首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leu- and met-enkephalin concentration in the brain structures of rat offsprings prenatally exposed to ethanol (4-5 g/kg) was investigated by radioimmunoassay. Regional and sex differences in enkephalin levels of the investigated brain structures have been shown. In experimental animals that had been exposed to ethanol leu- and met-enkephalin concentration in the hemispheric cortex and hippocump was similar to that in the controls, while in the pituitary body it was significantly decreased. The mechanisms of ethanol effect on endogenous opioid system in the developing brain are discussed.  相似文献   

2.
Insulin causes the release of the hepatic insulin-sensitizing substance (HISS) from the liver. Hepatic parasympathetic nerves play a permissive role in the release of HISS. HISS-dependent insulin resistance (HDIR) occurs in the absence of HISS. Fetal ethanol exposure has been shown to cause dose-dependent HDIR in adult male rat offspring. Since female offspring are more severely affected by in utero ethanol toxicity, we hypothesized that fetal alcohol exposure causes higher incidence and more severe HDIR in adult female offspring. Adult female rat offspring prenatally exposed to different concentrations of ethanol (0%, 15%, and 20%) were tested for insulin sensitivity using the rapid insulin sensitivity test (RIST). The RIST index was significantly reduced in the 15% (134.1 +/- 16.1 mg/kg) and the 20% (98.7 +/- 9.7 mg/kg) group compared with the 0% (220.9 +/- 27.6 mg/kg) group. Administration of atropine produced significant additional HDIR in the 15% group (82.9 +/- 14.5 mg/kg) but not the 20% group (83.8 +/- 20.5 mg/kg) indicating complete HDIR had been produced in this group, contrary to the adult male offspring in a previous study. The results are consistent with the hypothesis that adult-female offspring are more severely affected by in utero ethanol exposure compared with adult-male offspring.  相似文献   

3.
The volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA) of the rat brain is severalfold larger in males than in females. The volume of the SDN-POA can be influenced significantly by the hormonal milieu during the perinatal "critical period" of sexual differentiation of the brain. The purpose of the present study was to determine the onset of this period of sexual differentiation of the SDN-POA. Pregnant rats received no treatment or were injected subcutaneously with oil on day 17, 18, or 20, or testosterone (T;5 mg) on days 16-22 of gestation. On postnatal day 15, unilateral SDN-POA volumes from female offspring prenatally exposed to testosterone on day 16 or 17 were not different from values of control (untreated or oil-injected) offspring. Female offspring from mothers treated with testosterone on day 18, 19, or 20 of gestation showed a significant and similar increase in SDN-POA volume over values from control animals. SDN-POA volumes from female offspring exposed to testosterone on day 21 or 22, although larger than those of controls, were not different statistically. We conclude that with the specific paradigm used in this study SDN-POA development is insensitive prior to day 18 of gestation, the day on which the onset of the hormone-sensitive period occurs.  相似文献   

4.
5.
Chronic maternal stress during pregnancy results in the “prenatally stressed” offspring displaying behavioral and neuroendocrine alterations that persist into adulthood. We investigated how inhalation of green odor (a mixture of equal amounts of trans-2-hexenal and cis-3-hexenol) by stressed dams might alter certain indices of prenatal stress in their offspring. These indices were depression-like behavior (increased immobility time in the forced-swim test) and acute restraint stress-induced changes in hypothalamo-pituitary-adrenocortical (HPA) axis activity [plasma corticosterone (CORT) and ACTH levels and the number of Fos-immunoreactive cells in the hypothalamic paraventricular nucleus (an index of neuronal activity)]. Pregnant rats were exposed to restraint stress for 60 min/day for 10 days (gestational days 10-19). The prenatally stressed offspring exhibited significant increases in depression-like behavior and in restraint stress-induced ACTH, CORT, and Fos responses, unless their dam had been exposed to green odor. The behavioral effect of the odor was also seen in offspring that were fostered by unstressed dams. The results obtained in the dams themselves were as follows. In vehicle-exposed stressed dams, but not in green odor-exposed ones, total body and adrenal weights were significantly decreased or increased, respectively. Depression-like behavior was not observed in the vehicle-exposed stressed dams themselves. Green odor inhalation prevented the impairment of maternal behavior induced by restraint stress. Thus, exposure of dams to stress may affect both the fetal brain and fetal HPA axis, and also maternal behavior, leading to altered behavioral and neuroendocrine responses in the offspring. Such effects may be prevented by the stressed dams inhaling green odor.  相似文献   

6.
Early life events can significantly alter the development of the nociceptive circuit. In fact, clinical work has shown that maternal adversity, in the form of depression, and concomitant selective serotonin reuptake inhibitor (SSRI) treatment influence nociception in infants. The combined effects of maternal adversity and SSRI exposure on offspring nociception may be due to their effects on the developing hypothalamic-pituitary-adrenal (HPA) system. Therefore, the present study investigated long-term effects of maternal adversity and/or SSRI medication use on nociception of adult Sprague-Dawley rat offspring, taking into account involvement of the HPA system. Dams were subject to stress during gestation and were treated with fluoxetine (2×/5 mg/kg/day) prior to parturition and throughout lactation. Four groups of adult male offspring were used: 1. Control+Vehicle, 2. Control+Fluoxetine, 3. Prenatal Stress+Vehicle, 4. Prenatal Stress+Fluoxetine. Results show that post-operative pain, measured as hypersensitivity to mechanical stimuli after hind paw incision, was decreased in adult offspring subject to prenatal stress alone and increased in offspring developmentally exposed to fluoxetine alone. Moreover, post-operative pain was normalized in prenatally stressed offspring exposed to fluoxetine. This was paralleled by a decrease in corticosteroid binding globulin (CBG) levels in prenatally stressed offspring and a normalization of serum CBG levels in prenatally stressed offspring developmentally exposed to fluoxetine. Thus, developmental fluoxetine exposure normalizes the long-term effects of maternal adversity on post-operative pain in offspring and these effects may be due, in part, to the involvement of the HPA system.  相似文献   

7.
Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by three main behavioral symptoms including social deficits, impaired communication, and stereotyped and repetitive behaviors. ASD prevalence shows gender bias to male. Prenatal exposure to valproic acid (VPA), a drug used in epilepsy and bipolar disorder, induces autistic symptoms in both human and rodents. As we reported previously, prenatally VPA‐exposed animals at E12 showed impairment in social behavior without any overt reproductive toxicity. Social interactions were not significantly different between male and female rats in control condition. However, VPA‐exposed male offspring showed significantly impaired social interaction while female offspring showed only marginal deficits in social interaction. Similar male inclination was observed in hyperactivity behavior induced by VPA. In addition to the ASD‐like behavioral phenotype, prenatally VPA‐exposed rat offspring shows crooked tail phenotype, which was not different between male and female groups. Both male and female rat showed reduced GABAergic neuronal marker GAD and increased glutamatergic neuronal marker vGluT1 expression. Interestingly, despite of the similar increased expression of vGluT1, post‐synaptic marker proteins such as PSD‐95 and α‐CAMKII expression was significantly elevated only in male offspring. Electron microscopy showed increased number of post‐synapse in male but not in female at 4 weeks of age. These results might suggest that the altered glutamatergic neuronal differentiation leads to deranged post‐synaptic maturation only in male offspring prenatally exposed to VPA. Consistent with the increased post‐synaptic compartment, VPA‐exposed male rats showed higher sensitivity to electric shock than VPA‐exposed female rats. These results suggest that prenatally VPA‐exposed rats show the male preponderance of ASD‐like behaviors including defective social interaction similar to human autistic patients, which might be caused by ectopic increase in glutamatergic synapses in male rats.  相似文献   

8.
Vorbrodt  A. W.  Dobrogowska  D. H.  Kozlowski  P.  Tarnawski  M.  Dumas  R.  Rabe  A. 《Brain Cell Biology》2001,30(2):167-174
Distribution of glucose transporter (GLUT-1) in brain microvascular endothelium, representing the anatomic site of the blood-brain barrier (BBB), was studied with electron microscopy in 24-month-old mice, which had been exposed prenatally (on 9th day of gestation) to a single teratogenic dose of ethanol. Offspring of mice that had received an equivalent volume of isocaloric dextrose served as controls. Sections of brain samples embedded at low temperature in hydrophilic resin Lowicryl K4M were exposed to anti-GLUT-1 antiserum followed by gold-labelled secondary antibodies. By using morphometry, the labelling density was recorded over luminal and abluminal plasma membranes of the endothelial cells of blood microvessels supplying four brain regions: cortex, hippocampus, cerebellum and olfactory bulb. We found that the density of immunosignals for GLUT-1, represented by colloidal gold particles, was unchanged in the olfactory bulb and slightly lowered in the abluminal plasmalemma of the vascular endothelium in the cerebral cortex of the ethanol-treated mice. In contrast, statistical analysis using Mann-Whitney U-test revealed that in the hippocampus and cerebellum, the density of immunolabelling of both plasma membranes of microvascular endothelial cells was significantly lowered in the ethanol-treated mice. These findings suggest that prenatally applied ethanol had a different influence on the vasculature supplying different brain regions. In effect, the inefficient supply of glucose to selected brain regions can be one of the factors leading to the previously observed deficit in long-term memory in a similar alcohol-treated group of mice.  相似文献   

9.
10.
11.
Abstract: Subcutaneous injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) HC1 (25 mg/kg) in pregnant female mice at the 17th day of gestation markedly depleted striatal dopamine (DA) concentrations in the mothers 24 h later and at 24 h and 28 days after delivery. By contrast, in the offspring of the female mice exposed to MPTP during pregnancy, fetal brain DA concentrations at 24 h after injection and at 24 h after birth and striatal DA levels at 14 and 28 days postnatally were unaffected and identical to those in age-matched controls. The postnatal ontogenesis of striatal DA levels was identical in offspring of control vehicle- and MPTP-treated pregnant mice. Also, prenatal challenge with MPTP did not make nigrostriatal DA neurons more vulnerable to a second postnatal treatment with the toxin. Striatal DA depletions were identical in 6-week-old mice given MPTP, whether they were exposed to MPTP or to vehicle in utero. Monoamine oxidase (EC 1.4.3.4; MAO) type B activity was extremely low in the fetal brain and, relatively, much lower than that of MAO-A. Prenatal MPTP administration reduced maternal striatal and also embryonal brain MAO-B activity at 24 h post treatment but did not alter the normal postnatal development of striatal MAO-A and -B activities in the offspring. Study suggests that resistance of fetal DA neurons to the DA-depleting effect of MPTP may be due, at least in part, to an absence in the embryonal brain of adequately developed MAO-B activity required for the conversion of MPTP to its toxic metabolite, 1-methyl-4-phenylpyridinium ion.  相似文献   

12.
13.
Abstract: Consumption of moderate quantities of ethanol during pregnancy produces deficits in long-term potentiation in the hippocampal formation of adult offspring. Protein kinase C (PKC)-mediated phosphorylation of the presynaptic protein GAP-43 is critical for the induction of long-term potentiation. We tested the hypothesis that this system is affected in fetal alcohol-exposed (FAE) rats by measuring GAP-43 phosphorylation and PKC activity in the hippocampus of adult offspring of rat dams that had consumed one of three diets throughout gestation: (a) a 5% ethanol liquid diet, which produced a maternal blood ethanol concentration of 83 mg/dl (FAE); (b) an isocalorically equivalent 0% ethanol diet (pair-fed); or (c) lab chow ad libitum. Western blot analysis using specific antibodies to PKC-phosphorylated GAP-43 revealed that FAE rats had an ∼50% reduction in the proportion of phosphorylated GAP-43. Similarly, we found that PKC-mediated incorporation of 32P into GAP-43 was reduced by 85% in hippocampal slices from FAE rats compared with both control groups. FAE animals also showed a 50% reduction in total hippocampal PKC activity, whereas the levels of six major PKC isozymes did not change in any of the diet groups. These results suggest that GAP-43 phosphorylation deficits in rats prenatally exposed to moderate levels of ethanol are not due to alterations in the expression of either the enzyme or substrate protein, but rather to a defect in kinase activation.  相似文献   

14.
We studied the enzyme monoamine oxidase (MAO) in isolated cerebral microvessels, and in mitochondria-enriched brain and liver preparations from six mammalian species, including human. We also studied MAO distribution in various tissues and in discrete brain regions of the rat. MAO was assessed by measuring the specific binding of [3H]pargyline, an irreversible MAO inhibitor, and the rates of oxidation of known MAO substrates: benzylamine, tyramine, tryptamine, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Molecular forms of MAO were examined by using specific MAO inhibitors, and by polyacrylamide gel electrophoresis after [3H]pargyline binding. In general, the liver from all species had higher MAO levels than the brain, with minor variation among species in their brain and liver MAO content. However, there were remarkable species differences in brain microvessel MAO, with rat microvessels having one of the highest MAO activity among all tissues, whereas MAO activities in brain microvessels from humans, mice, and guinea pigs were very low. In most rat tissues, including the brain, there was a preponderance of MAO-B over MAO-A. The only exceptions were the heart and skeletal muscle. Estimates of MAO half-life in rat brain microvessels, rat brain, and rat liver indicated that microvessel MAO had a higher turnover rate. The reasons underlying the remarkable enrichment of rat cerebral microvessels with MAO-B are unknown, but it is evident that there are marked species differences in brain capillary endothelium MAO activity. The biological significance of these findings vis a vis the role of MAO as a "biochemical blood-brain barrier" that protects the brain from circulating neurotoxins and biogenic amines should be investigated.  相似文献   

15.
Abstract: The comparative effects of exposure to ethanol and malnutrition on the concentrations of tyrosine and catecholamines in whole brain and selected regions of brain have been studied in the developing rat. These animals were the offspring of optimally nourished rats (control pups), of rats fed a diet with 35% of the calories supplied by ethanol (ETOH pups), or of animals fed a diet calorically equivalent to the latter but lacking ethanol (iso-caloric, 1C pups). These diets were administered to dams either during the last week of gestation (prenatal) or during lactation (postnatal). Tyrosine levels were elevated prior to birth in the prenatal ETOH or IC pups or at 1 and 2 weeks of age in postnatal ETOH or 1C pups as compared with values found in the control offspring. Dopamine concentration in whole brain was significantly lower in prenatal ETOH pups than in prenatal IC pups at 3 weeks of age. Levels in the brains of postnatal ETOH pups were lower than control values, but not relative to animals exposed to 1C diet. Investigation of corpus striatum showed a significant decrease in dopamine concentration compared with control or IC pup values as a result of postnatal exposure to ethanol. Norepinephrine levels in the whole brain of prenatal ETOH pups were consistently 30–40% lower than either control or matched 1C pups during development. At 3 weeks of age, the norepinephrine levels in the hypothalamus of animals exposed to ethanol pre or postnatally were 30–60% lower than values in the corresponding region in either control or 1C pups. In the rat model described, ethanol caused a decrease in catecholamine levels, perhaps solely by affecting the norepinephrine neurons.  相似文献   

16.

Aims

The antidiabetic drug metformin is currently used prior and during pregnancy for polycystic ovary syndrome, as well as during gestational diabetes mellitus. We investigated the effects of prenatal metformin exposure on the metabolic phenotype of the offspring during adulthood in mice.

Methods

Metformin (300 mg/kg) or vehicle was administered orally to dams on regular diet from the embryonic day E0.5 to E17.5. Gene expression profiles in liver and brain were analysed from 4-day old offspring by microarray. Body weight development and several metabolic parameters of offspring were monitored both during regular diet (RD-phase) and high fat diet (HFD-phase). At the end of the study, two doses of metformin or vehicle were given acutely to mice at the age of 20 weeks, and Insig-1 and GLUT4 mRNA expressions in liver and fat tissue were analysed using qRT-PCR.

Results

Metformin exposed fetuses were lighter at E18.5. There was no effect of metformin on the maternal body weight development or food intake. Metformin exposed offspring gained more body weight and mesenteric fat during the HFD-phase. The male offspring also had impaired glucose tolerance and elevated fasting glucose during the HFD-phase. Moreover, the expression of GLUT4 mRNA was down-regulated in epididymal fat in male offspring prenatally exposed to metformin. Based on the microarray and subsequent qRT-PCR analyses, the expression of Insig-1 was changed in the liver of neonatal mice exposed to metformin prenatally. Furthermore, metformin up-regulated the expression of Insig-1 later in development. Gene set enrichment analysis based on preliminary microarray data identified several differentially enriched pathways both in control and metformin exposed mice.

Conclusions

The present study shows that prenatal metformin exposure causes long-term programming effects on the metabolic phenotype during high fat diet in mice. This should be taken into consideration when using metformin as a therapeutic agent during pregnancy.  相似文献   

17.
We investigated the effects of hydrocortisone acetate and dexamethasone administered to pregnant rats during the last gestational week on sexual differentiation of testosterone metabolism and biogenic monoamine contents and turnover in the discrete brain regions in 10-day-old offspring. In the preoptic area, sex-dependent differences in aromatase activity were attenuated by prenatal glucocorticoids. Prenatal dexamethasone but not hydrocortisone acetate caused the inversion of sexual dimorphism of 5alpha-reductase activity in the preoptic area. In the brain preoptic area of the male pups prenatally exposed to hydrocortisone acetate, a decrease in noradrenaline turnover was found. Dopamine turnover in the preoptic area and 5-hydroxytryptamine metabolism in the preoptic area and medial basal hypothalamus increased in females as a result of hydrocortisone acetate treatment. Our results indicate that excess glucocorticoids in prenatal life modifies the basic neurochemical and neurophysiological mechanisms of sexual brain differentiation and might contribute to behavioral and reproductive disorders in adulthood.  相似文献   

18.
The present study investigated the long-lasting effects of prenatal repeated restraint stress on social behavior and anxiety, as well as its repercussions on oxytocin (OT) and vasopressin (VP)-positive neurons of the paraventricular (PVN) and supraoptic (SON) nuclei from stressed pups in adulthood. Female Wistar rats were exposed to restraint stress in the last 7 days of pregnancy. At birth, pups were cross-fostered and assigned to the following groups: prenatally non-stressed offspring raised by prenatally non-stressed mothers (NS:NS), prenatally non-stressed offspring raised by prenatally stressed mothers (S:NS), prenatally stressed offspring raised by prenatally non-stressed mothers (NS:S), prenatally stressed offspring raised by prenatally stressed mothers (S:S). As adults, male prenatally stressed offspring raised both by stressed mothers (S:S group) and non-stressed ones (NS:S group) showed impaired social memory and interaction. In addition, when both adverse conditions coexisted (S:S group), increased anxiety-like behavior and aggressiveness was observed in association with a decrease in the number of OT-positive magnocellular neurons, VP-positive magnocellular and parvocellular neurons of the PVN. The NS:S group exhibited a reduction in the amount of VP-positive magnocellular neurons compared to the S:NS. Thus, the social behavior deficits observed in the S:S and NS:S groups may be only partially associated with these alterations to the peptidergic systems. No changes were shown in the OT and VP cellular composition of the SON nucleus. Nevertheless, it is clear that a special attention should be given to the gestational period, since stressful events during this time may be related to the emergence of behavioral impairments in adulthood.  相似文献   

19.
脊椎动物听觉皮层下该团的功能性研究被揭示时尚很有限,(?)报导用神经生化的方法,研究了大白鼠中枢神经系统中,与听觉有关的下丘,桥脑比全脑MAO-B monoamme oxidase E C 1.23.4的活性,及在药物作用下的变化,以探讨单胺类神经递质在支因下听觉中枢作用的可能性,结果表明:1.与听觉有关的下丘,桥脑MAO-B活性明显高于全脑的平均水平.2.药物制首乌对下丘、桥脑及全脑的MAO-B活性均有显著的抑制作用,结果提示:下丘、桥脑MAO-B对单胺类神经递质的氧化脱氨作用高于全脑的平均水平,单胺类神经递质有可能作为皮层下听觉中枢的神经递质参与听觉的活动.  相似文献   

20.
Kinetic parameters of monoamine deamination processes in the rat brain and heart after hyperbaric oxygenation (HBO) in toxic conditions (6 ata) were studied. HBO was shown to cause a substantial reduction in MAO affinity to serotonin in the brain, but not in the heart. Contrastingly, MAO affinity to dopamine was found to decrease in the heart, but not in the brain in response to HBO. Differences of tyramine and 2-phenylethylamine deamination in the rat brain and heart were also reciprocal following toxic HBO. In the initial phase of seizure episode MAO activity in the brain and heart was also different. Distinct mechanisms of adaptation to toxic oxygen in the central nervous system and cardiovascular system are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号