首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cold hardiness of 12 species and 2 subspecies of earthworms from Northern Eurasia was studied. Supercooling temperatures, the water content and the thresholds of tolerated temperatures of worms and their cocoons were determined. The threshold values varied within ?1…?35°C for worms and within ?1…?196°C for cocoons. Earthworms of 4 species and 2 subspecies survived freezing. Cocoons of all species except Eisenia fetida possessed a protective dehydration mechanism which prevented their freezing. During wintering at subzero temperatures, earthworms lost up to 20% of water, cocoons up to 37%. Species of the same life form can overwinter at different phases and have different cold hardiness values. On the whole, epigeic and epi-endogeic species (except for Eisenia fetida) were more resistant to cold than endogeic ones. The following preliminary classification of earthworms according to their tolerance to negative temperatures is proposed: (1) both onthogenetic phases are tolerant; (2) only cocoons are tolerant; (3) both onthogenetic phases are intolerant. The geographic distribution of all the studied species (except for Eisenia nordenskioldi nordenskioldi) is partially or completely limited by insufficient resistance of the worms to negative temperatures. A significant cold hardiness of cocoons of most species is nonadaptive, since the worms hatched from the eggs in spring die without having enough time to reach maturity and to lay cocoons before the onset of subzero temperatures. Only 3 species (Eisenia nordenskioldi nordenskioldi, Eisenia atlavinyteae, and Dendrobaena octaedra) can live in permafrost regions; this is the main reason for a drastically reduced diversity of earthworm assemblages in eastern Siberia except for its southern, mountain parts. In general, the reasons for the impoverishment lie in the modern climatic conditions correlated with the ecophysiological capacities of earthworms.  相似文献   

2.
We inadvertently subjected a group of goats to 5 mo of cold exposure (mean minimum temperature less than -13 degrees C) during an experiment designed to examine the effects of training by daily running on one member of each sibling pair. During the three coldest months, the sedentary but cold-exposed goats experienced a 34% increase in maximal oxygen uptake (VO(2 max), P < 0.01) and a 29% increase in running speed at maximal (P < 0.05). When temperatures increased in the spring, both oxygen uptake and running speed decreased. We interpret these findings as evidence that cold is a sufficient stimulus to invoke the development of aerobic structures in muscle and that these structures subsequently can be utilized for the novel task of running. When the experiment was subsequently repeated without the cold exposure, running speed and VO(2 max) of trained animals increased less than in either group of cold-exposed animals. However, the cost of transport of these warm runners was lower than either group of cold-exposed animals (from 13-19%, P < 0. 0001). Thus, although aerobic capacity was increased with acclimation to severe winter weather, cold-acclimated goats operated with lower efficiency during locomotion.  相似文献   

3.
Bjorn Nagell 《Hydrobiologia》1973,42(4):461-489
  1. The aim of this investigation was to elucidate how four acquatic insect larvae, from different habitats and having different respiratory organs or types of respiratory regulation, react to a lowered oxygen concentration, and how their oxygen consumption is affected. The species investigated were the stoneflies Taeniopteryx nebulosa, Diura nanseni and Nemoura cincerea and the mayfly Cloëon dipterum.
  2. The measurements were performed in a respiratory apparatus of open, flowing-water type. Its design is shown in Fig. 1. Water of known oxygen concentration was allowed to flow past the experimental larvae. The oxygen consumption of the larvae was calculated from the lowering of the oxygen concentration in which ensued.
  3. The water used in the experiments was standardized, so that the electrode had the necessary stability (conductivity 470 micromhos/cm). The calcium ion was excluded in order to prevent the precipitation of CaCO3 in the electrode capillary.
  4. A large variation in the values of oxygen consumption was found as seen in Fig. 2–5. The reason for that is a corresponding variation in the motor activity of the experimental animals.
  5. The physiological reasons for the general form of the curves A and C in Fig. 2–5 are discussed. The curves A and C represent oxygen consumption of the larvae at different degrees of stimulation, entailing different levels of motor activity. Curve A represents intentinally activated animals, curve C non-activated, motionless animals. The curves A and C are boundary curves corresponding to a sort of scope for activity of the animals. Over this scope area a series of curves of the same form could in principal be construed, representing different degrees of stimulation.
  6. Within a certain oxygen concentration interval a motor activation was observed caused by a reduced oxygen concentration. The result of that activation can be seen in Fig. 2–5 as a zone with no or very few oxygen consumption values between curve C and D. The more easily activated the species is, the broader the zone will be. Cloën has the most narrow zone and was observed to be less activated than the other species.
  7. Small larvae of Cloën (2–4 mm and 42–6 mm) and Nemoura (2–4 mm) showed clearly a greater ability to take up oxygen at low oxygen concentrations than full-grown larvae (see Fig. 8 and 9).
  8. The critical point on the curve representing mean oxygen consumption as a function of oxygen concentrations was found to be at 2–5 mg O2/1 for Taeniopteryx and Diura, at 2.2–2.5 mg O2/1 for Cloëon, and at about 2–7 mg O2/1 for Nemoura. The values refer to 8°. Cloëon is the species which is exposed to the greatest variations in oxygen concentration in its natural environment.
  9. No influence on the oxygen consumption of starvation for 4 to 5 days was found. No difference between the oxygen consumption values obtained in the presence or in the absence of calcium ions could be observed during the experiments (Fig. 10, 11).
  10. The basic picture obtained in this investigation is a set of oxygen consumption values scattered between a curve connecting highest values obtained and a curve of the standard metabolism together with a zone in which the larvae are activated by reduced oxygen concentrations. This picture is presumed to be general in aquatic animals with a well developed motor activity.
  相似文献   

4.
5.
Growth and development of Hymenolepis nana in mice maintained at different environmental temperatures. International Journal for Parasitology16: 13–17. On days 3 and 4 post infection (p.i.) the number of Hymenolepis nana cysticercoids in the villi of male mice kept at 5°C did not differ from those in controls (21°C), but fewer larvae were observed in hosts at 35°C. However, on day 10 and 14 p.i. in cysticercoid and egg-induced infections respectively, the incidence of infection was higher and significantly more worms per host were found in mice at 5°C than in those kept at 21 or 35°C. Also, worms from mice maintained at 5°C were significantly heavier and became patent 1 day earlier than those from 21°C, which, in turn, were significantly heavier than those grown in hosts at 35°C.  相似文献   

6.
This study examines the hypothesis that Mystromys albicaudatus, a cricetine relic in southern Africa, has thermal characteristics typical of a rodent adapted to a cold temperature regime. Metabolic rate (oxygen consumption) of M. albicaudatus was measured using open-flow respirometry at ambient temperatures ranging from 5°C to 35°C. Lowest specific oxygen consumption was 1.352 ± 0.089 ml O2 g−1hr−1 (n = 8; body mass = 93.78 ± 6.27 g) at 25°C, equivalent to 121.8% of the predicted value of Kleiber (1975), 128.8% of the value predicted for eutherians and 113.7% of the value predicted for cricetidae (Hayssen and Lacy, 1985).  相似文献   

7.
This study investigated the effects of combined supplementation with vitamin E and C against oxidative stress (OS) caused by intermittent cold exposure (ICE) in the hypothalamus (HY) of aging male Wistar rats [adult (3-months), middle-aged (18-months) and old (24-months)]. Each age was divided into sub-groups: control (CON), cold-exposed at 10 °C (C10), cold-exposed at 5 °C (C5), supplemented control (CON+S) and supplemented cold-exposed at either 5 °C (C5+S) or 10 °C (C10+S). The supplement was a daily dose of 400 mg vitamin C and 50 IU of vitamin E/kg body weight. Cold exposure lasted 2 h/day for 4 weeks. All age groups exposed to cold showed increase in body mass and feeding efficiency. Feeding efficiency in the supplemented old group showed a statistically significant increase in the cold (p < 0.001). Age-related increases in levels of hydrogen peroxide (H2O2), protein carbonyl (PrC), advanced oxidation protein products and thiobarbituric acid reactive substances (TBARS) were further increased by cold in the HY. Cold reduced thiol(P-SH) levels and increased superoxide dismutase (SOD) and, catalase (CAT) activities as well as Hsp72 levels. However, supplementation lowered H2O2, PrC and TBARS with decreases in Hsp72 levels and in SOD and CAT activities. These changes were concomitant with elevations in P-SH, vitamin E and C levels. The results show that the OS caused by ICE in the HY and its subsequent protection following supplementation is related to the intensity of ICE as well as age of the animal. Immunohistochemical studies are underway to examine the findings on ICE-induced oxidative injury in the HY, and the prospects for vitamin E and C supplementation in the senescent.  相似文献   

8.
The oxygen consumption of five larval stages of the Calliphoridae Callitroga macellaria, Lucilia cuprina, and Calliphora vicina was analysed at different temperatures. There are differences in temperature adaptation in these three species as well as in the feeding and non-feeding larvae of Callitroga.Within fixed limits of tolerance the reaction to changes in temperature is more intensive in feeding than in non-feeding larvae. A high metabolic rate is related to high levels of sensitivity to temperature changes.At particular temperatures oxygen consumption generally decreases with age. The results partly confirm the well-established fact that at the same temperature the metabolic rate of ‘cold’-adapted stages and species is relatively high as compared to ‘warm’-adapted ones.During the course of experiments oxygen consumption was frequently inconstant as can be seen by comparing the oxygen consumption of the first and second parts of the experiments, or more exactly, by regression analysis of the oxygen consumption rates throughout these experiments. Increasing and decreasing oxygen consumption depends on temperature adaptation which indicates regulatory processes.A method to determine standard temperature using measurements of respiratory metabolism is discussed.  相似文献   

9.
Thalassinidean shrimp are among the most important bioturbators in coastal ecosystems. The species Lepidophthalmus louisianensis and Callichirus islagrande are found in dense aggregations (up to 400 burrows m−2) along sandy and muddy shores of the northern Gulf of Mexico. These shrimp actively ventilate their burrows to provide oxygen and eliminate wastes. In doing so, they expel nutrient-rich burrow water to the overlying water column, potentially altering nutrient cycling and benthic primary productivity. To develop a mechanistic understanding of the role of burrowing shrimp in nutrient processes, we must first examine how changes in environmental conditions alter the frequency, strength, and duration of ventilation. Field measurements of burrow temperature and salinity suggest that the burrow serves as a buffer from the highly variable conditions found in these estuarine, intertidal habitats. Temperatures at sediment depths >30 cm were generally warmer in winter and cooler in summer than at the sediment surface. Burrow salinities, measured at low tide, were consistently higher than adjacent open water. We used these measurements to parameterize laboratory studies of burrow ventilation in artificial burrows made of plastic tubing and in more natural sediment mesocosms, and studies of oxygen consumption in small glass containers. Rates of oxygen consumption and burrow ventilation by L. louisianensis were lower than those of C. islagrande, perhaps reflecting a lower overall activity rate in the former species which resides in less permeable sediments. Generally, increased temperature had a significant positive effect on oxygen consumption for both species. Salinity had no effect on oxygen consumption by L. louisianensis, reflecting the ability of this species to exist in a wide range of salinities. In contrast, oxygen consumption rates of C. islagrande, which is less tolerant of low salinity, were significantly higher at 35‰ than at 20‰. Ventilation rates were highly variable, and shrimp in artificial burrows tended to have consistently higher ventilation rates than those in sediment mesocosms. There is a trend toward more frequent ventilation at 30 °C for both species. Salinity had no effect on ventilation for either species. Our results suggest that thalassinideans exhibit highly variable and species-specific ventilation patterns that are more likely to be affected by temperature than salinity. Increased ventilation at higher temperatures seems to coincide with increased oxygen consumption at these temperatures, although a similar finding was not made for salinity treatments.  相似文献   

10.
Chen HH  Li PH 《Plant physiology》1980,65(6):1146-1148
The effect of temperatures on cold acclimation and deacclimation in foliage tissues was studied in Solanum commersonii (Oka 4583), a tuber-bearing potato. The threshold temperature for cold acclimation was about 12 C. In a temperature range of 2 to 12 C, the increase in hardiness was dependent on the acclimating temperature; the lower the acclimating temperature, the more hardiness achieved. A day/night temperature of 2 C, regardless of photoperiod, appeared to the optimum acclimating temperature for the Solanum species studied. A subfreezing temperature hardened plants less effectively. The maximum level of hardiness could be reached after 15 days of cold acclimation. However, it took only 1 day to deacclimate the hardened plants to a preacclimation level when plants were subjected to a warm regime from cold. The degree of deacclimation was dependent on the temperature of the warm regime.  相似文献   

11.
To gain a physiological understanding of the effects of high temperatures on cucumber (Cucumis sativus L.), we subjected seedlings to heat treatment at daytime temperatures of 28 °C, 32 °C, and 36 °C for 7 h a day for 30 days. The amount of active oxygen species, indicators of senescence, and photosynthetic properties in the second and third leaves were determined at the start of temperature treatment and on the 15th and 30th days of treatment. The amount of active oxygen species superoxide in leaves was greatest in the high temperature zones on the 15th day of treatment, and the amount of hydrogen peroxide was greatest in the high temperature zones on both the 15th and 30th days of treatment. The reduction in the amount of protein and the increase in the amount of malondialdehyde, both indicators of senescence, were greatest in the high temperature zones on both the 15th and 30th days of treatment, and the amount of chlorophyll was lowest in the 36 °C zone on the 15th day, and lower in the high temperature zones on the 30th day. It is clear from these results that a large amount of active oxygen species is generated and accumulated in the leaves at high temperatures, and senescence is significantly accelerated. The photosynthetic properties of stomatal conductance, sub-stomatal CO2 concentration, and transpiration rate were at the same level on both the 15th and 30th days of treatment in all three temperature treatment zones. No significant difference was seen in the net photosynthesis rate between the 28 °C and 32 °C zones, was lower in the 36 °C zone than the 32 °C zone on the 15th day, and lowest in the 36 °C zone on the 30th day. CO2 intake and water absorption are only mildly affected by high temperatures, and the reduction in net photosynthesis rate due to the 36 °C high temperature stress suggests that the large amount of active oxygen species induces inhibition of photosynthesis and damage to the mechanism of photosynthesis.  相似文献   

12.
Insect cold tolerance is both phenotypically-plastic and evolutionarily labile, but the mechanisms underlying this variation are uncertain. Chill-susceptible insects lose ion and water homeostasis in the cold, which contributes to the development of injuries and eventually death. We thus hypothesized that more cold-tolerant insects will better maintain ion and water balance at low temperatures. We used rapid cold-hardening (RCH) and cold acclimation to improve cold tolerance of male Gryllus pennsylvanicus, and also compared this species to its cold-tolerant relative (Gryllus veletis). Cold acclimation and RCH decreased the critical thermal minimum (CTmin) and chill coma recovery time (CCR) in G. pennsylvanicus, but while cold acclimation improved survival of 0 °C, RCH did not; G. veletis was consistently more cold-tolerant (and had lower CCR and CTmin) than G. pennsylvanicus. During cold exposure, hemolymph water and Na+ migrated to the gut of warm-acclimated G. pennsylvanicus, which increased hemolymph [K+] and decreased muscle K+ equilibrium potentials. By contrast, cold-acclimated G. pennsylvanicus suffered a smaller loss of ion and water homeostasis during cold exposure, and this redistribution did not occur at all in cold-exposed G. veletis. The loss of ion and water balance was similar between RCH and warm-acclimated G. pennsylvanicus, suggesting that different mechanisms underlie decreased CCR and CTmin compared to increased survival at 0 °C. We conclude that increased tolerance of chilling is associated with improved maintenance of ion and water homeostasis in the cold, and that this is consistent for both phenotypic plasticity and evolved cold tolerance.  相似文献   

13.
Survival and respiration of the grass shrimp Palaemonetes pugio Holthuis and P. vulgaris (Say) from the Newport River estuary were measured after exposure to cyclic and constant winter temperatures, to rapid decreases in temperature, and to various temperature-salinity combinations. Both species were subjected to nine temperature-salinity combinations including temperature regimes of cyclic 7–13°C, constant 7° and 10°C, and salinities of 5, 20, and 35%.. Based on the laboratory and field results, the differences in physiological tolerance to winter temperatures and salinities were examined in relation to habitat partitioning by these sympatric species.Survival after continuous exposure to cyclic temperature regimes at medium to high salinities was similar to that observed for comparable constant temperatures; however, at low salinities mortality was significantly lower under the cyclic regime than under either constant regime. This suggests that cyclic temperatures may be detrimental in combination with some other stress. A rapid, transient decrease in temperature from either 7° or 10°C to 2°C had no measurable effect on survival or rate of oxygen consumption at any temperature-salinity acclimation. Neither salinity (except in areas intermittently subjected to salinities below 3 %.) nor winter temperatures appear to affect habitat partitioning in grass shrimp.  相似文献   

14.

Background and Aims

Mediterranean mountain species face exacting ecological conditions of rainy, cold winters and arid, hot summers, which affect seed germination phenology. In this study, a soil heat sum model was used to predict field emergence of Rhamnus persicifolia, an endemic tree species living at the edge of mountain streams of central eastern Sardinia.

Methods

Seeds were incubated in the light at a range of temperatures (10–25 and 25/10 °C) after different periods (up to 3 months) of cold stratification at 5 °C. Base temperatures (Tb), and thermal times for 50 % germination (θ50) were calculated. Seeds were also buried in the soil in two natural populations (Rio Correboi and Rio Olai), both underneath and outside the tree canopy, and exhumed at regular intervals. Soil temperatures were recorded using data loggers and soil heat sum (°Cd) was calculated on the basis of the estimated Tb and soil temperatures.

Key Results

Cold stratification released physiological dormancy (PD), increasing final germination and widening the range of germination temperatures, indicative of a Type 2 non-deep PD. Tb was reduced from 10·5 °C for non-stratified seeds to 2·7 °C for seeds cold stratified for 3 months. The best thermal time model was obtained by fitting probit germination against log °Cd. θ50 was 2·6 log °Cd for untreated seeds and 2·17–2·19 log °Cd for stratified seeds. When θ50 values were integrated with soil heat sum estimates, field emergence was predicted from March to April and confirmed through field observations.

Conclusions

Tb and θ50 values facilitated model development of the thermal niche for in situ germination of R. persicifolia. These experimental approaches may be applied to model the natural regeneration patterns of other species growing on Mediterranean mountain waterways and of physiologically dormant species, with overwintering cold stratification requirement and spring germination.  相似文献   

15.
The effects of long-term cold exposure on brown adipose tissue (BAT) thermogenesis in hypothyroid rats have been examined. Thyroid ablation was performed in normal rats after 2 mo of exposure to 4 degrees C, when BAT hypertrophy and thermogenic activity were maximal. After ablation, hypothyroid and normal controls remained in the cold for 2 additional months. At the end of the 4-mo cold exposure, all untreated hypothyroid rats were alive, had normal body temperature, and had gained an average 12.8% more weight than normal controls. Long-term cold exposure of hypothyroid rats markedly increased BAT weight, mitochondrial proteins, uncoupling protein (UCP)-1, mRNA for UCP-1, and oxygen consumption to levels similar to those seen in cold-exposed normal rats. The results indicate that thyroid hormones are required for increased thermogenic capacity to occur as an adaptation to long-term cold exposure. However, cold adaptation can be maintained in the absence of thyroid hormone.  相似文献   

16.
Oxygen consumption of Amphibola crenata (Gmelin) was measured in various salinity-temperature combinations (< 0.1‰ to 41‰ salinity and 5 to 30°C) in air, and following exposure to declining oxygen tensions. In all experimental conditions, respiration varied with the 0.44 power of the body weight (sd = 0.14). The aquatic rate was consistently higher than the aerial rate of oxygen consumption, although at 30 °C the two rates were similar. Oxygen consumption increased with temperature up to 25 °C in all salinities; the lowest values were recorded at temperatures below 10 °C and at 30 °C in the most dilute medium. At all exposure temperatures, the oxygen consumption of Amphibola decreased regularly with salinity down to 0.1 ‰, and following exposure to concentrated sea water (41‰). Salinity had the least effect at 15 °C which was the acclimation temperature. In general, all of the temperature coefficients (Q10 values) were low, < 1.65. However, Q10 values above 2.8 were recorded at a salinity of 17.8‰ between 10 and 15 °C. Oxygen consumption of all size classes of Amphibola was more temperature dependent in air than in water and small individuals show a greater difference between their aerial and aquatic rates than larger snails. The rates of oxygen consumption in declining oxygen tensions were expressed as fractions of the rates in air saturated sea water at each experimental salinity-temperature combination. The quadratic coefficient B2 becomes increasingly more negative with both decreasing salinity and temperatures up to 20 °C. At higher temperatures (25 and 30 °C) the response is reversed such that O2 uptake in snails becomes increasingly independent of declining oxygen tensions at higher salinities. On exposure to a salinity of 4‰, Amphibola showed no systematic response to declining oxygen tension with respect to temperature. The ability of Amphibola to maintain its rate of oxygen consumption in a wide range of environmental conditions is discussed in relation to its potential for invading terrestrial habitats and its widespread distribution on New Zealand's intertidal mudflats.  相似文献   

17.
The acute oxygen consumption of Donax vittatus (da Costa) freshly collected at different times from a beach at Barrassie, Ayrshire, Scotland, has been measured at different temperatures. The logarithmic relationship between oxygen consumption and body weight showed a significant difference on only one occasion, and a common regression coefficient (b) of 0.865 could be used for regressions of oxygen consumption on weight. Over the temperature range 2.9–20 °C oxygen consumption rose with temperature. There was a linear decline of Q10 with temperature in the range 2.9 –20 °C. Differences in values of the constant (a) in the regression equation suggest that there is some acclimation to temperature, resulting in rotation of the rate/temperature curve counterclockwise for warm-acclimated animals, and a reduction of Q10 in cold-acclimated animals. The differences in oxygen consumption which result are small and appear to have little practical significance. High levels of metabolically-inactive materials such as stored glycogen reserves lead to a reduction in the weight-specific oxygen consumption. Spawning animals show an increased oxygen consumption.  相似文献   

18.
Ecosystem resilience to climate anomalies is related to the physiological plasticity of organisms. To characterize the physiological response of some common Mediterranean gorgonians to fluctuations in temperature, four species (Paramuricea clavata, Eunicella singularis, Eunicella cavolinii and Corallium rubrum) were maintained in aquaria, in which the temperature was increased every ten days with increments of 2-3 °C, starting at 14 °C, ending at 25 °C. Oxygen consumption, number of open/closed polyps and percentage of necrotic tissue were monitored. All species showed similar activity patterns with increasing temperature. P. clavata and E. singularis showed the highest respiration rate at 18 °C, E. cavolinii and C. rubrum at 20 °C. Above these temperatures, both oxygen consumption and polyp reactivity decreased in all species. The present data confirm a reduction of the metabolic activity in Mediterranean gorgonians during periods of high temperature. At temperatures above 18 °C, the percentage of open polyps (considered as a parameter to evaluate polyps reactivity) decreased, thus mirroring the trend of oxygen consumption. The average values of Q10 indicated that gorgonians have a definite temperature limit over which the metabolism (oxygen consumption) stop to follow the temperature increase. After three days at 25 °C, metabolic activity in E. cavolinii, C. rubrum and P. clavata further decreased and the first signs of necrosis were observed. At this temperature, activity remained unchanged in E. singularis. This species seems to more resistant to thermal stress. The symbiotic zooxanthellae present in this species are likely to provide an alternative source of energy when polyps reduce their feeding activity.  相似文献   

19.
Measurements of total body oxygen consumption, visceral and hepatic blood flow, oxygen consumption, exchanges of amino acids, lactate, pyruvate and glucose were made on sheep fed 3--6 h or 21 h before the experiment and exposed for 3 h to a neutral environment (15 degrees C) or a cold environment (0.5 to 4 degrees C with clipped coat and wind speed 2 m.s-1). Recent feeding significantly increasedd the total oxygen consumption and the oxygen consumption of the viscera and liver. No general release of amino acids from the viscera or uptake by the liver after feeding was detected although the arterial plasma concentration of essential amino acids did increase significantly after feeding. The plasma concentration of most non-essential amino acids also increased except that of glycine, which decreased significantly. Cold exposure increased the total oxygen consumption and reduced the respiratory quotient significantly. Release of amino acids from the viscera was stimulated by cold exposure. There was a variable increase in the hepatic uptake of lactate and alanine when the sheep were fasted and cold-exposed. The liver's glucose output doubled and the blood (arterial) glucose concentration significantly increased in the cold.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号