首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells receive signals from the extracellular matrix through receptor-dependent interactions, but they are also influenced by the mechanical properties of the matrix. Although bulk properties of substrates have been shown to affect cell behavior, we show here that nanoscale properties of collagen fibrils also play a significant role in determining cell phenotype. Type I collagen fibrils assembled into thin films provide excellent viewing of cells interacting with individual fibrils. Cells can be observed to extensively manipulate the fibrils, and this behavior seems to result in an incompletely spread stellate morphology and a nonproliferative phenotype that is typical of these cells in collagen gels. We show here that thin films of collagen fibrils can be dehydrated, and when seeded on these dehydrated fibrils, smooth muscle cells spread and proliferate extensively. The dehydrated collagen fibrils appear to be similar to the fully hydrated collagen fibrils in topology and in presentation of β1 integrin ligation sites, but they are mechanically stiffer. This decrease in compliance of dehydrated fibrils is seen by a failure of cell movement of dehydrated fibrils compared to their ability to rearrange fully hydrated fibrils and from direct measurements by nanoindentation and quantitative atomic force measurements. We suggest that increase in the nanoscale rigidity of collagen fibrils can cause these cells to assume a proliferative phenotype.  相似文献   

2.
Summary The contributions of the kidneys, the small intestine and the lower intestine (rectum plus cloaca) to water conservation during dehydration in unanaesthetized, unrestrained house sparrows (Passer domesticus) were assessed. Thirty hours of acute dehydration resulted in a 12% loss in body mass and a significant increase in plasma osmolality. Glomerular filtration rate declined by 55%, from 7.7 to 3.5 ml/h, and urine flow rate delined by more than 80%, from 0.2 to 0.03 ml/h. These changes are likely attributable to a large increase in plasma levels of arginine vasotocin during dehydration, from <26 pg/ml in hydrated birds to greater than 200 pg/ml after 30 h dehydration. Flow of water from the ileum to the lower intestine was reduced during dehydration, primarily because of a reduced flow of dry matter (with no significant reduction in water content). The rate of water loss in the excreta declined from 0.2 ml/h in hydrated birds to 0.04 ml/h in dehydrated birds. The rate of water reabsorption in the lower intestine (equal to the rate of water loss in the excreta minus the combined rates of inflow into the lower intestine from the urine and the ileal contents) slightly exceeded the rate of water flow from the ileum in both hydrated and dehydrated birds. We suggest that much of the water reabsorbed in the lower intestine of hydrated birds derives from the urine, but that primarily water from ileal contents is reabsorbed in dehydrated birds. That is, urine undergoes significant post-renal modification in hydrated but not dehydrated house sparrows.  相似文献   

3.
Blood cell flux (BCF) in ventral pelvic skin capillaries was measured in conscious unrestrained Bufo bufo, using a laser Doppler flowcytometer. Hydrated toads responded to water contact with a small but significant increase in BCF. Dehydration alone did not change the BCF in seat patch skin before water contact. However, water contact by dehydrated toads elicited a rapid 600% increase in BCF. The BCF and water uptake of dehydrated toads rehydrating in water declined over 2 h but remained significantly above the low, constant values measured in hydrated toads. Arginine vasotocin injection in hydrated toads did not change skin BCF, but water uptake increased, and urine production decreased. Injection of the beta -adrenergic agonist isoproterenol increased BCF in hydrated toads by 900% and also increased the rate of water uptake. These increases corresponded in magnitude and duration to the response to water contact observed in dehydrated toads. Injection of dehydrated toads with the beta -adrenergic antagonist propranolol significantly reduced both BCF and water uptake. These results are consistent with an autonomic reflex mediated by skin water potential receptors that regulate blood perfusion of ventral pelvic skin.  相似文献   

4.
Following a study on the changes occurring in a bdelloid species (Macrotrachela quadricornifera, Rotifera, Bdelloidea) when entering anhydrobiosis, we investigated the changes in morphology, including weight and volume during the transition from the active hydrated to the dormant anhydrobiotic state by scanning electron microscopy, confocal microscopy and light microscopy. We compared sizes and morphologies of hydrated extended, hydrated contracted and anhydrobiotic specimens. Bdelloid musculature is defined: longitudinal muscles are contracted in the hydrated contracted animal (head and foot are retracted inside the trunk), but appear loose in the anhydrobiotic animal. When anhydrobiotic, M. quadricornifera appears much smaller in size, with a volume reduction of about 60% of the hydrated volume, and its internal organization undergoes remarkable modifications. Internal body cavities, clearly distinguishable in the hydrated extended and contracted specimens, are no longer visible in the anhydrobiotic specimen. Concomitantly, M. quadricornifera loses more than 95% of its weight when anhydrobiotic; this is more than expected from the volume reduction data and could indicate the presence of space-filling molecular species in the dehydrated animal. We estimate that the majority of body mass loss and volume reduction can be ascribed to the water loss from the body cavity during desiccation.  相似文献   

5.
Cold tolerance in Tardigrada from Dronning Maud Land,Antarctica   总被引:1,自引:1,他引:0  
Survival at low temperatures was studied in three species of Tardigrada from Müihlig-Hofmannfjella, Dronning Maud Land, Antarctica. Both hydrated and dehydrated specimens of Echiniscus jenningsi, Macrobiotus furciger and Diphascon chilenense had high survival rates following exposure to -22°C for ca. 600 days, and dehydrated specimens following 3040 days at this temperature. In hydrated E. jenningsi, mortality increased with the duration of exposure from 7 to 150 days at -80°C, while mortalities of the two other species did not change. Hydrated specimens of all species were rapidly killed at -180°C, but all species exhibited good survivorship in the dehydrated state after 14 days at -180°C. In conclusion, hydrated tardigrades are able to survive extended periods at low temperatures, and dehydrated specimens are even better adapted to survive overwintering on Antarctic nunataks.  相似文献   

6.
Measurements of rectal temperature (Tre), water lost by evaporation (Eresp) and drooling, cardiac output (CO), and common carotid blood flow (CCBF) were made in dogs (mean hydrated wt 31.0 +/- 1.5 kg) running for 1 h on a level treadmill at 7.5 km/h at an ambient temperature of 25 degrees C. Each animal was studied when it was hydrated ad libitum and when it had been dehydrated by removal of drinking water until 9-10% of the initial body weight had been lost. Dehydrated exercising animals had significantly higher Tre and lower rates of Eresp, CO, and CCBF. Tre and Eresp were measured in seven animals. Average Tre during running was 39.11 +/- 0.10 degrees C in hydrated and 39.80 +/- 0.25 degrees C in dehydrated animals (P less than 0.01). Average Eresp during running was 3.9 +/- 0.3 g/min in hydrated animals and 2.3 +/- 0.3 g/min in dehydrated animals (P less than 0.01). Average CO during exercise, measured in five animals, was 11.1 +/- 0.7 1/min in the hydrated state and 8.6 +/- 0.5 1/min in the dehydrated state (P less than 0.01). Unilateral CCBF during exercise, measured in four animals, was 602 +/- 40 ml/min in the hydrated state and 418 +/- 22 ml/min in the dehydrated state (P less than 0.01). Water lost by drooling in seven exercising animals was 41.5 +/- 11 g/h when they were hydrated and 0.6 +/- 0.4 g/h when they were dehydrated. It is concluded that dehydrated dogs doing mild exercise can save water by reducing Eresp and regulating body temperature above hydrated levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A systematic study is presented of the effects of trehalose on the physical properties of extruded DPPC–cholesterol unilamellar vesicles. Particular emphasis is placed on examining how the interactions present in the hydrated state translate into those in the dehydrated state. Observations from HSDSC and DSC are used to examine the phase behavior of hydrated and dehydrated vesicles, respectively. The concentration of trehalose inside and outside the vesicles is manipulated, and is shown to affect the relative stability of the membranes. Our results show for the first time that a combination of high inner and low outer trehalose concentration is able to decrease the gel-to-liquid crystalline phase temperature (Tm), while any other combination will not. Upon dehydration, the Tm of all lipid mixtures increases. The extent of the increase depends on the trehalose distribution across the bilayer. The Tm changes in the same direction with trehalose concentration for both freeze-dried and fully hydrated samples, suggesting that the trehalose distribution across the vesicle membrane, as well as the trehalose–phospholipid interaction, is maintained upon lyophilization. The results presented in this work may aid in the formulation of systems to be used in the lyophilization of liposomes for drug delivery applications.  相似文献   

8.
The effect of acetysalicylic acid (aspirin) on thermoregulation in a warm environment was studied in hydrated and dehydrated adult rats to test the hypothesis that dehydration hyperthermia can be modified by an antipyretic drug. Metabolic rate (MR), evaporative water loss (EWL), and deep body temperature (Tb) were measured during 2 h of exposure to an ambient temperature of 36 degrees C after the rats had received an oral pellet of aspirin (100 mg.kg-1) or placebo. The dehydrated placebo group had a higher Tb and lower EWL than the hydrated placebo group. Aspirin increased MR and EWL in both hydrated and dehydrated animals. Aspirin did not affect Tb in hydrated rats, but reduced Tb by 0.2 degree C in dehydrated rats during the heat exposure. The elevation in EWL appears to be a thermoregulatory response to increased heat production in both hydrated and dehydrated animals after aspirin treatment. The possibility that aspirin may act in dehydrated animals to restore central thermosensitivity toward hydrated levels needs to be tested further.  相似文献   

9.
We performed mechanical tests on a matrix-free keratin model-hagfish slime threads-to test the hypothesis that intermediate filaments (IFs) in hydrated hard alpha-keratins are maintained in a partly dehydrated state. This hypothesis predicts that dry IFs should possess mechanical properties similar to the properties of hydrated hard alpha-keratins, and should swell more than hard alpha-keratins in water. Mechanical and swelling measurements of hagfish threads were consistent with both of these predictions, suggesting that an elastomeric keratin matrix resists IF swelling and keeps IF stiffness and yield stress high. The elastomeric nature of the matrix is indirectly supported by the inability of matrix-free IFs (i.e. slime threads) to recover from post-yield deformation. We propose a general conceptual model of the structural mechanics of IF-based materials that predicts the effects of hydration and cross-linking on stiffness, yield stress and extensibility.  相似文献   

10.
J Fitter 《Biophysical journal》1999,76(2):1034-1042
Internal molecular motions of proteins are strongly affected by environmental conditions, like temperature and hydration. As known from numerous studies, the dynamical behavior of hydrated proteins on the picosecond time scale is characterized by vibrational motions in the low-temperature regime and by an onset of stochastic large-amplitude fluctuations at a transition temperature of 180-230 K. The present study reports on the temperature dependence of internal molecular motions as measured with incoherent neutron scattering from the globular water-soluble protein alpha-amylase and from a protein-lipid complex of rhodopsin in disk membranes. Samples of alpha-amylase have been measured in a hydrated and dehydrated state. In contrast to the hydrated sample, which exhibits a pronounced dynamical transition near 200 K, the dehydrated alpha-amylase does not show an appreciable proportion of stochastic large-amplitude fluctuations and no dynamical transition in the measured temperature range of 140-300 K. The obtained results, which are compared to the dynamical behavior of protein-lipid complexes, are discussed with respect to the influence of hydration on the dynamical transition and in the framework of the glass transition.  相似文献   

11.
The transmural flow of NaCl and water occurring during the retrograde flow of ureteral urine into the coprodeum and large intestine of birds has been simulated by analogue computation. The purpose was to estimate whether a fraction of the urine (water) which in the dehydrated state is hyperosmotic to plasma can, in spite of this, be absorbed from the narrow space between the epithelium and the central faeces core. The values of urine flow, urine osmolality, osmotic permeability, net NaCl absorption rate, and solute-linked water flow determined by in vivo perfusion studies in the domestic fowl were used in the calculation. The cloacal sojourn of ureteral urine was found to result in a net water gain but at the expense of a hyperosmotic NaCl absorption. The model was further used to evaluate the quantitative influence of the system's parameters upon the fractional water absorption. This was found very sensitive to the urine osmolality, moderately sensitive to the urine flow and NaCl absorption rate and almost unaffected by the osmotic permeability of the coprodeum and large intestine within a reasonable physiological range. The change of the epithelial transport parameters from the normally hydrated to the dehydrated state resulted in a marked increase in water absorption.  相似文献   

12.
After 2 days of water deprivation in a warm climate, Papio hamadryas baboons lost 10% of their body mass, 12.5% of their total body water (3H2O) space, but only 4% of their plasma volume [Evans blue (EB) space]. Hematocrit and hemoglobin concentration as well as blood viscosity and blood pressure were not affected by thermal dehydration. Plasma colloid osmotic pressure (COP) in the dehydrated animals was, however, 8 Torr higher than in fully hydrated baboons. Total mass and concentration of plasma albumin, and protein concentration increased after dehydration. Both half times (T 1/2) of EB and T 1/2 of 131I-serum albumin were twice as high as in the dehydrated animal than in the fully hydrated ones. Incorporation rate of L-[3H]leucine in the plasma proteins was similarly higher in the dehydrated animals. The capacity of the P. hamadryas baboon to maintain its plasma volume at the expense of losses from other body fluid compartments is related to an increase in the blood COP that is brought about by a more efficient retention of albumin and an increase in its rate of synthesis.  相似文献   

13.
An improved method of counting acoustic emission (AE) events from water-stressed stems of cedar (Thuja occidentalis L.) is presented. Amplified AEs are analyzed on a real time basis by a microcomputer. The instrumentation counts AE events in a fashion nearly analogous to scintillation counting of radioactive materials.

The technique was applied to measuring ultrasonic AEs from the stems of cedar inside a pressure bomb. The shoots were originally fully hydrated. When the shoots are dehydrated in the bomb by application of an overpressure very few AEs were detected. When the bomb pressure is reduced after dehydration of the shoot, AE events could be detected. We conclude that ultrasonic AEs are caused by cavitation events (= structural breakdown of water columns in the tracheids of cedar) and not by the breaking of cellulose fibers in the wood.

  相似文献   

14.
Temperature and humidity are dominant environmental variables affecting performance of nocturnal, terrestrial amphibians. Toads are frequently active at body temperatures (T(b)) and hydration states (HS) that yield suboptimal performance. We investigated the combined effects of T(b) and HS on feeding, locomotion, and metabolism of Bufo americanus. More toads responded to the presence of prey when fully hydrated than when dehydrated, and times to orient to prey, maneuver around a barrier, and reach prey were less in hydrated than in dehydrated animals. Time to capture prey decreased with increasing T(b) in fully hydrated, but not dehydrated, toads, and hydrated animals caught prey more rapidly than did dehydrated animals. Distance traveled in 5 min and aerobic scope were affected by T(b). Generally, individuals that performed well in the feeding experiments at a particular T(b) and HS also performed well at a different T(b) and HS. The same was true for distance traveled and aerobic scope. However, within combinations of T(b) and HS, correlations between performance variables were minimal. Specialization of a particular variable resulting in high performance at a certain T(b) and HS does not appear to exact a cost in terms of performance at a different T(b) and HS.  相似文献   

15.
The purpose of these studies was to determine how plasma levels of arginine vasopressin (pAVP) are related to workload, plasma osmolality (pOsm), blood volume (BV) and plasma angiotensin II (pAII) in exercising dogs. Measurements were made in dogs running on a treadmill at 7.5 km. hr-1 at slopes of 0, 10% and 20% when they were hydrated ad lib and when they had been deprived of drinking water and also in dogs running on a 20% slope after an IV infusion of hypertonic NaCl. Dehydration increased pOsm by 6.6% and reduced BV by 10% in resting dogs. In dehydrated animals, pAVP, pAII and pOsm were elevated above hydrated levels at rest and during exercise at all three workloads. In hydrated dogs, pOsm rose during exercise at 10% and 20% slopes but pAVP rose above resting levels only at the highest workload and pAII was not affected by exercise. In dehydrated dogs, pOsm and pAVP rose during exercise at 10% and 20% slopes and pAII was elevated at the 20% slope. BV decreased during exercise at the highest workload in both hydrated and dehydrated animals. After hypertonic NaCl, pAVP rose during exercise but pOsm and pAII did not. The results suggest that both osmotic and nonosmotic factors contribute to the release of AVP in exercising dogs and that exercise leads to a leftward shift in the relationship of pAVP to pOSM which could be a result of reduced blood volume.  相似文献   

16.
To understand the effect of hydration on protein dynamics, inelastic neutron-scattering experiments were performed on staphylococcal nuclease samples at differing hydration levels: dehydrated, partially hydrated, and hydrated. At cryogenic temperatures, hydration affected the collective motions with energies lower than 5 meV, whereas the high-energy localized motions were independent of hydration. The prominent change was a shift of boson peak toward higher energy by hydration, suggesting a hardening of harmonic potential at local minima on the energy landscape. The 240 K transition was observed only for the hydrated protein. Significant quasielastic scattering at 300 K was observed only for the hydrated sample, indicating that the origin of the transition is the motion activated by hydration water. The neutron-scattering profile of the partially hydrated sample was quite similar to that of the hydrated sample at 100 K and 200 K, whereas it was close to the dehydrated sample at 300 K, indicating that partial hydration is sufficient to affect the harmonic nature of protein dynamics, and that there is a threshold hydration level to activate anharmonic motions. Thus, hydration water controls both harmonic and anharmonic protein dynamics by differing means.  相似文献   

17.
Physically cross-linked beta-lactoglobulin (BLG) protein gels containing theophylline and sulfamethoxazole low molecular weight drugs were prepared in 50% ethanol solution at pH 8 and two protein concentrations (6 and 7% (w/v)). Swelling behavior of cylindrical gels showed that, irrespective of the hydrated or dehydrated state of the gel, the rate of swelling was the highest in water. When the gels were exposed to water, they first showed a swelling phase in which their weight increased 3 and 30 times for hydrated and dehydrated gels, respectively, due to absorption of water, followed by a dissolution phase. The absorption of solvent was however considerably reduced when the gels were exposed to aqueous buffer solutions. The release behavior of both theophylline and sulfamethoxazole drugs from BLG gels was achieved in a time window ranging from 6 to 24 h. The drug release depended mainly on the solubility of the drugs and the physical state of the gel (hydrated or dry form). Analysis of drug release profiles using the model of Peppas showed that diffusion through hydrated gels was governed by a Fickian process whereas diffusion through dehydrated gels was governed partly by the swelling capacities of the gel but also by the structural rearrangements inside the network occurring during dehydration step. By a judicious selection of protein concentration, hydrated or dehydrated gel state, drug release may be modulated to be engineered suitable for pharmaceutical as well as cosmetics and food applications.  相似文献   

18.
Three male humans were subjected repeatedly to 20 min exercise on a bicycle ergometer: twice when hydrated normally and twice when dehydrated. Tympanic (Tty) and oesophageal (Tes) temperatures were recorded and sweat rates on forehead and back were measured. Dehydration did not change the forehead sweat rate, but on the back it reduced significantly, resulting in an increase of Tes. However, Tty was decreased by dehydration. 20 min after the end of exercise subjects were allowed to drink water in order to trigger the potohidrotic response. A potohidrotic response was noted on the back of dehydrated subjects only. It is concluded that dehydration results in active inhibition of sweating on the body but not on the forehead, where evaporation is needed for selective cooling of the brain.  相似文献   

19.
To monitor the fast compaction process during protein folding, we have used a stopped-flow small-angle X-ray scattering technique combined with a two-dimensional charge-coupled device-based X-ray detector that makes it possible to improve the signal-to-noise ratio of data dramatically, and measured the kinetic refolding reaction of alpha-lactalbumin. The results clearly show that the radius of gyration and the overall shape of the kinetic folding intermediate of alpha-lactalbumin are the same as those of the molten globule state observed at equilibrium. Thus, the identity between the kinetic folding intermediate and the equilibrium molten globule state is firmly established. The present results also suggest that the folding intermediate is more hydrated than the native state and that the hydrated water molecules are dehydrated when specific side-chain packing is formed during the change from the molten globule to the native state.  相似文献   

20.
Measurements are reported of ultrasonic acoustic emissions (AEs) measured from sapwood samples of Thuja occidentalis L. and Tsuga canadensis (L.) Carr. during air dehydration. The measurements were undertaken to test the following three hypotheses: (a) Each cavitation event produces one ultrasonic AE. (b) Large tracheids are more likely to cavitate than small tracheids. (c) When stem water potentials are >−0.4 MPa, a significant fraction of the water content of sapwood is held by `capillary forces.' The last two hypotheses were recently discussed at length by M. H. Zimmermann. Experimental evidence consistent with all three hypotheses was obtained. The evidence for each hypothesis respectively is: (a) the cumulative number of AEs nearly equals the number of tracheids in small samples; (b) more water is lost per AE event at the beginning of the dehydration process than at the end, and (c) sapwood samples dehydrated from an initial water potential of 0 MPa lost significantly more water before AEs started than lost by samples dehydrated from an initial water potential of about −0.4 MPa. The extra water held by fully hydrated sapwood samples may have been capillary water as defined by Zimmerman.

We also report an improved method for the measurement of the `intensity' of ultrasonic AEs. Intensity is defined here as the area under the positive spikes of the AE signal (plotted as voltage versus time). This method was applied to produce a frequency histogram of the number of AEs versus intensity. A large fraction of the total number of AEs were of low intensity even in small samples (4 mm diameter by 10 mm length). This suggests that the effective `listening distance' for most AEs was less than 5 to 10 mm.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号