrates for ATP, although mononucleotides and nucleotide sugars were not transported. Finally, bioinformatic analysis and site-directed mutagenesis identified that conserved residues K117 and K120 from transmembrane helix 4 and K277 from transmembrane helix 9 play critical roles in transport. The fact that SLC35B1 can promote ATP transport in exchange for ADP or UDP suggest a more direct coupling between ATP import requirements and the need for eliminating ADP and UDP, which are generated as side products of reactions taking place in the ER-lumen.  相似文献   

20.
The ATP-Mg/Pi carrier in liver mitochondria is activated by micromolar Ca2+ and mediates net adenine nucleotide transport into and out of the mitochondrial matrix. The purpose of this study was to characterize certain features of ATP-Mg/Pi carrier activity that are essential for understanding how the mitochondrial adenine nucleotide content is regulated. The relative importance of ATP and ADP as transport substrates was investigated using specific trap assays to measure their separate rates of carrier-mediated efflux with Pi as the external counterion. Under energized conditions ATP efflux accounted for 88% of total ATP+ADP efflux. With oligomycin present to lower the matrix ATP/ADP ratio, ATP efflux was eliminated and ADP efflux was relatively unaffected. Mg2+ was stoichiometrically required for ATP influx and is probably transported simultaneously with ATP. Ca2+ and Mn2+ could substitute for the stoichiometric Mg2+ requirement. ADP influx and Pi-induced adenine nucleotide efflux were unaffected by external Mg2+. Experiments with Pi analogues suggested that Pi is transported as the divalent anion, HPO4(2-). The results show that ATP-Mg and divalent Pi are the major transport substrates; the most probable transport mechanism for the ATP-Mg/Pi carrier is an electroneutral exchange. The results are consistent with the hypothesis that the direction and magnitude of net adenine nucleotide movements are determined mainly by the (ATP-Mg)2- and HPO4(2-) concentration gradients across the inner mitochondrial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号