首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
近年来,水产养殖产业的迅猛发展在带来巨大经济效益的同时,也使周边水质持续恶化。在水产养殖中,微生物在生态平衡和环境保护方面的作用日益明显。着重介绍了养殖水域菌落结构的持续性变化、微生物在水产养殖中的作用以及水产养殖水域微生物群系组成变化的原因,并阐述了改善养殖水环境的生物修复技术,旨在为水产养殖环境微生物的相关研究及其管理提供参考依据。  相似文献   

2.
现代微生物识别技术在水产养殖环境研究中的应用   总被引:1,自引:0,他引:1  
养殖环境的恶化已成为制约水产业健康发展的瓶颈。鉴于微生物在养殖水体中的重要作用,本文从技术角度对近年来发展起来的现代微生物分子识别技术进行了概括介绍,并综述了以核酸为靶分子和以微生物表面抗原为靶分子的两类微生物识别技术在水产养殖中的应用进展,为水产养殖环境的改善及其病害防治提供参考。  相似文献   

3.
微生态制剂在水产养殖中的应用   总被引:14,自引:0,他引:14  
随着健康养殖发展的需求,微生态制剂在水产动物中的应用逐渐成为当今的研究热点。有益菌在提高人和动物营养和防病方面的作用已得到证实。关于高等动植物的生物防治理论也应用于水产养殖中,微生态制剂的应用作为抗生素的替代品逐渐成为水产养殖动物病害防治的一种生物控制模式。本文简要介绍了微生态制剂概念的形成和发展过程,分别在营养特性、免疫特性和改善养殖生态环境三个方面阐述了其在水产养殖中的应用。虽然,微生态制剂在水产中的应用取得了一定的成效,但是仍然处于发展的初级阶段,有待进一步的研究。文章还阐明了微生态制剂的生产工艺和施用原则,最后就微生态制剂的应用问题提出了作者自己的观点和展望。  相似文献   

4.
Double-crested cormorants (Phalacrocorax auritus) and great egrets (Ardea alba) have an extensive history of human-wildlife conflict with the aquaculture industry of western Mississippi, USA, due to their depredation of cultured catfish (Ictalurus spp.). Although aquaculture is abundant, western Mississippi also contains naturally occurring water bodies that offer alternative forage opportunities to these species. How cormorants or egrets distribute themselves among these 2 foraging options is unknown, but it has been generally assumed each species uses aquaculture disproportionately more because of the high density of available prey. To test this assumption, we surveyed these species on aquaculture and naturally occurring water bodies using aerial surveys from October through April of 2015–2016, 2016–2017, and 2017–2018. We modeled the proportion of each species on aquaculture as a function of year, date, and weather-related variables using quasi-binomial generalized linear models. Egrets used aquaculture consistently more than what was proportionally available to them and use was not influenced by any of the variables we measured. Proportional use of aquaculture by cormorants was lowest during October through January but steadily increased through April, indicating a distribution shift toward aquaculture in the months immediately prior to their migration. The highest proportional use of aquaculture by cormorants occurred in 2016, a year when lethal control measures were not allowed against cormorants. Conversely, the least proportion of cormorants on aquaculture was in 2015 when cormorants could be lethally controlled under authority of an Aquaculture Depredation Order. This trend highlights the potential influence of changes in mortality risk, caused by changes in policy regarding lethal take of cormorants, on cormorant distribution between foraging options. © 2020 The Wildlife Society.  相似文献   

5.
稻渔综合种养的科学范式   总被引:2,自引:0,他引:2  
管卫兵  刘凯  石伟  宣富君  王为东 《生态学报》2020,40(16):5451-5464
21世纪是渔业的世纪。中国和世界水产业历经数十年的发展为人类应对食品危机做出了巨大贡献。然而,我国传统的水产业对产量的片面追求导致养殖环境日趋恶化,养殖生态系统不断退化,养殖业的可持续发展受到限制。传统稻田其氮素的流失亦是导致农业面源污染的主要原因之一。我国当前的环境问题源于复合生态系统演化进程的缺陷,解决当前的环境问题,必须从优化复合生态系统演化进程着眼。采用优化的生态循环水产养殖模式,如综合水产养殖则可以大大提高氮、磷等养分物质的利用率。稻渔综合种养是一种科学的复合生态模式,可以概括为三种模式,一种是在我国传统稻田养鱼的基础上,逐步发展起来的一种稻渔共生模式,可采取稻鱼、稻蟹、稻虾等多种共作形式;二是稻田作为湿地用于处理水产养殖尾水的模式,属于异位处理形式;三是将稻渔共生和水产养殖相耦合的模式,尤其是与多种水产养殖形式结合或与复合水产养殖系统相结合,甚至是与农牧系统相结合。这第三种稻渔共作模式又称为陆基生态渔场,具有高产、高品质、高生态可持续性等特点,应加强对该创新养殖模式中有机碳、氮、磷等营养收支平衡和循环利用的相关机制以及复合生态系统对外源营养输入的整体响应机制开展研究。概括而言,尾水排放是传统池塘养殖中氮源的主要流失途径,颗粒物吸附沉降是池塘养殖中磷源的主要流失途径,而系统中的碳源则主要是通过鱼类等生物的呼吸作用进行消耗。基于生态循环的"稻渔共生-池塘复合生态系统"则恰好可以解决这三大类营养物质在生态系统中的高效保持和利用问题,实践业已证明该复合系统拥有较高的产量、品质和生态效益,是一种可持续的农业发展模式。稻渔复合生态系统的创新模式因其特有的生态循环机制及系统的高弹性、高缓冲性、高可持续性,将成为我国乃至世界应对农田、渔业生态系统的退化,复合高效解决渔业、农业或农牧业生态环境问题的典型范式。  相似文献   

6.

This study investigated whether aquaculture facilities drive the introduction and establishment of the non-native Nile tilapia (Orechromis niloticus) in Neotropical streams, Brazil. Samples were taken from nine streams with different aquaculture occupation intensities (no, moderate, and intense) using the percentage of occupation of micro-watersheds by aquaculture ponds as a proxy for propagule pressure. The presence of aquaculture facilities and the percentage of aquaculture occupation were good predictors of the catch frequency and of densities of tilapias in the adjacent natural environment. In the streams under intense propagule pressure, females prevailed and high densities of young individuals comparing to adults were recorded. It suggests that the species was reproductively successful in the natural environment. In the streams under moderate propagule pressure, males prevailed, which indicates the likely capture of individuals escaped from aquaculture facilities. In general, our results show the positive influence of propagule pressure on the introduction and establishment of Nile tilapia in natural ecosystems, showing that aquaculture expansion of O. niloticus poses a threat to the conservation of aquatic biodiversity.

  相似文献   

7.
Marine sponges in the genus Ircinia are known to be good sources of secondary metabolites with biological activities. A major obstacle in the development of sponge-derived metabolites is the difficulty in ensuring an economic, sustainable supply of the metabolites. A promising strategy is the ex situ culture of sponges in closed or semiclosed aquaculture systems. In this study, the marine sponge Ircinia strobilina (order Dictyoceratida: family Irciniidae) was collected from the wild and maintained for a year in a recirculating aquaculture system. Microbiological and molecular community analyses were performed on freshly collected sponges and sponges maintained in aquaculture for 3 months and 9 months. Chemical analyses were performed on wild collected sponges and individuals maintained in aquaculture for 3 months and 1 year. Denaturing gradient gel electrophoresis was used to assess the complexity of and to monitor changes in the microbial communities associated with I. strobilina. Culture-based and molecular techniques showed an increase in the Bacteroidetes and Alpha- and Gammaproteobacteria components of the bacterial community in aquaculture. Populations affiliated with Beta- and Deltaproteobacteria, Clostridia, and Planctomycetes emerged in sponges maintained in aquaculture. The diversity of bacterial communities increased upon transfer into aquaculture.  相似文献   

8.
Genetic variation of aquaculture broodstocks of the Siberian sturgeon of different origin from 13 farms across the Russian Federation was assessed at five tetraploid microsatellite loci and the mitochondrial DNA control region. At present, in aquaculture stocks of Siberian sturgeon originating from the Lena and Ob rivers, a sharp decline of haplotype diversity is observed. The most part of aquaculture individuals carry two major haplotypes characteristic of the European part of Russia (the Lena aquaculture) and two haplotypes characteristic of the western part of Siberia (the Ob aquaculture). According to the results of the microsatellite analysis, in sturgeon aquaculture stock originating from the Lena River, two genetic clusters can be distinguished. One of these clusters is represented by the stocks composed of inbred individuals and, because of this, is characterized by depleted allelic variation and the loss of rare alleles.  相似文献   

9.
Mangroves are unique intertidal halophyte formations growing in sheltered tropical and subtropical coastal areas. Due to the increasing population and economic development, mangroves have faced degradation and loss, which has been mainly caused by land conversion into aquaculture ponds in Asia. In the past several decades, the rapid growth of aquaculture has induced water pollution. Using mangroves for effluent treatment from coastal aquaculture ponds could be a suitable approach for wastewater treatment and healthy aquaculture development. An Integrated Mangrove-Aquaculture System (IMAS) was established to test whether the idea of a mangrove in situ treatment for aquaculture wastewater is feasible. The monocultures of three mangroves, Sonneratia caseolaris, Kandelia obovata, and Aegiceras corniculatum were established with area proportions of 45%, 30%, or 15%, respectively. One control pond without mangroves was also set up. The results indicated that the mangroves had different tolerabilities to long-term inundation. The aquaculture ponds had different fishery yields, considering the mangrove species and area proportions. The water quality of most of the experimental ponds was better than the control pond, except for the planted Sonneratia. It is concluded that mangroves can reduce the concentration of dissolved inorganic nitrogen and phosphate, buffer the pH value and increase the concertration of dissolved oxygen in aquaculture water bodies effectively. It is suggested to use 15% of the Aegiceras corniculatum area to conduct in situ purification of aquaculture wastewater and to enhance aquaculture production.  相似文献   

10.
Mangroves are unique intertidal halophyte formations growing in sheltered tropical and subtropical coastal areas. Due to the increasing population and economic development, mangroves have faced degrada-tion and loss, which has been mainly caused by land conversion into aquaculture ponds in Asia. In the past several decades, the rapid growth of aquaculture has induced water pollution. Using mangroves for effluent treatment from coastal aquaculture ponds could be a suitable approach for wastewater treatment and healthy aquaculture development. An Integrated Mangrove-Aquaculture System (IMAS) was established to test whether the idea of a mangrove in situ treatment for aquaculture wastewater is feasible. The monocultures of three mangroves, Sonneratia caseolaris, Kandelia obo-vata, and Aegiceras corniculatum were established with area proportions of 45%, 30%, or 15%, respectively. One control pond without mangroves was also set up. The results indicated that the mangroves had different toler-abilities to long-term inundation. The aquaculture ponds had different fishery yields, considering the mangrove species and area proportions. The water quality of most of the experimental ponds was better than the control pond, except for the planted Sonneratia. It is concluded that mangroves can reduce the concentration of dissolved inorganic nitrogen and phosphate, buffer the pH value and increase the concertration of dissolved oxygen in aqua-culture water bodies effectively. It is suggested to use 15% of the Aegiceras corniculatum area to conduct in situ purification of aquaculture wastewater and to enhance aquaculture production.  相似文献   

11.
养殖池塘生态系统文化服务价值的评估   总被引:1,自引:0,他引:1  
池塘养殖在我国已经有几千年的历史.这种生产模式不仅具有经济功能,还具有文化价值.随着我国经济与文化水平的提高,这种价值将会进一步凸显.对其生态服务价值的评估,可为渔业经济政策的制订提供科学支撑,避免政策扭曲及其所产生的政策失灵,科学地发展水产养殖业及相关休闲服务业,增加养殖经济的附加值,进而提高渔民收入,促进农村经济发展.本文以上海市青浦区淀山湖水源保护区养殖池塘作为研究对象,以实证调查数据为基础,结合该区的相关统计数据,将养殖池塘的文化价值分为游憩价值和存在价值, 并在此基础上,以旅游成本法(TCM)和条件价值评估法(CVM)分别对这两种价值进行了估算,测算了总的文化服务价值.结果表明:该区养殖池塘文化服务总价值约为每年2.13亿元,约合231296.69元·hm-2, 是该池塘养殖水产品产量市场价值的5.25倍.其中游憩价值约为1.89亿元,存在价值0.24亿元.在推动上海新农村建设的过程中,职能部门需重新认识此类系统的价值.  相似文献   

12.
植物在水产养殖废水处理中的研究进展   总被引:4,自引:0,他引:4  
杨丹菁  靖元孝 《生态科学》2008,27(6):522-526
植物在生长繁殖过程中能吸收利用、富集、吸附和固定水产养殖水体中的有机物、无机物和重金属,降低养殖水体中的TP、TN、TSS、COD和BOD。同时,植物在水体中可通过其发达的通气组织和根系传输氧气,为微生物和其他生物的代谢活动提供适宜的条件。选择合适的植物构建人工湿地,通过人工湿地中植物、微生物和基质的物理作用、化学作用和生物作用处理水产养殖废水,可建立循环的水产养殖模式。将植物应用于水产养殖废水的处理,是实现可持续发展的生态型水产养殖的基础。本文综述了近年来藻类和高等植物在水产养殖废水处理中的研究进展。  相似文献   

13.
Ecologically friendly aquaculture crops, such as seaweeds, herbivores, omnivores, and detritivores can be cultured using relatively less of our limited natural resources and produce relatively less pollution. They also top FAO’s estimates of aquaculture crops for the 21st century. These crops already comprise nearly 90% of global aquaculture tonnage, >90% of all aquaculture production in China and >60% of production even in North America. Consumers prefer them, most likely due to their low prices. Production costs of organisms low on the food chain are low due to the ability of these organisms to efficiently utilize low-cost, mostly plant-based diets and to recycle their own waste. Thus, ecologically friendly aquaculture is not a dream but a dominant global reality. The less ecologically-friendly aquaculture of salmon, sea bream, fed shrimp, among others, has attracted public opposition to aquaculture, but these crops totaled approximately only 10% of global production in 2004. The profitability of industrialized monocultures of these crops is threatened further by rising costs of energy and feed, environmental regulation compliance, disease, and public opposition. Current monoculture practices and perceptions intrinsic to the aquaculture industry can be turned around into a vision of sustained profitable expansion of carnivores production with trophically lower organisms in ecologically-balanced aquaculture farms. This category of aquaculture, which is the modern intensive form of polyculture practiced in Asia, feeds the waste of carnivore culture to lower trophic level organisms, primarily algae and mollusks. Species are selected based on their ecological functions in addition to their economic potential. Ecologically-balanced farms turn the costly treatment of carnivore waste outside the farm to a revenue-generating process of biofiltration, conversion, and resource recovery into plant and mollusk crops inside the farm. In doing so, they solve several of the major problems faced by modern aquaculture. The aquaculture industry can protect its own interests – and reap major benefits – by understanding the importance of ecological balance, the potential of seaweeds as components in feeds, and the importance of the culture and R&D of low trophic level organisms. The industry should also accept the relevance of environmental, social, and image aspects of aquaculture to its success. Governments have the tools to reward multi-trophic farms with seaweeds by means of tax credits and nutrient credits and to penalize unbalanced monoculture approaches by means of ‘polluter pays’ fines, thereby providing the multi-trophic farms with a significant economic advantage. Such measures have been discussed, but their implementation has been slow.  相似文献   

14.
Recirculating aquaculture systems are highly intensive culture systems that actively filter and reuse water, thus minimizing water requirements and creating relatively small volumes of concentrated waste (compared to flow-through aquaculture systems). Vermicomposting, which uses earthworms to stabilize and transform organic wastes into valuable end-products, has been proposed as an alternative treatment technology for high-moisture-content organic wastes from agricultural, industrial and municipal sources. This study was conducted to determine if the effluent solids from a large recirculating aquaculture facility (Blue Ridge Aquaculture, Martinsville, Virginia) were suitable for vermicomposting using the earthworm Eisenia fetida. In two separate experiments, worms were fed mixtures of solids removed from aquaculture effluent (sludge) and shredded. Mixtures containing 0%, 5%, 10%, 15%, 20%, 25%, and 50% aquaculture sludge (dry weight basis) were fed to the worms over a 12-week period and their growth (biomass) was measured. Worm mortality, which occurred only in the first experiment, was not influenced by feedstock sludge concentration. In both experiments worm growth rates tended to increase with increasing sludge concentration, with the highest growth rate occurring with feedstocks containing 50% aquaculture sludge. Effluent solids from recirculating aquaculture systems mixed with shredded cardboard appear to be suitable feedstocks for vermicomposting.  相似文献   

15.
Strict environmental restrictions force the aquaculture industry to guarantee optimal water quality for fish production in a sustainable manner. The implementation of anammox (anaerobic ammonium oxidation) in biofilters would result in the conversion of both ammonium and nitrite (both toxic to aquatic animals) into harmless dinitrogen gas. Both marine and freshwater aquaculture systems contain populations of anammox bacteria. These bacteria are also present in the faeces of freshwater and marine fish. Interestingly, a new planctomycete species appears to be present in these recirculation systems too. Further exploitation of anammox bacteria in different compartments of aquaculture systems can lead to a more environmentally friendly aquaculture practice.  相似文献   

16.
For many of the world’s poor, aquatic products are critical for food security and health. Because the global population is increasing as wild aquatic stocks are declining, aquaculture is an increasingly important source of aquatic products. We undertook a scoping review of the English-language peer-reviewed literature to evaluate how the research community has examined the impacts of aquaculture on four key determinants of human health: poverty, food security, food production sustainability, and gender equality. The review returned 156 primary research articles. Most research (75%) was focused in Asia, with limited research from Africa (10%) and South America (2%). Most research (80%) focused on freshwater finfish and shrimp production. We used qualitative content analysis of records which revealed 11 themes: famer income; the common environment; shared resources; integrated farming/ polyculture; employment; extensive vs. intensive production; local vs. distant ownership; food security; income equity; gender equality; and input costs. We used quantitative content analysis of records and full-text publications about freshwater finfish and shrimp aquaculture to record the frequency with which themes were represented and the positive or negative impacts of aquaculture associated with each theme. Scatter plots showed that no theme was identified in more than half of all articles and publications for both production types. Farmer income was a theme that was identified commonly and was positively impacted by both shrimp and fresh water finfish aquaculture. Polyculture, employment, and local ownership were identified less often as themes, but were also associated with positive impacts. The common environment and shared resources were more common themes in shrimp aquaculture than freshwater finfish aquaculture research, while polyculture and local ownership were more common themes in freshwater finfish aquaculture than shrimp aquaculture. Gender equality, employment, and food security were themes found in a lower percentage of records than full-text publications for both production types.  相似文献   

17.
Biofouling in marine aquaculture is one of the main barriers to efficient and sustainable production. Owing to the growth of aquaculture globally, it is pertinent to update previous reviews to inform management and guide future research. Here, the authors highlight recent research and developments on the impacts, prevention and control of biofouling in shellfish, finfish and seaweed aquaculture, and the significant gaps that still exist in aquaculturalists’ capacity to manage it. Antifouling methods are being explored and developed; these are centred on harnessing naturally occurring antifouling properties, culturing fouling-resistant genotypes, and improving farming strategies by adopting more sensitive and informative monitoring and modelling capabilities together with novel cleaning equipment. While no simple, quick-fix solutions to biofouling management in existing aquaculture industry situations have been developed, the expectation is that effective methods are likely to evolve as aquaculture develops into emerging culture scenarios, which will undoubtedly influence the path for future solutions.  相似文献   

18.
The development of sustainable integrated aquaculture systems requires combining fed aquaculture (finfish) with extractive inorganic aquaculture (seaweed) and extractive organic aquaculture (shellfish). With the support of AquaNet, the Network of Centers of Excellence in Aquaculture in Canada, we are developing such a system at an industrial pilot scale by co-cultivating salmon (Salmo salar), kelp ( Laminaria saccharina ) and blue mussel ( Mytilus edulis ) at aquaculture sites in the Bay of Fundy, Canada. This presentation will focus on the development of the extractive inorganic component. The entire cycle of rearing Laminaria saccharina has been completed and improved, both in the laboratory and at the integrated sites: release in the laboratory of spores from mature macroscopic sporophytes, seeding of ropes, germination of microscopic gametophytes, sexual maturation of male and female gametophytes, development of zygotes into juvenile sporophytes, which are then transplanted to the sites for rapid grow-out. Another aspect of the project, food safety monitoring of chemical therapeutants and phycotoxins in mussel and kelp cultured in proximity to salmon, will also be described. The productivity, nutrient absorption capacity, and role of the seaweed component are being analyzed so that its appropriate scale to the other components can be defined in order to develop responsible aquaculture practices in which metabolic/physiological processes of the different co-cultured organisms counter-balance each other within acceptable operational limits. Adopting polytrophic strategies will be key to the aquaculture industry to develop its environmentally and economically-balanced diversification and increase its social acceptability within a broader coastal management framework.  相似文献   

19.
Wastes have been rightly referred to as resources out of place. Since household wastewater often intermixes with effluents from industries and agricultural runoff, multidimensional approaches have been made towards maximizing protein production through rational exploitation of available resources. Sewage-fed aquaculture is a unique system and has manifold advantages in developing tropical countries acting as a major source of nutrients for crop farming and aquaculture, economical for sustainable production and helps to combat environmental pollution. The use of municipal wastewater fed to fertilize ponds began in Calcutta in the 1930s; the city now has perhaps the largest wastewater-fed aquaculture system in the world. A large number of people derive their livelihood from the sewage-fed aquaculture using the principles of systems ecology and applying it through ecological engineering. The subject of sewage-fed aquaculture is reviewed in terms of source, chemical nature, diversity pattern, recycling practices, production potential of aquaculture, environmental issues and safety measures for ecofriendly sustainable environmental management strategies.  相似文献   

20.
Marine aquaculture is expanding into deeper offshore environments in response to growing consumer demand for seafood, improved technology, and limited potential to increase wild fisheries catches. Sustainable development of aquaculture will require quantification and minimization of its impacts on other ocean‐based activities and the environment through scientifically informed spatial planning. However, the scientific literature currently provides limited direct guidance for such planning. Here, we employ an ecological lens and synthesize a broad multidisciplinary literature to provide insight into the interactions between offshore aquaculture and the surrounding environment across a spectrum of spatial scales. While important information gaps remain, we find that there is sufficient research for informed decisions about the effects of aquaculture siting to achieve a sustainable offshore aquaculture industry that complements other uses of the marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号