首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The population density of Meloidogyne incognita was significantly reduced in land that was fallowed or cropped to crotalaria, marigold, bermudagrass, or bahiagrass. The rate of population decline caused by different cropping systems was influenced by initial population densities. Crotalaria, marigold, and bare fallow were about equally effective in reducing the density of M. incognita below dctectable lcvels, usually requiring 1-3 yr. Bahiagrass and bcrmudagrass required 4-5 yr or longer to reduce M. incognita below a detectable level. A high population density of Trichodorus christiei developed in land cropped 5 yr to bermudagrass, bahiagrass, okra, and marigold. Population densities of Pratylenchus brachyurus and Xiphinema americanum increased in land cropped to crotalaria or bermudagrass. Belonolabnus Iongicaudatus was detected only in land cropped to bermudagrass, The effectiveness of nematicides in reducing M. incognita infection was rclatcd to nematode population density resulting from 5 yr of different cropping systems. Treatment with aldicarb reduced M. incognita below detectable levels following all cropping systems; treatment with ethoprop following all cropping systems except okra, treatment wflh ethylene dibromide following bahiagrass or fallow; and treatment with DBCP only after 5 yr of fallow. Tomato transplant growth was affected .by both cropping systems and nematicide treatment. Transplants grown after crotalaria and bahiagrass were significantly larger than those grown after other crops. Also, treatment with aldicarb and ethoprop significantly increased transplant size.  相似文献   

2.
Soil populations of plant-parasitic nematodes were monitored bimonthly for 18 months in irrigated and nonirrigated corn plantings using four production systems: conventional and minimum tillage with crop residue returned and minimum tillage with 60% or 90% of previous corn crop residue removed. Populations of Meloidogyne incognita, Scutellonema brachyurum, Pratylenchus scribneri, and Paratrichodorus christiei varied among the tillage, nematicide, and irrigation treatments. Meloidogyne incognita and P. christiei populations were not significantly affected by tillage method, but S. brachyurum populations were highest during April 1981 and 1982 in minimum tillage treatments where crop debris was not removed. In contrast, S. brachyurum populations were lowest during the same period in minimum tillage plots where 90% of previous crop debris had been removed or where residues were incorporated with conventional tillage. Populations of P. scribneri were lowest in minimum tillage during August 1981 and April 1982. Regardless of tillage system, corn yields in all nonirrigated plots were increased during 1982 by application of carbofuran (2.24 kg a.i./ha). No yield increases were observed following nematicide application in 1981.  相似文献   

3.
Aldicarb and Bay 68138 (ethyl 4-(methylthio)-m-tolyl isopropylphosphoramidate) were effective in increasing the plant height and yield of millet and sorghum-sudangrass hybrids. Stunting of plants and reduction in yield were inversely proportional to the number of Pratylenchus spp. and Belonolaimus longicaudatus present in the rhizosphere. Millet and sorghum-sudangrass hybrids supported large numbers of Criconemoides ornatus, Pratylenchus spp., B. longicaudatus, and Xiphinema americanum. Funk''s sorghum × sudangrass Hybrid 78 was more sensitive to injury by the nematode complex than were Tift 23A × 186 or Gahi-I pearl millet. ''Tiflate'' pearl millet was more resistant than other millets or sorghums to injury caused by C. ornatus, Pratylenchus spp., Trichodorus christiei, and B. longicaudatus. Millet and sorghum-sudangrass hybrids are poor summer cover crops because they favor intensive development of P. brachyurus, P. zeae, T. christiei, and B. longicaudatus.  相似文献   

4.
Seasonal fluctuations in field populations of Meloidogyne incognita, Pratylenchus zeae, P. brachyurus, Criconemoides ornatus, Trichodorus christiei, and Helicotylenchus dihystera on monocultured corn, cotton, peanut, and soybean were determined monthly for 4 yr. Population densities of M. incognita were greater in corn and cotton plots than in peanut and soybean plots from July until January. Those of Pratylenchus spp. were greater on corn and soybean than on cotton and peanut during all months except May and June. C. ornatus populations were greater on corn and peanut than on cotton and soybean during all months. C. ornatus on corn and peanut was more numerous in July than in other months. There was no significant increase in populations of T. christiei, except on corn in June. H. dihystera was greater in cotton and soybean plots than in corn and peanut plots from August through December.  相似文献   

5.
The efficacy of fallow and coastal bermudagrass (Cynodon dactylon) as a rotation crop for control of root-knot nematode (Meloidogyne incognita race 1) and soilborne fungi in okra (Hibiscus esculentus cv. Emerald), squash (Cucurbita pepo cv. Dixie Hybrid), and sweet corn (Zea mays cv. Merit) was evaluated in a 3-year field trial. Numbers of M. incognita in the soil and root-gall indices were greater on okra and squash than sweet corn and declined over the years on vegetable crops following fallow and coastal bermudagrass sod. Fusarium oxysporum and Pythium spp. were isolated most frequently from soil and dying okra plants. Numbers of colony-forming units of soilborne fungi generally declined as the number of years in sod increased, but were not affected by coastal bermudagrass sod. Yields of okra following 2-year and 3-year sod and squash following 2-year sod were greater than those following fallow. Yield of sweet corn was not different following fallow and coastal bermudagrass sod.  相似文献   

6.
Millet, milo, soybean, crotalaria, and Norman pigeon pea were used in conjunction with clean fallow and a nematicide (fensulfothion) for managing nematode populations in the production of tomato transplants (Lycopersicon esculentum Mill.). Glean fallow was the most effective treatment in suppressing nematode numbers. After 2 years in tomato, root-knot nematodes increased in numbers to damaging levels, and fallow was no longer effective for complete control even in conjunction with fensulfothion. After 4 years in tomato, none of the crops used as summer cover crops alone or in conjunction with fensulfothion reduced numbers of root-knot nematodes in harvested tomato transplants sufficiently to meet Georgia certification regulations. Milo supported large numbers of Macroposthonia ornata and Pratylenchus spp. and crotalaria supported large numbers of Pratylenchus spp. Millet, milo, soybean, crotalaria, and pigeon pea are poor choices for summer cover crops in sites used to produce tomato transplants, because they support large populations of root-knot and other potentially destructive nematodes.  相似文献   

7.
In a rapeseed-squash cropping system, Meloidogyne incognita race 1 and M. javanica did not enter, feed, or reproduce in roots of seven rapeseed cultivars. Both nematode species reproduced at low levels on roots of the third crop of rapeseed. Reproduction of M. incognita and M. javanica was high on squash following rapeseed, hairy vetch, and fallow. The application of fenamiphos suppressed (P = 0.05) root-gall indices on squash following rapeseed, hairy vetch, and fallow; and on Dwarf Essex and Cascade rapeseed, but not Bridger and Humus rapeseed in 1987. The incorporation of 30-61 mt/ha green biomass of rapeseed into the soil 6 months after planting did not affect the population densities of Criconemella ornata, M. incognita, M. javanica, Pythium spp., Rhizoctonia solani AG-4; nor did it consistently increase yield of squash. Hairy vetch supported larger numbers of M. incognita and M. javanica than rapeseed cultivars or fallow. Meloidogyne incognita and M. javanica survived in fallow plots in the absence of a host from October to May each year at a level sufficient to warrant the use of a nematicide to manage nematodes on the following susceptible crop.  相似文献   

8.
Five nematode species were studied for ability to develop on seven summer cover crops in rotation with tomato transplants grown every third year. Increase of Tylenchorhynchus claytoni, Trichodorus christiei, Pratylenchus brachyurus, Helicotylenchus dihystera, and Xiphinema americanum in newly cleared soil varied with different cover crops. No substantial nematode population increases occurred until the third summer of crop growth. All species except X. americanum and H. dihystera developed best on sudangrass and millet. Crotalaria caused substantial increase of H. dihystera and P. brachyurus but suppressed the other species. Marigold suppressed all species except X. americanum which increased substantially on marigold during the 5th year. Cotton favored rapid increase of T. christiei, and moderate increases of all species except T. claytoni which was suppressed. Beggarweed favored moderate increases of T. christiei and H. dihystera but suppressed the other species. Hairy indigo favored rapid increase of H. dihystera, moderate increases of T. christiei and X. americanum, and suppressed the other species. Number of marketable transplants was reduced after 2 years of sudangrass and cotton; these crops favored increases of T. christiei and T. claytoni. The better cover crops prevented increases of most plant parasitic nematodes in land cropped to tomato, a suitable host.  相似文献   

9.
Management of Meloidogyne incognita on soybean as affected by winter small grain crops or fallow, two tillage systems, and nematicides was studied. Numbers of M. incognita did not differ in plots planted to wheat and rye. Yields of soybean planted after these crops also did not differ. Numbers of M. incognita were greater in fallow than in rye plots, but soybean yield was not affected by the two treatments. Soybean yields were greater in subsoil-plant than in moldboard plowed plots. Ethylene dibromide reduced nematode population densities more consistently than aldicarb and phenamiphos. Also, ethylene dibromide increased yields the most and phenamiphos the least. There was a positive correlation (P = 0.001) of seed size (weight of 100 seeds) with yield (r = 0.79), indicating that factors affecting yield also affected seed size.  相似文献   

10.
Populations of Pratylenchus brachyurus on cotton were increased significantly in the presence of either Meloidogyne incognita or M. arenaria.This occurred with either simultaneous inoculation or prior invasion by M. incognita. P. brachyurus penetrated cotton roots previously invaded by, or simultaneously inoculated with, M. incognita, as well as, or better than, in the absence of M. incognita. Prior invasion by M. incognita, however, suppressed P. brachyurus populations on tomato, while it had no effect on alfalfa and tobacco. Populations of M. incognita on cotton were generally inhibited by the presence of P. brachyurus. Simultaneous inoculation with, or previous invasion by, P. brachyurus also inhibited root penetration by M. incognita. These findings emphasize the importance of host susceptibility in the study of concomitant nematode populations.  相似文献   

11.
The effects of 12 summer crop rotation treatments on population densities of Meloidogyne arenaria race 1 and on yields of subsequent spring vegetable crops were determined in microplots. The crop sequence was: (i) rotation crops during summer 1991 ; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) eggplant (Solanum melongena) during spring 1993. The 12 rotation treatments were castor (Ricinus communis), cotton (Gossypium hirsutum), velvetbean (Mucuna deeringiana), crotalaria (Crotalaria spectabilis), fallow, hairy indigo (Indigofera hirsuta), American jointvetch (Aeschynomene americana), sorghum-sudangrass (Sorghum bicolor x S. sudanense), soybean (Glycine max), horsebean (Canavalia ensiformis), sesame (Sesamum indicum), and peanut (Arachis hypogaea). Compared to peanut, the first eight rotation treatments resulted in lower (P ≤ 0.05) numbers of M. arenaria juveniles on most sampling dates. Soybean, horsebean, and sesame rotations were less effective in suppressing nematodes. Yield of squash was greater (P ≤ 0.05) following castor, cotton, velvetbean, and crotalaria than following peanut. Compared to the peanut rotation, yield of eggplant was enhanced (P ≤ 0.10) following castor, crotalaria, hairy indigo, American jointvetch, and sorghum-sudangrass. Several of these rotation crops may provide a means for depressing M. arenaria population densities on a short-term basis to enhance yields in a subsequent susceptible vegetable crop.  相似文献   

12.
Criconemoides xenoplax and Meloidogyne incognita were the nematode species most frequently associated with peach in North Carolina. Other nematodes often found in high numbers on that crop were Pratylenehus vulnus, Helicotylenchus spp., Trichodorus christiei, Xiphinema amerieanum and Tylenchorhynchus claytoni. P. vulnus and P. penetrans reproduced well on rootstocks of 21 peach cultivars tested in the greenhouse. P. zeae, P. brachyurus, P. coffeae and P. scribneri decreased or increased only slightly in most instances. C. xenoplax increased as much as 330-fold and reproduced on all cultivars tested. In a field experiment with six peach cultivars and moderate numbers of P. brachyurus, P. vulnus, C. xenoplax, and M. incognita, only M. incognita caused significant stunting in 30 months. This nematode increased only on root-knot susceptible cultivars, whereas the other nematodes followed the same patterns observed in the greenhouse. In a second field experiment, seedlings were stunted significantly by high numbers of C. xenoplax during an 18-month period.  相似文献   

13.
In a 6-year cover crop sequence study, nematode population densities varied with different cover crops. Millet favored rapid increase of Belonolaimus longicaudatus and supported relatively large numbers of Pratylenchus brachyurus. Beggarweed and ''Coastal'' bermudagrass favored rapid increase of B. Iongicaudatus and to a lesser extent P. brachyurus and Trichodorus christiei. Hairy indigo and Crotalaria supported relatively large numbers of P. brachyurus but suppressed B. longicaudatus. Hairy indigo also supported increases of T. christiei and Xiphinema americanum. Marigold did not favor development of any parasitic nematode species present. Tomato transplant yield was inversely related to nematode population, particularly to B. Iongicaudatus. Largest yields were obtained from plots with smallest numbers of B. longicaudatus and smallest yields were from plots with largest numbers of B. longicaudatus.  相似文献   

14.
Pearl millet (Pennisetum glaucum) has potential as a grain crop for dryland crop production in the southeastern United States. Whether or not pearl millet will be compatible in rotation with cotton (Gossypium hirsutum), corn (Zea mays), and peanut (Arachis hypogaea) will depend, in part, on its host status for important plant-parasitic nematodes of these crops. The pearl millet hybrid ''TifGrain 102'' is resistant to both Meloidogyne incognita race 3 and M. arenaria race 1; however, its host status for other plant-parasitic nematodes was unknown. In this study, the reproduction of Belonolaimus longicaudatus, Paratrichodorus minor, Pratylenchus brachyurus, and Meloidogyne javanica race 3 on pearl millet (''HGM-100'' and TifGrain 102) was compared relative to cotton, corn, and peanut. Separate greenhouse experiments were conducted for each nematode species. Reproduction of B. longicaudatus was lower on peanut and the two millet hybrids than on cotton and corn. Reproduction of P. minor was lower on peanut and TifGrain 102 than on cotton, corn, and HGM-100. Reproduction of P. brachyurus was lower on both millet hybrids than on cotton, corn, and peanut. Reproduction of M. javanica race 3 was greater on peanut than on the two millet hybrids and corn. Cotton was a nonhost. TifGrain 102 was more resistant than HGM-100 to reproduction of B. longicaudatus, P. minor, and M. javanica. Our results demonstrated that TifGrain 102 was a poor host for B. longicaudatus and P. brachyurus (Rf < 1) and, relative to other crops tested, was less likely to increase densities of P. minor and M. javanica.  相似文献   

15.
The objective of this experiment was to determine the effects of fenamiphos 15G and short-cycle potato (PO)-sweet potato (SP) grown continuously and in rotation with peanut (PE)-grain sorghum (GS) on yield, crop quality, and mixed nematode population densities of Meloidogyne arenaria, M. hapla, M. incognita, and Mesocriconema ornatum. Greater root-gall indices and damage by M. hapla and M. incognita occurred on potato than other crops. Most crop yields were higher and root-gall indices lower from fenamiphos-treated plots than untreated plots. The total yield of potato in the PO-SP and PO-SP-PE-GS sequences increased from 1983 to 1985 in plots infested with M. hapla or M. arenaria and M. incognita in combination and decreased in 1986 to 1987 when root-knot nematode populations shifted to M. incognita. The total yields of sweet potato in the PO-SP-PE-GS sequence were similar in 1983 and 1985, and declined each year in the PO-SP sequence as a consequence of M. incognita population density increase in the soil. Yield of peanut from soil infested with M. hapla increased 82% in fenamiphos-treated plots compared to untreated plots. Fenamiphos treatment increased yield of grain sorghum from 5% to 45% over untreated controls. The declining yields of potato and sweet potato observed with both the PO-SP and PO-SP-PE-GS sequences indicate that these crop systems should not be used longer than 3 years in soil infested with M. incognita, M. arenaria, or M. hapla. Under these conditions, these two cropping systems promote a population shift in favor of M. incognita, which is more damaging to potato and sweet potato than M. arenaria and M. hapla.  相似文献   

16.
Buildup of plant-parasitic nematode populations on corn (Zea mays), soybean (Glycine max), and sorghum (Sorghum bicolor) were compared in 1991 and 1992. Final population densities (Pf) of Meloidogyne incognita were lower following sorghum than after soybean in both seasons, and Pf after sorghum was lower than Pf after corn in 1992. In both seasons, Pf differed among the sorghum cultivars used. No differences in Pf on corn, sorghum, and soybean were observed for Criconemella spp. (a mixture of C. sphaerocephala and C. ornata) or Paratrichodorus minor in either season. Pf levels of Pratylenchus spp. (a mixture of P. brachyurus and P. scribneri) were greatest after corn in 1992, but no differences with crop treatments were observed in 1991. When data from field tests conducted with corn and sorghum during the past four seasons were pooled, negative linear relationships between ln(Pf/Pi) and ln(Pi) were observed for Criconemella spp. and P. minor on each crop, and for M. incognita on corn (Pi = initial population density). Although ln(Pf/Pi) and ln(Pi) were not related for M. incognita with pooled sorghum data, separate relationships were derived for various sorghum cultivars. Regression equations from pooled data were used to obtain estimates of equilibrium density and maximum reproductive rate, and these estimates were used to construct models expressing nematode Pf across a range of initial densities. Many of these models were robust, encompassing a range of sites, season, crop cultivars, and planting dates. Quadratic models derived from pooled field data provided an alternative method for expressing Pf as a function of Pi.  相似文献   

17.
Meloidogyne chitwoodi race 1 reproduced on Piper sudangrass (Sorghum bicolor (L.) Moench), 332 (sudangrass hybrid), and P855F and P877F (sorghum-sudangrass hybrids), but failed to reproduce efficiently on Trudan 8, Trudex 9 (sudangrass hybrids), and Sordan 79, SS-222, and Bravo II (sorghum-sudangrass hybrids). Meloidogyne chitwoodi race 2 behaved similarly and reproduced more efficiently on Piper, P855F, and P877F than on Trudan 8, Trudex 9, or Sordan 79. The mean reproductive factor for M. chitwoodi races on the poorer hosts ranged from <0.1 to 0.9 under greenhouse and field conditions. Meloidogyne hapla failed to reproduce on any of the cultivars tested. In the laboratory, leaves of each cultivar chopped and incorporated as green manure reduced the M. chitwoodi population in infested soil more than unamended or wheat green manure treatments. Trudan 8, although limited to the zone of incorporation, protected this zone from colonization of upward migrating second stage juveniles (J2) for up to 6 weeks. Leaves of Trudan 8 but not roots were effective against M. chitwoodi, and J2 appeared to be more sensitive than egg masses. Trudan 8 and Sordan 79 as green manure reduced M. chitwoodi in bucket microplots under field conditions.  相似文献   

18.
The host-parasite relationships of 13 species of plant parasitic nematodes and five species of hardwoods native to the southeastern United States were tested on greenhouse-grown tree seedlings for 6-10 months. Criteria for parasitism were completion o f life cycle and population increase of nematodes. Belonolaimus longicaudatus, Helicotylenchus dihystera, Scutellonema brachyurum and Tylenchorhynchus claytoni parasitized and reproduced on three or more of the species tested. Hoplolaimus galeatus and Pratylenchus brachyurus parasitized two species, Trichodorus christiei and Criconemoides xenoplax parasitized only red maple. Meloidogyne javanica/Liriodendron tulipifera combination was the only positive root-knot nematode/hardwood host-parasite relationship. Hemicycliophora silvestris, Meloidogyne arenaria, M. incognita, and M. hapla were not parasites of the tree species tested.  相似文献   

19.
The role of Pasteuria penetrans in suppressing numbers of root-knot nematodes was investigated in a 7-year monocuhure of tobacco in a field naturally infested with a mixed population of Meloidogyne incognita race 1 and M. javanica. The suppressiveness of the soil was tested using four treatments: autoclaving (AC), microwaving (MW), air drying (DR), and untreated. The treated soil bioassays consisted of tobacco cv. Northrup King 326 (resistant to M. incognita but susceptible to M. javanica) and cv. Coker 371 Gold (susceptible to M. incognita and M. javanica) in pots inoculated with 0 or 2,000 second-stage juveniles of M. incognita race 1. Endospores of P. penetrans were killed by AC but were only slightly affected by MW, whereas most fungal propagules were destroyed or inhibited in both treatments. Root galls, egg masses, and numbers of eggs were fewer on Coker 371 Gold in MW, DR, and untreated soil than in AC-treated soil. There were fewer egg masses than root galls on both tobacco cultivars in MW, DR, and untreated soil than in the AC treatment. Because both Meloidogyne spp. were suppressed in MW soil (with few fungi present) as well as in DR and untreated soil, the reduction in root galling, as well as numbers of egg masses and eggs appeared to have resulted from infection of both nematode species by P. penetrans.  相似文献   

20.
Interactions among Meloidogyne incognita, Pratylenchus brachyurus, and soybean genotype on plant growth and nematode reproduction were studied in a greenhouse. Coker 317 (susceptible to both nematodes) and Gordon (resistant to M. incognita, susceptible to P. brachyurus) were inoculated with increasing initial population densities (Pi) of both nematodes individually and combined. M. incognita and P. brachyurus individually usually suppressed shoot growth of both cultivars, but only root growth on Coker 317 was influenced by a M. incognita × P. brachyurus interaction. Reproduction of both nematodes, although dependent on Pi, was mutually suppressed on Coker 317. P. brachyurus reproduced better on Gordon than on Coker 317 but did not affect resistance to M. incognita. Root systems of Coker 317 were split and inoculated with M. incognita or P. brachyurus or both to determine the nature of the interaction. M. incognita suppressed reproduction of P. brachyurus either when coinhabiting a half-root system or infecting opposing half-root systems; however, P. brachyurus affected M. incognita only if both nematodes infected the same half-root system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号