首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In songbirds, species identity and developmental experience shape vocal behavior and behavioral responses to vocalizations. The interaction of species identity and developmental experience may also shape the coding properties of sensory neurons. We tested whether responses of auditory midbrain and forebrain neurons to songs differed between species and between groups of conspecific birds with different developmental exposure to song. We also compared responses of individual neurons to conspecific and heterospecific songs. Zebra and Bengalese finches that were raised and tutored by conspecific birds, and zebra finches that were cross‐tutored by Bengalese finches were studied. Single‐unit responses to zebra and Bengalese finch songs were recorded and analyzed by calculating mutual information (MI), response reliability, mean spike rate, fluctuations in time‐varying spike rate, distributions of time‐varying spike rates, and neural discrimination of individual songs. MI quantifies a response's capacity to encode information about a stimulus. In midbrain and forebrain neurons, MI was significantly higher in normal zebra finch neurons than in Bengalese finch and cross‐tutored zebra finch neurons, but not between Bengalese finch and cross‐tutored zebra finch neurons. Information rate differences were largely due to spike rate differences. MI did not differ between responses to conspecific and heterospecific songs. Therefore, neurons from normal zebra finches encoded more information about songs than did neurons from other birds, but conspecific and heterospecific songs were encoded equally. Neural discrimination of songs and MI were highly correlated. Results demonstrate that developmental exposure to vocalizations shapes the information coding properties of songbird auditory neurons. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 70: 235–252, 2010.  相似文献   

3.
The antiapoptotic protein Bcl-xL is associated with several neuroplastic processes such as formation of synapses, regulation of spontaneous and evoked synaptic responses, and release of neurotransmitters. Dependence of expression on activity of neurons is characteristic for many proteins participating in regulation of neuroplasticity. Whether such property is exhibited by the Bcl-xL protein was analyzed using in vivo optogenetic stimulation of hippocampal glutamatergic neurons expressing channelrhodopsin ChR2H134 under CAMKIIa promoter in the adeno-associated viral vector, followed by immunohistochemical determination of the level of Bcl-xL protein in these neurons and surrounding cells. Increase in the level of early response c-Fos protein following illumination with blue light was indicative of activation of these hippocampal neurons. The optogenetic activation of hippocampus resulted in a significant increase in the level of antiapoptotic protein Bcl-xL in the photosensitive neurons as well as in the surrounding cells. The dependence of the level of expression of Bcl-xL protein on the activity of neurons indicates that this protein possesses one more important property that is essential for participation in neuroplastic processes in the brain.  相似文献   

4.
Activation of dopamine receptors in forebrain regions, for minutes or longer, is known to be sufficient for positive reinforcement of stimuli and actions. However, the firing rate of dopamine neurons is increased for only about 200 milliseconds following natural reward events that are better than expected, a response which has been described as a "reward prediction error" (RPE). Although RPE drives reinforcement learning (RL) in computational models, it has not been possible to directly test whether the transient dopamine signal actually drives RL. Here we have performed optical stimulation of genetically targeted ventral tegmental area (VTA) dopamine neurons expressing Channelrhodopsin-2 (ChR2) in mice. We mimicked the transient activation of dopamine neurons that occurs in response to natural reward by applying a light pulse of 200 ms in VTA. When a single light pulse followed each self-initiated nose poke, it was sufficient in itself to cause operant reinforcement. Furthermore, when optical stimulation was delivered in separate sessions according to a predetermined pattern, it increased locomotion and contralateral rotations, behaviors that are known to result from activation of dopamine neurons. All three of the optically induced operant and locomotor behaviors were tightly correlated with the number of VTA dopamine neurons that expressed ChR2, providing additional evidence that the behavioral responses were caused by activation of dopamine neurons. These results provide strong evidence that the transient activation of dopamine neurons provides a functional reward signal that drives learning, in support of RL theories of dopamine function.  相似文献   

5.
The initial stage of information processing by the visual system reduces the information contained in the continuous image on the retina into a discrete set of responses which are carried from the lateral geniculate nucleus (LGN) to the visual cortex.-1. The optimal sampling of the light intensity distribution in the visual environment is achieved only if each channel in the visual pathways carries undistorted information corresponding to an image element. The visual system approaches as closely as possible the scheme of optimal spatial sampling, retaining the full information on the low spatial frequency content of the object light intensity. The ideal receptive field of a sustained LGN cell is then of the form J 1 (Kr)/Kr.-2. The experimentally determined receptive fields of sustained LGN cells (and to some extent retinal ganglion cells as well) in cat closely resemble the functional form J 1 (Kr)/Kr. The centre-surround organization of the receptive fields is therefore understood as a scheme which leads to a maximal information flow through the visual pathways.-3. The optimal sampling scheme cannot be realized by the retina alone, because of restrictions on the size of neural networks. It is therefore constructed in two stages, ending at the LGN level. A recombination of ganglion cell signals into optimal receptive fields is a major role of the LGN.  相似文献   

6.
Spinal microglia are highly responsive to peripheral nerve injury and are known to be a key player in pain. However, there has not been direct evidence showing that selective microglial activation in vivo is sufficient to induce chronic pain. Here, we used optogenetic approaches in microglia to address this question employing CX3CR1creER/+: R26LSL-ReaChR/+ transgenic mice, in which red-activated channelrhodopsin (ReaChR) is inducibly and specifically expressed in microglia. We found that activation of ReaChR by red light in spinal microglia evoked reliable inward currents and membrane depolarization. In vivo optogenetic activation of microglial ReaChR in the spinal cord triggered chronic pain hypersensitivity in both male and female mice. In addition, activation of microglial ReaChR up-regulated neuronal c-Fos expression and enhanced C-fiber responses. Mechanistically, ReaChR activation led to a reactive microglial phenotype with increased interleukin (IL)-1β production, which is likely mediated by inflammasome activation and calcium elevation. IL-1 receptor antagonist (IL-1ra) was able to reverse the pain hypersensitivity and neuronal hyperactivity induced by microglial ReaChR activation. Therefore, our work demonstrates that optogenetic activation of spinal microglia is sufficient to trigger chronic pain phenotypes by increasing neuronal activity via IL-1 signaling.

This study uses red light activation of channelrhodopsin in spinal microglia to trigger chronic pain hypersensitivity in awake mice, revealing that optogenetic activation of microglia increases IL-1β production via inflammasome activation and calcium elevation, leading to neuronal hyperactivity and chronic pain.  相似文献   

7.
Electrical unipolar monoaural stimulation of the labyrinth led to body sway mainly on a frontal plane in normal human subjects in a standing position. Early and late stages of response with latencies of 120–200 and 200–500 msec respectively changing in size in accordance with conditions of visual control were distinguished in the stabilographic response. Maximum response was recorded when the eyes were closed. Response declined upon opening the eyes, fixing the gaze on a static target, and with visual feedback according to stabilograms. The early and late components declined by 10–20 and 50–70% respectively in all cases. Fixing the gaze, in darkness, on an illuminated light spot stationary in relation to the head had no effect on level of response. Once the expected direction of body sway had been imparted, a significant and almost identical decrease of 70–80% in both components took place with the gaze fixed, however. Early and late components of vestibulomotor response are thought to be mediated by regulatory mechasisms with differing time courses and functional connections.Institute of Research into Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vo. 22, No. 1, pp. 80–87, January–February, 1990.  相似文献   

8.
 Pseudorandom white-noise stimulation followed by direct spectral estimation was used to obtain linear frequency response and coherence functions from paired, but dynamically different, spider mechanosensory neurons. The dynamic properties of the two neuron types were similar with either mechanical or electrical stimulation, showing that action potential encoding dominates the dynamics. Phase-lag data indicated that action potential initiation occurs more rapidly during mechanical stimulation, probably in the distal sensory dendrites. Total information capacity, calculated from coherence, as well as information per action potential, were both similar in the two types of neurons, and similar to the few available estimates from other spiking neurons. However, information capacity and information per action potential both depended strongly on neuronal firing rate, which has not been reported before. Received: 7 August 2000 / Accepted in revised form: 5 April 2001  相似文献   

9.
Convergence between cells which differ in both spatial and temporal properties create higher order neurons with response properties that are distinctly different from those of the input neurons. The spatial properties of target neurons are not necessarily cosinetuned. In addition, unlike the independence between spatial and temporal properties in cosine-tuned afferent neurons, higher-order target cells generally exhibit a dependence of temporal dynamics on spatial properties. The response properties of target neurons receiving spatio-temporal convergence (STC) from tonic and phasic-tonic or phasic afferents is investigated here by considering a general case where the dynamic input is represented by a fractional, leaky, derivative transfer function. It is shown that, at frequencies below the corner frequency of the dynamic input, the temporal properties of target neurons can be described by leaky differentiators having time constants that are a function of spatial direction. Thus, STC target neurons exhibit tonic temporal response properties during stimulation along some spatial directions (having small time constants) and phasic properties along other directions (having large time constants). Specifically, target neurons encode the complete derivative of the stimulus along certain spatial directions. Thus, STC acts as a directionally specific high-pass filter and produces complete derivatives from fractional, leaky derivative afferent signals. In addition, spatio-temporal transformations can generate novel temporal dynamics in the central nervous system. These observations suggest that spatio-temporal computations might constitute an alternative to parallel, independent spatial and temporal channels.  相似文献   

10.
11.
Why the genetic code has a fixed length? Protein information is transferred by coding each amino acid using codons whose length equals 3 for all amino acids. Hence the most probable and the least probable amino acid get a codeword with an equal length. Moreover, the distributions of amino acids found in nature are not uniform and therefore the efficiency of such codes is sub-optimal. The origins of these apparently non-efficient codes are yet unclear. In this paper we propose an a priori argument for the energy efficiency of such codes resulting from their reversibility, in contrast to their time inefficiency. Such codes are reversible in the sense that a primitive processor, reading three letters in each step, can always reverse its operation, undoing its process.We examine the codes for the distributions of amino acids that exist in nature and show that they could not be both time efficient and reversible. We investigate a family of Zipf-type distributions and present their efficient (non-fixed length) prefix code, their graphs, and the condition for their reversibility. We prove that for a large family of such distributions, if the code is time efficient, it could not be reversible. In other words, if pre-biotic processes demand reversibility, the protein code could not be time efficient. The benefits of reversibility are clear: reversible processes are adiabatic, namely, they dissipate a very small amount of energy. Such processes must be done slowly enough; therefore time efficiency is non-important. It is reasonable to assume that early biochemical complexes were more prone towards energy efficiency, where forward and backward processes were almost symmetrical.  相似文献   

12.
Recent studies suggest that sodium arsenite downregulates NF-kappaB activity by inhibiting phosphorylation and subsequent degradation of IkappaBalpha. Many effects of sodium arsenite are secondary to induction of heat shock proteins. The role of the heat shock response in arsenite-induced inhibition of NF-kappaB, however, is not known. We examined the involvement of the heat shock response in arsenite-induced inhibition of NF-kappaB activity in IL-1beta-stimulated Caco-2 cells, a human colorectal adenocarcinoma cell line with enterocytic properties. Treatment of the cells with IL-1beta resulted in increased IkappaB kinase activity, reduced levels of IkappaBalpha and increased NF-kappaB DNA binding activity. Sodium arsenite blocked all of these responses to IL-1beta without inducing changes in heat shock factor activity or heat shock protein levels. Results from additional experiments showed that the protective effect of sodium arsenite on IkappaBalpha was not influenced by the oxygen radical scavenger catalase or by inhibitors of the MAP-kinase signaling pathway. The present results suggest that sodium arsenite stabilizes IkappaBalpha and prevents NF-kappaB activation in IL-1beta-stimulated Caco-2 cells independent of the heat shock response. In addition, stabilization of IkappaBalpha by sodium arsenite does not require oxygen radical formation or activation of the MAP kinase signaling pathway.  相似文献   

13.
In this study we examined whether the selection of postural feedback gain and its scaling is dependent on perturbation type. We compare forward pushes applied to the back of a standing subject to previous work on responses to support translation. As was done in the previous work, we quantified the subject's response in terms of perturbation-dependent feedback gains. Seven healthy young subjects (25±3 yr) experienced five different magnitudes of forward push applied by a 1.25 m-long pendulum falling from the height of 1.4m toward the center of mass of the subject's torso. The loads on the pendulum ranged from 2 to 10 kg. Impulsive force, ground reaction forces and joint kinematics were measured, and joint torques were calculated from inverse dynamics. A full-state feedback control model was used to quantify the empirical data, and the feedback gains that minimized the fitting error between the data and model simulation were identified. As in previously published feedback gains for support translation trials, gradual gain scaling with push perturbation magnitude was consistently observed, but a different feedback gain set was obtained. The results imply that the nervous system may be aware of body dynamics being subjected to various perturbation types and may select perturbation-dependent postural feedback gains that satisfy postural stability and feasible joint torque constraints.  相似文献   

14.
神经系统中存在大量下行投射,与上行输入一起形成复杂的前馈与反馈回路,调控神经信号的传导和处理,但目前对皮层内反馈投射的功能作用认识还比较薄弱.通过微量注射抑制性神经递质γ-氨基丁酸(γ-aminobutyric acid,GABA),使猫纹外皮层后内侧外上雪氏区(area posteromedial lateral suprasylvian,PMLS)局部可逆性失活,使用胞外记录方法,研究初级视皮层17区神经元反应特性的变化.实验结果显示,PMLS区失活后,17区细胞对运动刺激的反应总体减弱,反应的相对稳定性基本不变,最高发放率/自发之比有所下降.与此同时,细胞的方向选择性指数减小,朝向选择性无显著变化.除少数"双向"反应细胞外,绝大部分细胞的最优方向基本不变.进一步分析发现,细胞对各个方向刺激的反应普遍下降,最优方向上的下降程度最大,是导致方向选择性减弱的主要原因.这些结果表明,PMLS区反馈投射可增强初级视皮层的方向选择性,而对朝向选择性影响有限.这一作用特点体现了PMLS区在皮层中偏重处理运动视觉信息的功能.  相似文献   

15.
16.
17.
Neurochemical coding of myenteric neurons in the guinea-pig antrum   总被引:1,自引:0,他引:1  
Electrophysiological studies of myenteric neurons in the guinea-pig antrum suggest that different neuroactive compounds are involved in synaptic transmission. It is not known what neurotransmitters and neuropeptides are present and to what extent they colocalize. Immunohistochemical stainings were performed on whole-mount preparations of the guinea-pig antrum. Immunoreactivity for neuron-specific enolase was used as a general marker and was set at 100%. There was no overlap between cholinergic and nitrergic neurons, resulting in two separate subpopulations. The presence of choline acetyltransferase immunoreactivity was used to identify the cholinergic subset, which accounted for 56% of the cells. Immunoreactivity for nitric oxide synthase, on the other hand, was displayed in 40.7% of the neurons. Substance-P immunoreactivity was present in 37.4% of the cells and vasoactive intestinal peptide and neuropeptide Y in 21.7% and 28.6%, respectively. Small subsets of neurons had immunoreactivity for serotonin (3.9%), calretinin (6.8%) and calbindin (0.5%). Colocalization studies revealed several subgroups of neurons, containing one or more of the screened markers. Though some similarity is found in the chemical coding of the antrum compared to that of the small intestine and the corpus, remarkable differences can be seen in the occurrence of some subpopulations. Cholinergic neurons are not as predominant as in other parts of the gut, serotonin presence is doubled and some vasointestinal-peptide-positive neurons express substance P. These differences might reflect the highly specialized function of the antrum; however, the exact role of these classes remains to be established.  相似文献   

18.
Efficient information coding (EIC) is a universal biological framework rooted in the fundamental principle that system responses should match their natural stimulus statistics for maximizing environmental information. Quantitatively assessed through information theory, such adaptation to the environment occurs at all biological levels and timescales. The context dependence of environmental stimuli and the need for stable adaptations make EIC a daunting task. We argue that biological complexity is the principal architect that subserves deft execution of stable EIC. Complexity in a system is characterized by several functionally segregated subsystems that show a high degree of functional integration when they interact with each other. Complex biological systems manifest heterogeneities and degeneracy, wherein structurally different subsystems could interact to yield the same functional outcome. We argue that complex systems offer several choices that effectively implement EIC and homeostasis for each of the different contexts encountered by the system.  相似文献   

19.
20.
Mushroom bodies are central brain structures and essentially involved in insect olfactory learning. Within the mushroom bodies γ-aminobutyric acid (GABA)-immunoreactive feedback neurons are the most prominent neuron group. The plasticity of inhibitory neural activity within the mushroom body was investigated by analyzing modulations of odor responses of feedback neurons during olfactory learning in vivo. In the honeybee, Apis mellifera, feedback neurons were intracellularly recorded at their neurites. They produced complex patterns of action potentials without experimental stimulation. Summating postsynaptic potentials indicate that their synaptic input region lies within the lobes. Odor and antennal sucrose stimuli evoked excitatory phasic-tonic responses. Individual neurons responded to various odors; responses of different neurons to the same odor were highly variable. Response modulations were determined by comparing odor responses of feedback neurons before and after one-trial olfactory conditioning or sensitisation. Shortly after pairing an odor stimulus with a sucrose reward, odor-induced spike activity of feedback neurons decreased. Repeated odor stimulations alone, equally spaced as in the conditioning experiment, did not affect the odor-induced excitation. A single sensitisation trial also did not alter odor responses. These findings indicate that the level of odor-induced inhibition within the mushroom bodies is specifically modulated by experience. Accepted: 9 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号