首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alfalfa is a host of Pratylenchus penetrans and P. neglectus, whereas crested wheatgrass is a host of P. neglectus but not of P. penetrans. In a 120-day greenhouse experiment at 24 ñ 3 C, P. neglectus inhibited the growth of ''Lahontan'' alfalfa and ''Fairway'' crested wheatgrass. There were no differences in persistence and plant growth of alfalfa and crested wheatgrass, or reproduction of P. neglectus, in single plantings of alfalfa (AO) or crested wheatgrass (CWO), or in interplanted alfalfa and crested wheatgrass (ACW) treatments. On alfalfa, P. penetrans inhibited growth and reproduced more than did P. neglectus. Inhibition of plant growth and reproduction of P. penetrans was greater on alfalfa in AO than in ACW treatments. Pratylenchus penetrans did not reproduce on crested wheatgrass, but inhibited growth of crested wheatgrass in interplanted treatments and was avirulent in single planted treatments. Results were similar in a controlled growth chamber experiment at 15, 20, 25, and 30 C. Both nematode species inhibited alfalfa growth at all temperatures, and P. penetrans was more virulent than was P. neglectus to alfalfa at all temperatures and treatments. Plant growth inhibition and reproduction of P. penetrans on alfalfa in single and interplanted treatments were similar at 15-20 C, but were greater in single than in interplanted treatments at 25-30 C. Pratylenchus penetrans was avirulent to crested wheatgrass in the single planted treatments at all temperatures, but inhibited growth of crested wheatgrass in interplanted treatments at 20-30 C. Plant growth and reproduction of P. neglectus on crested wheatgrass was similar in single and interplanted treatments at 20-30 C and 15-30 C, respectively.  相似文献   

2.
The pathogenicity of Heterodera glycines, Meloidogyne incognita, and Pratylenchus penetrans on H. glycines-resistant ''Bryan,'' tolerant-susceptible ''G88-20092,'' and intolerant-susceptible ''Tracy M'' soybean cultivars was tested using plants grown in 800 cm³ of soil in 15-cm-diam. clay pots in three greenhouse experiments. Plants were inoculated with 0, 1,000, 3,000, or 9,000 H. glycines race 3 or M. incognita eggs, or vermiform stages of P. penetrans/pot. Forty days after inoculation, nmnbers of all three nematodes, except H. glycines on Bryan, generally increased with increasing inoculum levels in Experiment I. Heterodera glycines and M. incognita significantly decreased growth only of Tracy M. At 45 and 57 days after inoculation with 6,000 individuals/pot in experiments II and III, respectively, significantly more P. penetrans and M. incognita than H. glycines were found on Bryan. However, H. glycines and M. incognita population densities were greater than P. penetrans on G88-20092 and Tracy M. Growth of Tracy M infected by H. glycines and M. incognita and growth of G88-20092 infected by M. incognita decreased in Experiment III. Pratylenchus penetrans did not affect plant growth. Reduction in plant growth differed according to the particular nematode species and cultivar, indicating that nematodes other than the species for which resistance is targeted can have different effects on cultivars of the same crop species.  相似文献   

3.
A study was conducted in growth chambers to examine main factor and interaction effects of Tylenchorhynchus nudus and Magnaporthe poae on creeping bentgrass and annual bluegrass at 24, 28, and 30 C. A 2 x 2 factorial arrangement of treatments was employed with presence and absence of T. nudus and M. poae as factors with each temperature run separately for 14 or 18 days. Tylenchorhynchus nudus decreased bentgrass and annual bluegrass root length at all three temperatures. Magnaporthe poae had no effect on bentgrass root length at 24 C, increased root length at 28 C, and suppressed root growth at 30 C. Magnaporthe poae had no effect on annual bluegrass root length at 24 and 28 C but suppressed root growth at 30 C. A significant interaction between M. poae and T. nudus occurred only on bentgrass at 28 C and 30 C; at these two temperatures, M. poae did not act independently of T. nudus.  相似文献   

4.
Invasion of 2-day-old seedlings of ''Buffalo'' alfalfa and ''Kenland'' red clover by larvae of M. incognita and adults of P. penetrans, during 1-3 day periods of incubation at 24 C, was investigated in 50-mm petri dishes on 1% agar. Penetration by both nematodes increased arithmetically with increased numbers in inocula. P. penetrans invaded alfalfa more readily than red cover, but M. incognita invaded red clover more readily than alfalfa. Both nematodes inhibited root-elongation of alfalfa more than that of red clover. In combinations of 10 and 50 of both nematodes, invasion of both plants by both nematodes was the same as for each nematode alone. Penetration by M. incognita into alfalfa, but not into red clover, was significantly reduced when combinations of 50 M. incognita and 200 P. penetrans were inoculated simultaneously. In the presence of large numbers of entrant P. penetrans in both plants, penetration by M. incognita was highly significantly reduced. Penetration by P. penetrans was unaffected in the reciprocal situations.  相似文献   

5.
The effect of temperature (10, 20, 25, 30, and 35 C) on attachment and development of Pasteuria penetrans on Meloidogyne arenaria race 1 was elevated in growth chambers. The greatest attachment rate of endospores of P. penetrans occurred on second-stage juveniles at 30 C. The bacterium developed more quickly within its host at 30 and 35 C than at 25 C or below. The development of the bacterium within the nematode female was divided into nine recognizable life stages, which ranged from early vegetative thalli to mature sporangia. Mature sporangium was the predominant life stage observed after 35, 40, 81, and 116 days at 35, 30, 25, and 20 C, respectively. The body width and length of M. arenaria females infected with P. penetrans were smaller initially than the same dimensions in uninfected females, but became considerably larger over time at 25, 30, and 35 C. This isolate of P. penetrans also parasitized and completed its life cycle in males of M. arenaria.  相似文献   

6.
Microplots were infested with combinations of the fungus Verticillium dahliae and Pratylenchus penetrans and P. scribneri to test for individual and combined effects of these organisms on potato yield and nematode reproduction. Verticillium dahliae alone caused yield losses in all 3 years of the experiment, and the interaction between P. penetrans and V. dahliae was significant (P ≤ 0.05) in 2 years. Pratylenchus penetrans alone caused yield losses in 2 years and P. scribneri alone caused yield losses in 1 year. No two-way or three-way interaction was found involving P. scribneri. In 1987, reproduction for low densities of P. penetrans was 5 times higher when P. scribneri was also present than when it was absent, and 3.5 times higher in 1988. In nematode species mixtures, reproduction of P. scribneri was decreased by V. dahliae in 1987-88. The final population density of P. scribneri was negatively affected by V. dahliae and positively related to the initial proportion of P. scribneri to P. penetrans. In species mixtures with proportions of P. penetrans ranging from 0.1 to 0.5, reproduction of P. penetrans was negatively affected by V. dahliae and decreased linearly in relation to the increase in the initial proportion of P. penetrans in both years. The final population density of P. penetrans was affected only by V. dahliae.  相似文献   

7.
The host preferences of populations of Meloidogyne naasi from England, California, Illinois, Kentucky and Kansas were compared. Among 22 plant species tested, most were hosts for isolates of all five populations; crabgrass was added to the list of known hosts. Differential reactions of isolates on creeping bentgrass, curly dock, sorghum, and common chickweed demonstrated the existence of at least five physiological races within M. naasi. The known races are numerically designated and characterized.  相似文献   

8.
A hypothesis that cherry rootstocks grown under optimal nutrient conditions are affected less by Pratylenchus penetrans infection than those grown under deficient nutrient conditions was tested by growing four Prunus avium L. rootstocks (''Mazzard'', ''Mahaleb'', ''GI148-1'', and ''GI148-8'') at a soil pH of 7.0 over a period of 3 months under greenhouse conditions (25 ñ 2 °C). Pratylenchus penetrans was inoculated at 0 (control) or 1,500 nematodes per g fresh root weight for a total of 3,600, 4,200, 10,500, and 11,400 per plant on Mazzard, Mahaleb, GI148-1, and GI148-8, respectively, with nutrients (commercial fertilizer) applied once at planting (deficient) or twice weekly (optimal). The experiment was repeated once. The optimum nutrient regime resulted in greater soil nutrient levels and plant growth; higher leaf concentrations of N, P, K, and Mg; and fewer P. penetrans than under the deficient nutrient regime. The addition of fertilizer either may increase nematode mortality in the soil or improve rootstock resistance to nematode infection. Increases in Ca in leaves from the nutrient-deficient and nematode-infected treatments suggested the plants were physiologically stressed. The Pf/Pi ratios indicated that these rootstocks may have had resistance to P. penetrans; however, because of the dominant role of nutrition in the experimental design, the question of resistance could not be properly addressed.  相似文献   

9.
Roots of seedlings of red clover and alfalfa growing on 10⁻¹ Hoagland and Arnon solution agar were inoculated with various combinations of Meloidogyne incognita and Pratylenchus penetrans. Egg-laying by P. penetrans decreased as the number of nematodes, the ratio of entrant M. incognita to entrant P. penetrans, and the priority of invasion of roots by M. incognita increased. Embryogeny and hatching of eggs of P. penetrans, and development of larvae of M. incognita, were not affected. In red clover, the greatest red uction occurred when there were 65 entrant nematodes, the ratio of M. incognita:P. penetrans was 4:1 and M. incognita was inoculated four days prior to P. penetrans. In alfalfa, the less-favorable host for both nematodes, the greatest reduction occurred when there were 45 entrant nematodes, the ratio of M. incognita:P. penetrans was 2:1, and M. incognita was inoculated 4 days prior to P. penetrans.  相似文献   

10.
Tylenchorhynchus dubius was observed to feed on ''Toronto'' creeping bentgrass and ''Merion'' Kentucky bluegrass, and was a key participant in reducing the vegetative growth of both grass species. The severity of foliar and root macrosymptoms incited by T. dubius to ''Toronto'' bentgrass was greater on plants grown at 16 C than on plants maintained at 21, 27 and 32 C. These parasitized plants exhibited a suppression of secondary stolon formation, shortened internodes and premature inflorescence initiation. Initial inoculum densities of 500 and 1000 nematodes/test pot produced similar pathogenic effects on the host. Feeding was primarily on root hairs and epidermal cells immediately behind the meristematic region. No necrotic lesions or other diagnostic symptoms were visible at the feeding sites. Nematodes were not observed inside the roots.  相似文献   

11.
Growth of alfalfa (Medicago sativa cv. Vernal) seedlings was compared after inoculation with combinations of either Pratylenchus penetrans and Fusarium soloni or P. penetrans and F. oxysporum f. sp. medicaginis. A synergistic disease interaction occurred in alfalfa when F. oxysporum and P. penetrans were added simultaneously to the soil. Alfalfa growth was suppressed at all inoculum levels of P. penetrans and F. oxysporum, but not with F. solani. Seedlings inoculated with the nematode alone gave lower yields than when inoculated with either Fusarium species alone. Fusarium oxysporum, but not F. solani, was pathogenic to alfalfa under similar experimental conditions. Fusarium oxysporum did not alter the populations of P. penetrans in alfalfa roots, whereas the presence of F. solani was associated with a diminished number of P. penetrans in the roots.  相似文献   

12.
In a greenhouse pot experiment on the pathogenicity and interactions of Meloidogyne incognita, M. hapla and Pratylenchus brachyurus on four cultivars o f tobacco the cultivars ''Hicks'' and ''NC 2326'' were susceptible to each nematode and "NC 95'' and ''NC 2512'' resistant only to M. incognita.Mean heights of susceptible plants were depressed but fresh weight of tops did not differ significantly. Meloidogyne spp. increased fresh weight of susceptible (but not the resistant) roots.Reproduction of M. incognita was decreased in the presence of P. brachyurus in one case. M. hapla reproduction was less with either of the other nematodes in five out of eight cases. In 12 combinations involving P. brachyurus, reproduction of this species was depressed in seven, not affected in four and increased in one.Mechanisms involved in associative interactions were not identified but appeared to be indirect and to involve individual host-nematode responses.  相似文献   

13.
Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria spp. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years.  相似文献   

14.
Pearl millet (Pennisetum glaucum) has potential as a grain crop for dryland crop production in the southeastern United States. Whether or not pearl millet will be compatible in rotation with cotton (Gossypium hirsutum), corn (Zea mays), and peanut (Arachis hypogaea) will depend, in part, on its host status for important plant-parasitic nematodes of these crops. The pearl millet hybrid ''TifGrain 102'' is resistant to both Meloidogyne incognita race 3 and M. arenaria race 1; however, its host status for other plant-parasitic nematodes was unknown. In this study, the reproduction of Belonolaimus longicaudatus, Paratrichodorus minor, Pratylenchus brachyurus, and Meloidogyne javanica race 3 on pearl millet (''HGM-100'' and TifGrain 102) was compared relative to cotton, corn, and peanut. Separate greenhouse experiments were conducted for each nematode species. Reproduction of B. longicaudatus was lower on peanut and the two millet hybrids than on cotton and corn. Reproduction of P. minor was lower on peanut and TifGrain 102 than on cotton, corn, and HGM-100. Reproduction of P. brachyurus was lower on both millet hybrids than on cotton, corn, and peanut. Reproduction of M. javanica race 3 was greater on peanut than on the two millet hybrids and corn. Cotton was a nonhost. TifGrain 102 was more resistant than HGM-100 to reproduction of B. longicaudatus, P. minor, and M. javanica. Our results demonstrated that TifGrain 102 was a poor host for B. longicaudatus and P. brachyurus (Rf < 1) and, relative to other crops tested, was less likely to increase densities of P. minor and M. javanica.  相似文献   

15.
Eleven fungal isolates were tested in agar dishes for pathogenicity to Pratylenchus penetrans. Of the fungi that produce adhesive conidia, Hirsutella rhossiliensis was a virulent pathogen; Verticillium balanoides, Drechmeria coniospora, and Nematoctonus sp. were weak or nonpathogens. The trapping fungi, Arthrobotrys dactyloides, A. oligospora, Monacrosporium dlipsosporum, and M. cionopagum, killed most of the P. penetrans adults and juveniles added to the fungus cultures. An isolate of Nematoctonus that forms adhesive knobs trapped only a small proportion of the nematodes. In 17-cm³ vials, soil moisture influenced survival of P. penetrans in the presence of H. rhossiliensis; nematode survival decreased with diminishing soil moisture. Hirsutella rhossiliensis and M. ellipsosporum were equally effective in reducing numbers of P. penetrans by 24-25% after 4 days in sand. After 25 days in soil artificially infested with H. rhossiliensis, numbers of P. penetrans were reduced by 28-53%.  相似文献   

16.
Reproduction and pathogenicity of the five known races of Meloidogyne naasi on two selections of creeping bentgrass were compared. Toronto C-15 was a host for Races 3, 4 and 5, whereas Northmoor 9 supported reproduction of all five races. Differences in susceptibility and population increase demonstrated that the races could be separated by degree of reproduction on the two selections. Root weights generally were unaffected. Based on cumulative dipping weights, all but Race 1 were pathogenic on at least one of the selections; Race 3 stunted top growth of both. Slight differences in degree of pathogenicity, associated with final populations, were not broad enough to be useful in race separation.  相似文献   

17.
Meloidogyne hapla, Pratylenchus penetrans, and Helicotylenchus dihystera, reduced the growth of ''Saranac AR alfalfa seedlings when applied at concentrations of 50 nematodes per plant. All except P. penetrans reduced seedling growth when applied at 25 per seedling. M. hapla reduced growth when applied at 12 per seedling. Nematodes interacted with three pseudomonads to produce greater growth reductions than were obtained with single pathogens, suggesting synergistic relationships. Ditylenchus dipsaci, applied at 25 or 50 nematodes per seedling, reduced plant weight compared with weights of control plants, but did not interact with test bacteria. All of the nematodes except D. dipsaci produced root wounds which were invaded by bacteria.  相似文献   

18.
A non-chemical technique for surface sterilizing plant-parasitic nematodes for aseptic cultures is described. The method is most applicable to nematodes with active migratory infective stages and requires only a few starting specimens. Rate of achieving a primary aseptic culture with the technique ranged from 60%-100% depending on the conditions of the specimens collected for culturing. Aseptic cultures of species of Meloidogyne, Rotylenchuluz, Pratylenchus, and Radopholus initiated with the method remained contamination-free after 12 months of maintenance in tomato root explant or alfalfa callus cultures. Further studies of Pluronic F127, a polyol gel medium employed in the technique to confine the spread of contaminating bacteria or fungi associated with the nematodes, showed that the polyol gel was a suitable support medium for culturing corn root explant, alfalfa callus tissues, and consequently Pratylenchus species including P. agilis, P. brachyurus, P. scribneri, and P. penetrans. During the course of 10 months, P. penetrans reared in polyol-base medium followed a standard biological growth curve, multiplied to a higher population density, maintained a similar female-to-male ratio, and possessed a similar tendency to reside inside or outside host tissues as did P. penetrans reared in agar-base medium. The percentages of P. penetrans juveniles in the sub-populations residing outside or inside the host tissues reared in polyol-base medium also were similar to and fluctuated temporally in like manner as those reared in agar-base medium. Members of these sub-populations from the polyol- or agar-base were equally infective and reproductive after 9 months of culturing.  相似文献   

19.
Damage and reproductive potentials of Pratylenchus brachyurus and P. penetrans on soybean, Glycine max, cvs. Essex, Forrest, and Lee 68, were determined in microplot tests. Cultivar Essex was generally tolerant to P. brachyurus. Yield of Forrest was suppressed linearly with increasing Pi''s in the sandy soil (r = -0.92) and loamy sand soil (r = -0.99). Low to moderate Pi''s in the sandy clay loam gave an increase in yields as compared to plants without nematodes. Yield was not affected by this nematode in muck. Lee 68 was very sensitive to P. penetrans in microplots. Yield vs. Pi was fitted by a quadratic model (r = 0.82) with yield decreasing sharply as Pi''s were increased. The reproduction of both species decreased with increases in Pi. Lee 68 was a good host for P. penetrans, whereas Essex and Forrest were fair to poor hosts for P. brachyurus.  相似文献   

20.
The plant-parasitic nematodes Criconemoides lobatum, Hoplolaimus tylenchiformis, and Tylenchorhynchus dubius were present in the top 7.5 cm of sod consisting of numerous stolons and fibrous roots. Phenamiphos and 1,2-dibromo-3-chloropropane (DBCP) controlled all three species, whereas ethoprop and oxamyl controlled H. tylenchiformis and T. dubius but not C. lobatum. Benomyl and carbofuran controlled H. tylenchiformis but had poor control of C. lobatum and T. dubius. The effectiveness of carbofuran varied with the type of formulation, being most effective as a quick-release formulation. C. lobatum was the most difficult to control with chemicals. No chemical treatment improved the growth of ''Astoria colonial'' bentgrass (A. tenuis Sibth.) or Kentucky bluegrass (Poa pratensis L.) under the moist condtions prevalent in these tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号