首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil application of DBCP (l,2-dibromo-3-chloropropane) and foliar applications of oxamyl (methyl N'',N''-dimethyl-N-[(methylcarbamoyl)oxy]-l-thiooxamimidate) were compared for control of Tylenchulus semipenetrans in a grapefruit (Citrus paradisi) orchard, DBCP reduced nematode populations and increased fruit growth rate, fruit size at harvest, and yield compared to the untreated controls in the 2 years following treatments. Foliar applications of oxamyl reduced nematode populations and increased fruit growth rate slightly the first year, but not in the second. Foliar applications of oxamyl did not improve control attained by DBCP alone. Soil application of aldicarb [2-methyl-2-(methylthio)propionaldehyde-O-(methylcarbamoyl)oxime] or DBCP to an orange (C. sinensis) orchard reduced T. semipenetrans populations in the 3 years tested and increased yield in 1 of 3 years. Aldicarb treatment reduced fruit damage caused by the citrus rust mite, Phyllocoptruta oleivora. Aldicarb, applied at 5.7 or 11.4 kg/ha, by disk incorporation or chisel injection, was equally effective in controlling nematodes, improving yields, fruit size, and external quality. In a grapefruit orchard, chisel-applied aldicarb reduced nematode populations and rust mite damage and increased yields in both years and increased fruit size in one year. The 11.4-kg/ha rate was slightly more effective than the 5.7-kg/ha rate. Aldicarb appears to be an adequate substitute for DBCP for nematode control in Texas citrus orchards and well-suited to an overall pest management system for Texas citrus.  相似文献   

2.
The efficacy of oxamyl in controlling Heterodera schachtii on cabbage was determined by applying various contbinations of soil drenches at 6.7 kg (a.i.)/ha and foliar sprays at 0.04 kg (a.i.)/100 liters of water to cabbage seedlings. Pretransplant drenches provided some control of H. schachtii over a 13-week period. A single foliar spray of oxamyl 1 week before transplanting apparently prevented penetration of H. schachtii larvae; post-transplant sprays were relatively ineffective. A pretransplant or transplant drench combined with a foliar application 2 weeks after transplanting provided the most effective control. The effectiveness of drenches plus post-transplant sprays is probably due to the spray augmenting the action of the drench in inhibiting the development of larvae after penelration.  相似文献   

3.
Four granular nentaticides were evaluated for control of the yam nematode, Scutellonema bradys (Steiner &LeHew) Andrassy, on Guinea yam, Dioscorea rotundata Poir, under field conditions prevelant in the tropics. A single application of nematicides (sidedressing) at the rate of 2 kg ai/ha as postplanting treatment at the onset of the rainy season depressed numbers of S. bradys attacking yams during the growing season and significantly increased tuber yields over untreated. The efficacy, based on the regression coefficient values of evaluated nematicides, was in the order of miral, carbofuran, aldicarb, and oxamyl (b = -75.9, -75.5, -72.1, and -65.9, respectively). Yam tuber yields increased by 136.9, 90.6, 87.9, and 85.3% over untreated (P = 0.05) in aldicarb, carbofuran, oxamyl, and miral treated plots, respectively. Residues in raw tubers pretreated with aldicarb, carbofuran, or miral were negligible (front less than 0.02 to 0.3 ppm) and far below the established tolerance levels (l.0 and 1.3 ppm for aldicarb and carbofuran, respectively) of a related crop in the United States. This is the first report on residues of systemic pesticides in yams.  相似文献   

4.
Foliar applications of ethyl 4-(methylthio)-m-tolyl isopropylphosphoramidate (phenamiphos) or S-methyl 1-(dimethylcarbamoyl)-N-[(methylcarbamoyl)oxy] thioformimidate (oxamyl) retarded infection of sugarbeets by the sugarbeet nematode, Heterodera schachtii under greenhouse conditions. Maximum nematode control was obtained when treatments were applied previous to, or at the time of, inoculation of plants with the nematode. Consecutive foliar applications inhibited nematode development, with four applications giving greatest inhibition of maturation. A treatment with either phenamiphos or oxamyl at 2,000 μg/ml (ppm) resulted in the greatest increase in plant growth, and 4,000 μg/ml gave the best nematode control. A treatment of 4,000 μg/ml of either phenamiphos or oxamyl was phytotoxic. However, this was due to container confinement of the chemical since phytotoxicity at this rate has not been observed under field conditions.  相似文献   

5.
Alfalfa (Medicago sativa L. cv. Saranac) seed were soaked for 20 minutes in water, acetone, or methanol containing 10 or 50 mg/ml of oxamyl (Vydate L) or coated with a 2% aqueous cellulose solution containing the same amounts of oxamyl. Seed were analyzed for oxamyl by HPLC immediately after treatment and after 9 and 26 months of storage. Oxamyl content of alfalfa seed did not decline after 26 months of storage. The effects of seed treatment on growth of alfalfa and nematode control were examined using soils infested with Pratylenchus penetrans and Meloidogyne hapla. Germination was not affected by any of the seed treatments. Twenty-one days after sowing, the total growth of alfalfa seedlings grown from seed treated with 50 mg/ml of oxamyl in P. penetrans-infested soils had increased by 62% over controls. Nodulation per pot increased by as much as 267%, and the densities of P. penetrans per gram of root were reduced by as much as 73% compared to control plants. In M. hapla-infested soils, increases in plant growth (32%) and nodulation (71%) also occurred with oxamyl-treated seeds. Root gall reduction (86%) was also substantial due to oxamyl seed treatment.  相似文献   

6.
In 2012, the Washington raspberry (Rubus idaeus) industry received a special local needs (SLN) 24(c) label to apply Vydate L® (active ingredient oxamyl) to nonbearing raspberry for the management of Pratylenchus penetrans. This is a new use pattern of this nematicide for raspberry growers; therefore, research was conducted to identify the optimum spring application timing of oxamyl for the suppression of P. penetrans. Three on-farm trials in each of 2012 and 2013 were established in Washington in newly planted raspberry trials on a range of varieties. Oxamyl was applied twice in April (2013 only), May, and June, and these treatments were compared to each other as well as a nontreated control. Population densities of P. penetrans were determined in the fall and spring postoxamyl applications for at least 1.5 years. Plant vigor was also evaluated in the trials. Combined results from 2012 and 2013 trials indicated that application timing in the spring was not critical. Oxamyl application reduced root P. penetrans population densities in all six trials. Reductions in P. penetrans population densities in roots of oxamyl-treated plants, regardless of application timing, ranged from 62% to 99% of densities in nontreated controls. Phytotoxicity to newly planted raspberry was never observed in any of the trials. A nonbearing application of oxamyl is an important addition to current control methods used to manage P. penetrans in raspberry in Washington.  相似文献   

7.
Influences of Criconemella xenoplax and pruning dates were studied in field microplots with ''Nemaguard'' peach cuttings on a site not previously planted to peaches. Trees with or without C. xenoplax were pruned beginning in December 1984 or March 1985. Peach tree short life (PTSL) did not occur in the absence of C. xenoplax. PTSL occurred earlier in December-pruned than in March-pruned inoculated trees. Results confirm that "old" peach sites are not required for PTSL to occur. Pruning Nemaguard and ''Lovell'' greenhouse-grown seedlings reduced the root mass of both stocks and stimulated Nemaguard, but not Lovell, shoot regrowth. Numbers of C. xenoplax per gram of dry root were greater on pruned than on unpruned seedlings.  相似文献   

8.
Studies were conducted to examine under differing temperatures (12, 16, 20, 24, 28, and 32 C) the penetration anti development of Meloidogyne hapla in resistant lines ''298'' and ''Nev. Syn XX'', and susceptible ''Lahontan'' and ''Ranger'' hardy-type alfalfas. The results indicated that resistance to M. hapla was similar to that previously described for M. incognita in nonhardy alfalfa. Although initial penetration in resistant seedlings was similar to that of susceptible seedlings, nematode larvae failed to establish and develop in root tissues and nematode numbers subsequently declined. In susceptible seedlings, nematode development proceeded rapidly, and egg production began after 5 weeks. Temperature had little influence on the nematode development except to slow the response at the lower temperatures. Other studies were conducted to verify a previously reported immune (no penetration) reaction to M. hapla by the ''Vernal'' selection ''M-4''. When compared to the resistant (penetration without nematode development) Vernal selection ''M-9'' under differing temperatures (20, 24, 28, and 32 C), each selection was equally penetrated by M. hapla but at a lower level than in susceptible Ranger cuttings. Generally, no root galling was observed in either M-4 or M-9; however, very slight galling was found 35 days after inoculation on about 50% of these cuttings when grown at 32 C.  相似文献   

9.
Three nematicides were evaluated as seed treatments to control the alfalfa stem nematode (Ditylenchus dipsaci) on seedling alfalfa. Alfalfa seeds were soaked for 10 hours in a 0.5% (formulated by weight) concentration of either carbofuran, phenamiphos or oxamyl in acetone with no adverse effect on seed germination. All three treatments decreased nematode damage and increased survival of ''Ranger'' (susceptible) and ''Lahontan'' (resistant) alfalfa plants, when seeds were planted in soil infested with D. dipsaci. Mean live plant counts after 6 weeks in the untreated control, acetone alone, carbofuran, phenamiphos, and oxamyl treatments, respectively, were 4.3, 6.3, 19.0, 19.8, and 19.0 for Lahontan and 4.5, 1.5, 18.5, 19.3, and 18.0 for Ranger from 20 seeds/pot. Nematicide seed treatments resulted in significantly healthier Ranger alfalfa plants 4 months after planting. The combination of seed treatment and host resistance may provide a means of establishing alfalfa in an alfalfa monocropped system where soil populations of D. dipsaci are high.  相似文献   

10.
The plant-parasitic nematodes Criconemoides lobatum, Hoplolaimus tylenchiformis, and Tylenchorhynchus dubius were present in the top 7.5 cm of sod consisting of numerous stolons and fibrous roots. Phenamiphos and 1,2-dibromo-3-chloropropane (DBCP) controlled all three species, whereas ethoprop and oxamyl controlled H. tylenchiformis and T. dubius but not C. lobatum. Benomyl and carbofuran controlled H. tylenchiformis but had poor control of C. lobatum and T. dubius. The effectiveness of carbofuran varied with the type of formulation, being most effective as a quick-release formulation. C. lobatum was the most difficult to control with chemicals. No chemical treatment improved the growth of ''Astoria colonial'' bentgrass (A. tenuis Sibth.) or Kentucky bluegrass (Poa pratensis L.) under the moist condtions prevalent in these tests.  相似文献   

11.
The nematostatic activity of oxamyl, methyl-N'',N''-dimethy]-N-hydroxy-l-thiooxamimidate (oxamyl-oxime) and N,N-dimethyl-l-cyanoformamide (DMCF) was studied by immersing 10 Meloidogyne incognita second-stage juveniles into aqueous solutions of various concentrations of each chemical. At concentrations of 500 to 8,000 μg/ml, oxamyl quickly immobilized immersed juveniles. In all other concentrations studied (down to 4 μg/ml), oxamyl stopped or reduced movement of juveniles within 24 hours. DMCF also quickly immobilized juveniles at concentrations of 4,000 and 8,000 μg/ml and reduced movement at 2,000 μg/ml. Lower concentrations had no observed effect on movement. In solutions of the oxime from 2,000 to 8,000 μg/ml, some reduction of movement was observed, but most juveniles maintained some motion over a period of 24 hours. Juveniles were transferred to water from 4,000 μg/ml solutions of oxamyl and DMCF after various intervals of time in order to determine the effect of duration of exposure to the chemicals on the ability of the immobilized juveniles to recover normal motion. Some recovery was observed even after 24 hours of exposure to DMCF, but none after exposure to oxamyl for longer than 40 minutes.  相似文献   

12.
Rates of nematode penetration and the histopathology of root infections in fluecured tobacco cultivars ''McNair-944,'' ''Speight G-28,'' and ''NC-89'' with either Meloidogyne arenaria, M. incognita, M. hapla, or M. javanica were investigated. Penetration of root tips by juveniles of all species into the M. incognita-resistant NC-89 and G-28 was much less than that on the susceptible McNair-944. Few juveniles of M. incognita were detected in resistant cultivars 7 and 14 days after inoculation. Infection sites exhibited some cavities and extensive necrotic tissue at 14 days; less necrotic tissue and no intact nematodes were observed 35 days after inoculation. Although some females of M. arenaria reached maturity and produced eggs, considerable necrosis was induced in the resistant cultivars. Meloidogyne hapla and M. javanica developed on all cultivars, but there was necrotic tissue at some infection sites in the resistant cultivars. The occurrence of single multistructured nuclei in the syncytia of most M. hapla infections differed from the numerous small nuclei found in syncytia caused by the other three species.  相似文献   

13.
Meloidogyne hapla, Pratylenchus penetrans, and Helicotylenchus dihystera, reduced the growth of ''Saranac AR alfalfa seedlings when applied at concentrations of 50 nematodes per plant. All except P. penetrans reduced seedling growth when applied at 25 per seedling. M. hapla reduced growth when applied at 12 per seedling. Nematodes interacted with three pseudomonads to produce greater growth reductions than were obtained with single pathogens, suggesting synergistic relationships. Ditylenchus dipsaci, applied at 25 or 50 nematodes per seedling, reduced plant weight compared with weights of control plants, but did not interact with test bacteria. All of the nematodes except D. dipsaci produced root wounds which were invaded by bacteria.  相似文献   

14.
In laboratory tests, 129 dialkyl carbamates of types ROC(O)NHR'', RSC(O)NHR'', and ROC(S)NHR'' were tested in a screening bioassay against Panagrellus redivivus. The 10 most active were lethal at concentrations from 5 ppm down to ca. 1 ppm. Eight of these (the only ones active below 2.5 ppm) were thiolcarbamates (RSC(O)NHR''). Decyl N-methyhhiolcarbamate was also lethal to Meloidogyne incognita at approximately 1 ppm in direct contact tests.  相似文献   

15.
A greater percentage of females than juveniles or males of P. penetrans penetrated celery roots grown in infested soil at 5, 18, or 30 C; the difference was greatest at 5 C. The time of initial penetration of alfalfa seedlings inoculated with single nematodes on water agar varied with temperature. Females penetrated the seedlings earlier and over a wider range of temperatures than did males or juveniles. The rate of penetration was highest for females. After initial penetration, the penetration rate decreased with time. At 13-28 C, approximately 80% of roots were penetrated by females and only 25-30% by males and juveniles by the end of the experiment.  相似文献   

16.
Foliar applications of oxamyl prevented nematodes from invading roots of diploid bananas. One spray with 1,250 μg/ml was more effective than 1, 2, or 3 sprays with 625 μg/ml applied at 5-day intervals. After 3 sprays with 1,250 μg/ml, invasion may be prevented for up to 4 weeks and possibly longer. Washing roots after oxamyl treatments prevented nematicidal control. When applied to nematode-infected plants, three sprays of oxamyl decreased nematode populations in the roots.  相似文献   

17.
The duration of effectiveness of a foliar spray of oxamyl against Heterodera schachtii and the location of the protective effect were determined by applying a foliar spray at 0.04 kg (a.i.)/100 liters of water to cabbage seedlings. Oxamyl, or a metabolite of oxamyl, apparently is translocated to anti becomes prolective in the root within 7 days. Between 7 and 14 days, the location of the protection shifts from within the root In the root surface or rhizosphere. The chemical remains active for at least 21 days unless it is removed from the root or rhizosphere by washing with water.  相似文献   

18.
Elimination of Criconemoides xenoplax from a prune orchard soil by fumigation with ethylene dibromide at the rate of 42 μliter/liter of soil (equivalent to about 13 gal/acre) improved the growth of Myrobalan plum, Addition of this nematode to Myrobalan seedlings or young ''Marianna 2624'' plants propagated from cuttings resulted in destruction of cortical root tissue, darkening of roots, alteration of water stress, lowering of nutrient levels in leaves, and reduction in plant weight. C. xenoplax increased on all nine Prunus cerasifera varieties and hybrids tested, including those used commonly as rootstocks for prunes and plums. Rhizoctonia solani isolated from Myrobalan seedlings infected with C. xenoplax caused lesions on the hypocotyls of young Myrobalan seedlings in the laboratory, but had no effect on older seedlings in the greenhouse, and did not alter the effect of C. xenoplax.  相似文献   

19.
Meloidogyne partityla is a parasite of pecan and walnut. Our objective was to determine interactions between the entomopathogenic nematode-bacterium complex and M. partityla. Specifically, we investigated suppressive effects of Steinernema feltiae (strain SN) and S. riobrave (strain 7–12) applied as infective juveniles and in infected host insects, as well as application of S. feltiae''s bacterial symbiont Xenorhabdus bovienii on M. partityla. In two separate greenhouse trials, the treatments were applied to pecan seedlings that were simultaneously infested with M. partityla eggs; controls received only water and M. partityla eggs. Additionally, all treatment applications were re-applied (without M. partityla eggs) two months later. Four months after initial treatment, plants were assessed for number of galls per root system, number of egg masses per root system, number of eggs per root system, number of eggs per egg mass, number of eggs per gram dry root weight, dry shoot weight, and final population density of M. partityla second-stage juveniles (J2). In the first trial, the number of egg masses per plant was lower in the S. riobrave-infected host treatment than in the control (by approximately 18%). In the second trial, dry root weight was higher in the S. feltiae-infected host treatment than in the control (approximately 80% increase). No other treatment effects were detected. The marginal and inconsistent effects observed in our experiments indicate that the treatments we applied are not sufficient for controlling M. partityla.  相似文献   

20.
In greenhouse experiments, broadleaf tobacco plants were inoculated with tobacco cyst (Globodera tabacum tabacum) or root-knot (Meloidogyne hapla) nematodes 3, 2, or 1 week before or at the same time as Fusarium oxysporum. Plants infected with nematodes prior to fungal inoculation had greater Fusarium wilt incidence and severity than those simultaneously inoculated. G. t. tabacum increased wilt incidence and severity more than did M. hapla. Mechanical root wounding within 1 week of F. oxysporum inoculation increased wilt severity. In field experiments, early-season G. t. tabacum control by preplant soil application of oxamyl indirectly limited the incidence and severity of wilt. Wilt incidence was 48%, 23%, and 8% in 1989 and 64%, 60%, and 19% in 1990 for 0.0, 2.2, and 6.7 kg oxamyl/ha, respectively. Early infection of tobacco by G. t. tabacum predisposed broadleaf tobacco to wilt by F. oxysporum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号