首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathogenicity and reproduction of single and combined populations of Meloidogyne arenaria and M. incognita on a susceptible soybean (Glycine max cv. Davis) were investigated. Significant galling and egg mass production were observed on roots of greenhouse-grown soybean inoculated with M. arenaria and M. incognita, in combination and individually. M. arenaria produced more galls and egg masses than M. incognita, whereas in combined inoculation with both nematode species, gall and egg production was intermediate. In growth chamber tests, inoculations with M. arenaria and M. incognita, singly or in combination, produced more galls and egg masses at 30 C than at 25 C. At 25 C, M. arenaria alone produced significantly more galls and egg masses than the combined M. arenaria plus M. incognita, while M. incognita produced the fewest. At 30 C, numbers of egg masses produced by M. arenaria did not differ significantly from combined M. arenaria and M. incognita. In temperature tank tests, M. incognita produced more galls and egg masses at 28 C than at 24 C soil temperature. In contrast, numbers of galls, egg masses, and eggs of M. arenaria were slightly higher at 24 C than at 28 C. Combined inoculum of both nematode species produced greater numbers of galls at 24 C than at 28 C.  相似文献   

2.
Thirty populations of Meloidogyne of diverse geographic origin representing 10 nominal species and various reproductive, cytological, and physiological forms known to exist in the genus were examined to determine their enzymatic relationships. The 184 bands resolved in the study of 27 enzymes were considered as independent characters. Pair-wise comparisons of populations were performed in all possible combinations to estimate the enzymatic distances (ED) and coefficients of similarity (S). A phylogenetic tree was constructed. The apomictic species M. arenaria, M. microcephala, M. javanica, and M. incognita shared a common lineage. M. arenaria was highly polytypic, whereas conspecific populations of M. javanica and M. incognita were largely monomorphic. The mitotic and meiotic forms of M. hapla were very similar (S = 0.93), suggesting that the apomictic race B evolved only recently from the meiotic race A. The five remaining meiotic species (M. chitwoodi, M. graminicola, M. graminis, M. microtyla, and M. naasi - each represented by a single population) were not closely related to each other or to the mitotic species.  相似文献   

3.
Variability in penetration, development, and reproduction of two resistance-breaking field pathotypes (pt.) of Meloidogyne arenaria, M. incognita, and a population of mixed Meloidogyne spp. virulent to grape hosts were compared on two resistant Vitis rootstocks ''Freedom'' and ''Harmony'' in separate tests. ''Cabernet Sauvignon'' was included as a susceptible host to all four nematode populations. Secondstage juveniles (J2) of the mixed population failed to penetrate Freedom roots. By contrast, 6% of J2 in the M. incognita population penetrated Freedom roots but did not develop beyond the swollen J2 stage. The two resistance-breaking populations of M. arenaria differed in their virulence except on susceptible roots of Cabernet Sauvignon. More J2 of M. arenaria pt. Freedom penetrated Freedom roots and reached adult stage than did M. arenaria pt. Harmony. Later life stages of M. arenaria pt. Freedom occurred earlier and in greater numbers in Harmony roots than did M. arenaria pt. Harmony. Reproduction of M. arenaria pt. Freedom was greater in Freedom and Harmony roots than M. arenaria pt. Harmony. Thus, one population of M. arenaria is highly virulent and the other is moderately virulent.  相似文献   

4.
Ninety-six isolates of Meloidogyne species collected from banana fields from Martinique, Guadeloupe, and French Guiana, were examined using esterase (Est) and malate dehydrogenase (Mdh) phenotypes. Adult females identified as M. arenaria, M. incognita, M. javanica, M. cruciani, M. hispanica, and Meloidogyne sp. showed species-specific phenotypes only for the esterase enzymes. Intraspecific variability among isolates of M. arenaria, M. incognita, and M. javanica was detected using Est and Mdh. Perineal patterns were used as a complementary tool together with enzyme characterization and were essential for checking the morphological consistency of the identification. The major species of M. arenaria and M. incognita were detected at 61.9% and 34.3% of the total number of isolates, respectively, and the other minor species at 3.8%. The mixed Meloidogyne species were detected in 45.1% of the samples. Genetic analysis was conducted using RAPD markers, which alone or in combination provided reliable polymorphisms both between and within species. RAPD analysis of the data resulted in clustering of species and isolates congruent with esterase phenotype characterization. The intraspecific variability in M. incognita and in M. arenaria represented 14.9% and 61.6% of the amplified polymorphic fragments, respectively. This high level of variation in M. arenaria isolates may indicate multiple origins for populations classified as M. arenaria or more than one species inside the same group, but more detailed morphological and DNA studies will be necessary to test this hypothesis.  相似文献   

5.
Bacillus penetrans inhibited penetration by Meloidogyne incognita second-stage juveniles (J2) into tomato roots in the laboratory and greenhouse. Spores from this Florida population of B. penetrans attached to J2 of M. javanica, M. incognita, and M. arenaria. A greater proportion of J2 of M. javanica were infected than were J2 of either M. incognita or M. arenaria, and a greater number of spores attached to M. incognita than to M. arenaria.  相似文献   

6.
Resistance to the southern root-knot nematode, Meloidogyne incognita races 1 and 3, has been identified, incorporated, and deployed into commercial cultivars of tobacco, Nicotiana tabacum. Cultivars with resistance to other economically important root-knot nematode species attacking tobacco, M. arenaria, M. hapla, M. javanica, and other host-specific races of M. incognita, are not available in the United States. Twenty-eight tobacco genotypes of diverse origin and two standard cultivars, NC 2326 (susceptible) and Speight G 28 (resistant to M. incognita races 1 and 3), were screened for resistance to eight root-knot nematode populations of North Carolina origin. Based on root gall indices at 8 to 12 weeks after inoculation, all genotypes except NC 2326 and Okinawa were resistant to M. arenaria race 1, and races 1 and 3 of M. incognita. Except for slight root galling, genotypes resistant to M. arenaria race 1 responded similarly to races 1 and 3 of M. incognita. All genotypes except NC 2326, Okinawa, and Speight G 28 showed resistance to M. javanica. Okinawa, while supporting lower reproduction of M. javanica than NC 2326, was rated as moderately susceptible. Tobacco breeding lines 81-R-617A, 81-RL- 2K, SA 1213, SA 1214, SA 1223, and SA 1224 were resistant to M. arenaria race 2, and thus may be used as sources of resistance to this pathogen. No resistance to M. hapla and only moderate resistance to races 2 and 4 of M. incognita were found in any of the tobacco genotypes. Under natural field infestations of M. arenaria race 2, nematode development on resistant tobacco breeding lines 81-RL-2K, SA 1214, and SA 1215 was similar to a susceptible cultivar with some nematicide treatments; however, quantity and quality of yield were inferior compared to K 326 plus nematicides.  相似文献   

7.
The objective of this experiment was to determine the effects of fenamiphos 15G and short-cycle potato (PO)-sweet potato (SP) grown continuously and in rotation with peanut (PE)-grain sorghum (GS) on yield, crop quality, and mixed nematode population densities of Meloidogyne arenaria, M. hapla, M. incognita, and Mesocriconema ornatum. Greater root-gall indices and damage by M. hapla and M. incognita occurred on potato than other crops. Most crop yields were higher and root-gall indices lower from fenamiphos-treated plots than untreated plots. The total yield of potato in the PO-SP and PO-SP-PE-GS sequences increased from 1983 to 1985 in plots infested with M. hapla or M. arenaria and M. incognita in combination and decreased in 1986 to 1987 when root-knot nematode populations shifted to M. incognita. The total yields of sweet potato in the PO-SP-PE-GS sequence were similar in 1983 and 1985, and declined each year in the PO-SP sequence as a consequence of M. incognita population density increase in the soil. Yield of peanut from soil infested with M. hapla increased 82% in fenamiphos-treated plots compared to untreated plots. Fenamiphos treatment increased yield of grain sorghum from 5% to 45% over untreated controls. The declining yields of potato and sweet potato observed with both the PO-SP and PO-SP-PE-GS sequences indicate that these crop systems should not be used longer than 3 years in soil infested with M. incognita, M. arenaria, or M. hapla. Under these conditions, these two cropping systems promote a population shift in favor of M. incognita, which is more damaging to potato and sweet potato than M. arenaria and M. hapla.  相似文献   

8.
Rates of penetration of Meloidogyne incognita, M. arenaria, and M. javanica into tobacco cultivars NC2326 (susceptible to all three species) and K399 (resistant to M. incognita) and a breeding line that had been selected for resistance to M. incognita were compared. Meloidogyne incognita penetrated NC2326 rapidly during the first 24 hours after inoculation. Numbers of M. incognita continued to increase gradually through the 14-day experiment. Higher numbers of M. incognita were observed in the roots of K399 during the first 24 hours than were observed in NC2326. The number of M. incognita in K399 peaked 4 days after inoculation, then declined rapidly as the nematodes that were unable to establish a feeding site left the root or died. Numbers of M. incognita in the breeding line followed the same pattern as with K399, but in lower numbers. Numbers of M. arenaria showed little difference between cultivars until 7 days after inoculation, then numbers increased in NC2326. Numbers of M. javanica fluctuated in all cultivars, resulting in patterns of root population different from those observed for M. incognita or M. arenaria. Resistance to M. incognita appears to be expressed primarily as an inability to establish a feeding site rather than as a barrier to penetration. Some resistance to M. arenaria may also be present in K399 and the breeding line.  相似文献   

9.
The host suitability of five zucchini and three cucumber genotypes to Meloidogyne incognita (MiPM26) and M. javanica (Mj05) was determined in pot experiments in a greenhouse. The number of egg masses (EM) did not differ among the genotypes of zucchini or cucumber, but the eggs/plant and reproduction factor (Rf) did slightly. M. incognita MiPM26 showed lower EM, eggs/plant, and Rf than M. javanica Mj05. Examination of the zucchini galls for nematode postinfection development revealed unsuitable conditions for M. incognita MiPM26 as only 22% of the females produced EM compared to 95% of the M. javanica females. As far as cucumber was concerned, 86% of the M. incognita and 99% of the M. javanica females produced EM, respectively. In a second type of experiments, several populations of M. arenaria, M. incognita, and M. javanica were tested on zucchini cv. Amalthee and cucumber cv. Dasher II to assess the parasitic variation among species and populations of Meloidogyne. A greater parasitic variation was observed in zucchini than cucumber. Zucchini responded as a poor host for M. incognita MiPM26, MiAL09, and MiAL48, but as a good host for MiAL10 and MiAL15. Intraspecific variation was not observed among the M. javanica or M. arenaria populations. Cucumber was a good host for all the tested populations. Overall, both cucurbits were suitable hosts for Meloidogyne but zucchini was a poorer host than the cucumber.  相似文献   

10.
Reproduction of Meloidogyne arenaria race 2 was excellent on Centennial, Govan, and Kirby soybeans, the latter two of which have tolerance to this species. The M. incognita race 1 isolate reproduced poorly on Centennial, especially at the higher of two temperature regimes. Numbers of galls and egg masses of M. arenaria plus M. incognita in simultaneous equivalent infestations on Centennial did not differ from sequential infestations in which M. arenaria was added first and M. incognita was added to the same pots, 1,2, or 3 weeks later. However, at both 25 and 30 C, suppression of galls and egg masses occurred when inoculation of M. incognita preceded that of M. arenaria by 2 weeks. Generally, M. arenaria reproduced well at 25 or 30 C, whereas M. incognita reproduced better at 30 C. Kirby was tolerant to either nematode species at 25 and 30 C, but in combined infestations of M. arenaria and M. incognita there was evidence of synergistic growth suppression. Govan was tolerant of M. arenaria at 25 C but not at 30 C. Moreover, general plant growth was less vigorous for Govan at the higher temperature, whereas Centennial was much more vigorous at this temperature. Kirby grew equally well at both temperatures.  相似文献   

11.
Root invasion, root galling, and fecundity of Meloidogyne javanica, M. arenaria, and M. incognita on tobacco was compared in greenhouse and controlled environment experiments. Significantly more M. javanica than M. arenaria or M. incognita larvae were found in tobacco roots at 2, 4, and 6 d after inoculation. Eight days after inoculation there were significantly more M. arenaria and M. javanica than M. incognita larvae. Ten days after inoculation no significant differences were found among the three Meloidogyne species inside the roots. Galls induced by a single larva or several larvae of M. javanica were significantly larger than galls induced by M. incognita: M. arenaria galls were intermediate in size. Only slight differences in numbers of egg masses or numbers of eggs produced by the three Meloidogyne species were observed up to 35 d after inoculation.  相似文献   

12.
Nonspecific esterases and malate dehydrogenases of 1-5 females from 40 root-knot nematode populations from Portugal were analyzed by electrophoresis in 0.4-mm-thick polyacrylamide gels. Fourteen major bands of esterase activity were detected, corresponding to 10 distinct phenotypes, Meloidogyne javanica and M. hapla had distinct species-specific phenotypes. Two phenotypes occurred in M. arenaria. The most variability was found among M. incognita populations. Of the remaining two phenotypes, one was associated with M. hispanica and the other belonged to a new species. Three malate dehydrogenase phenotypes were discerned on the basis of particular combinations of the eight main bands of activity found. As previously found, esterases were more useful than malate dehydrogenases in identification of the major Meloidogyne species. The host plant had no effect on the nematode esterase or malate dehydrogenase phenotypes.  相似文献   

13.
Populations of Pratylenchus brachyurus on cotton were increased significantly in the presence of either Meloidogyne incognita or M. arenaria.This occurred with either simultaneous inoculation or prior invasion by M. incognita. P. brachyurus penetrated cotton roots previously invaded by, or simultaneously inoculated with, M. incognita, as well as, or better than, in the absence of M. incognita. Prior invasion by M. incognita, however, suppressed P. brachyurus populations on tomato, while it had no effect on alfalfa and tobacco. Populations of M. incognita on cotton were generally inhibited by the presence of P. brachyurus. Simultaneous inoculation with, or previous invasion by, P. brachyurus also inhibited root penetration by M. incognita. These findings emphasize the importance of host susceptibility in the study of concomitant nematode populations.  相似文献   

14.
The discovery of Meloidogyne mayaguensis is confirmed in Florida; this is the first report for the continental United States. Meloidogyne mayaguensis is a virulent species that can reproduce on host cultivars bred for nematode resistance. The perineal patterns of M. mayaguensis isolates from Florida show morphological variability and often are similar to M. incognita. Useful morphological characters for the separation of M. mayaguensis from M. incognita from Florida are the male stylet length values (smaller for M. mayaguensis than M. incognita) and J2 tail length values (greater for M. mayaguensis than M. incognita). Meloidogyne mayaguensis values for these characters overlap with those of M. arenaria and M. javanica from Florida. Enzyme analyses of Florida M. mayaguensis isolates show two major bands (VS1-S1 phenotype) of esterase activity, and one strong malate dehydrogenase band (Rm 1.4) plus two additional weak bands that migrated close together. Their detection requires larger amounts of homogenates from several females. Amplification of two separate regions of mitochondrial DNA resulted in products of a unique size. PCR primers embedded in the COII and 16S genes produced a product size of 705 bp, and amplification of the 63-bp repeat region resulted in a single product of 322 bp. Nucleotide sequence comparison of these mitochondrial products together with sequence from 18S rDNA and ITS1 from the nuclear genome were nearly identical with the corresponding regions from a M. mayaguensis isolate from Mayaguez, Puerto Rico, the type locality of the species. Meloidogyne mayaguensis reproduced on cotton, pepper, tobacco, and watermelon but not on peanut. Preliminary results indicate the M. mayaguensis isolates from Florida can reproduce on tomato containing the Mi gene. Molecular techniques for the identification of M. mayaguensis will be particularly useful in cases of M. mayaguensis populations mixed with M. arenaria, M. incognita, and M. javanica, which are the most economically important root-knot nematode species in Florida, and especially when low (<25) numbers of specimens of these species are recovered from the soil.  相似文献   

15.
Males of five populations of Meloidogyne hapla were compared by scanning electron microscopy (SEM). Three populations of race A had haploid chromosome numbers of 15, 16, and 17 and reproduced by facultative parthenogenesis. Race B consisted of two mitotically parthenogenetic populations with somatic chromosome numbers of 45 and 48. Males of one population each of M. arenaria, M. incognita, and M. javanica were also examined to delineate species differences. The populations of M. arenaria, M. incognita, and M. javanica had 54, 41-43, and 44 chromosomes, respectively, and reproduction was by mitotic parthenogenesis. Observations were made on head structures, lateral field, excretory pore, and tail. The expression of labial and cephalic sensilla, shape and proportion of labial disc and lips, and markings on the head region were distinctly different for each species. The head morphology of the two cytological races of M. hapla was dissimilar. Populations of race A were different from each other and showed intrapopulation variation. Populations of race B were morphologically similar and stable in head morphology. The structure of the lateral field, excretory pore, and tail was of little value in distinguishing species or populations because of inter- and intrapopulation variation. The results are discussed in relation to earlier SEM observations of second-stage juveniles of the same populations.  相似文献   

16.
The host-parasite relationships of asparagus and Meloidogyne spp. were examined under greenhouse and microplot conditions. Meloidogyne species and races differed greatly in their ability to reproduce on asparagus seedlings. Meloidogyne hapla generally failed to reproduce, and M. javanica, M. arenaria race 1, and M. incognita race 3 reproduced poorly, with a reproduction factor (Rf = final population/initial population) usually < 1.0. Only M. arenaria race 2 and M. incognita races 1 and 4 reproduced consistently on all asparagus cultivars tested (Rf typically 1-11). No effect of M. incognita race 4 on host growth was detected. Meloidogyne arenaria race 2 and M. incognita race 1 had slight negative effects (5-10%) on plant and root growth.  相似文献   

17.
1,3-Dichloropropene (1,3-D) at rates of 17.2 to 51.6 liters/ha applied 3 days preplant or at planting significantly (P < 0.05) reduced the amount of galling on roots of soybean grown in sites infested with Meloidogyne incognita or M. arenaria. Populations of M. incognita second-stage juveniles at harvest were significantly (P < 0.05) reduced by all treatments. Only the 51.6-liters/ ha treatments and a 3-day preplant 34.4-liters/ha application significantly reduced at-harvest juvenile infestations of M. arenaria. Equations (P < 0.001) relating soybean yield and 1,3-D dosage indicated soybean phytotoxicity at the upper range of the nematicide rates. The maximum yield response was predicted at 40 liters/ha applied 3 days preplant at both infestation sites. Maximum yield response was predicted with 30 liters/ha applied at planting to M. incognita-infested soil and from 25 liters/ha applied at planting to M. arenaria-infested soil. Application of economic factors suggested that management of M. incognita may be cost effective with at-plant treatments of low rates of 1,3-D. Yield responses of M. arenaria-infected soybean exposed to similar treatments were insufficient to justify their use at prevailing prices.  相似文献   

18.
External morphology of second-stage juveniles of six populations of Meloidogyne hapla, hclonging to two cytological races (A and B), and one population each of M. arenaria, M. incognita, and M. javanica was compared by scanning electron microscopy (SEM). Race A of M. hapla included three facultatively parthenogenetic populations with haploid chromosome numbers of 15. 16, and 17; race B consisted of three mitotically parthenogenetic populations with somalic chromosome numhers of 45, 45, and 48. The mitotically parthenogenetic populations of M. arenaria, M. incognita, and M. javanica had 54, 41-43, and 44 chromosomes, respectively. Observations were made on head structures, lateral field, excretory pore, anal opening, and tail. Head morphology, including shape and proportion of labial disc and lips, expression of labial and cephalic sensilla, and markings on head region, was distinctly different for each species. M. hapla populations of race A were distinct from each other but showed much intrapopulatiou variation in head morphology. Populations of race B were different from those of race A and were very stable and quite similar in head morphology. Considerable inter- and intrapopulatiou variation made the structure of the lateral field, excretory pore, anal opening, and tail of little value in distinguishing species or populations. The results are discussed in relation to earlier SEM observations on the genus Helerodera.  相似文献   

19.
Head shape and stylet morphology of males of 90 populations of M. arenaria, M. hapla, M. incognita, and M. javanica from geographic regions of the world were compared by light microscopy (LM). In addition, stylets of one population each of M. arenaria, M. incognita, and M. javanica and three different chromosomal forms of M. hapla race A and two of race B were excised and examined with a scanning electron microscope (SEM). Differences among species occurred in both head and stylet morphology. Head morphology differed in size and shape of the head cap, annulation of the head region, and width of the head region relative to the first body annule. Differences in stylets occurred in size and shape of the cone, shaft, and knobs. All populations of M. hapla, except one, had similar head morphology, but stylet morphology was different between cytological races A and B. Populations of M. javanica varied with respect to the presence of head annulations. Head shape and stylet morphology of males are recommended as additional characters useful in the identification of root-knot nematodes.  相似文献   

20.
Detection of EcoRI restriction fragment length differences in repetitive DNA sequences permitted the rapid diagnosis, by genotype, of randomly selected populations of Meloidogyne incognita, Races 1, 2, 3, and 4; M. javanica; M. arenaria, Races 1 and 2; and M. hapla, Races A and B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号