首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The effects of exogenously (NH4Cl ingestion) and endogenously (streptozotocin-diabetes) generated chronic metabolic acidosis on the abundance of rat renal mRNAs have been examined. 2. Total RNA was translated in vitro and the translation products analyzed by two-dimensional gel electrophoresis. 3. The translation product identified as phosphoenolpyruvate carboxykinase (PEPCK) increased 3.5-fold in both acidosis and diabetes. 4. This increase was not observed in diabetic rats treated with NaHCO3. 5. The abundance of one other translation product increased in acidosis. 6. That of 10 others increased in diabetes, several of which were elevated regardless of acid-base status. 7. The abundance of one translation product decreased in acidosis and diabetes but not in NaHCo3 treated diabetic rats, indicating acid-base regulation of this product. 8. The results establish that the acidosis response is limited to a small number of renal mRNAs and confirm that renal PEPCK is primarily regulated by changes in acid-base status. 9. They also indicate that diabetes affects the abundance of specific renal mRNAs through mechanisms independent of acid-base status.  相似文献   

2.
We have recently shown that background presence of chronic metabolic acid-base disorder markedly alters in vivo acute CO2 titration curve. These studies were carried out to assess the influence of chronic respiratory acid-base disorders on response to acute hypercapnia and to explore whether the chronic level of plasma pH is the factor responsible for alterations in the CO2 titration curve. We compared whole-body responses to acute hypercapnia of dogs with preexisting chronic respiratory alkalosis (n = 8) with that of normal animals (n = 4) and animals with chronic respiratory acidosis (n = 13). Chronic respiratory alkalosis and acidosis, as well as the acute CO2 titrations, were produced in unanesthetized dogs within a large environmental chamber. For comparison with our data on chronic metabolic acidosis and alkalosis, plasma bicarbonate levels, which are secondarily altered in chronic respiratory acid-base disorders, were used as an index of chronic acid-base status of the animals. Results indicate that, as with chronic metabolic acid-base disorders, a larger increment in plasma bicarbonate occurs during acute hypercapnia when steady-state plasma bicarbonate is low (respiratory alkalosis) than when it is high (respiratory acidosis). Yet, in further analogy with the metabolic studies, plasma hydrogen ion concentration is better defended at higher plasma bicarbonate levels in accordance with mathematical relationships defined by the Henderson-Hasselbalch equation. Combined results demonstrate that the influence of chronic acid-base status on whole-body response to acute hypercapnia is independent of initial plasma pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Loy W. Frazier 《Life sciences》1980,26(22):1843-1849
Water flow was measured gravimetrically in the presence and absence of vasopressin across the toad urinary bladder. Four groups of toads in different states of acid-base balance were used; a normal group, a group in NH4Cl induced metabolic acidosis, respiratory acidosis, and a group in NaHCO3 induced metabolic alkalosis. Vasopressin induced water flow was significantly reduced during metabolic acidosis and respiratory acidosis. Metabolic alkalosis had no effect on the hydro-osmotic response to vasopressin. Dibutyryl cyclic-AMP-stimulated water flow on the other hand was not affected by either a metabolic or respiratory acidosis. Treatment with indomethacin was able to reverse the observed reduction in the vasopressin-stimulated water flow response in the toad bladder during metabolic and respiratory acidosis. We conclude that the vasopressin stimulated water flow is altered during acidosis and evidence suggests that prostaglandins may be involved in the observed reduction in vasopressin-stimulated water flow.  相似文献   

4.
Summary Intra- and extracellular acid-base status was investigated during prolonged experimental anaerobiosis inSipunculus nudus L. An acidosis could not be observed during the first 6–12 h of anaerobiosis, in contrast, a slight alkalosis developed in both extra- and intracellular body compartments. Extra- and intracellular pH only started to decrease gradually after 12 h of environmental hypoxia as an expression of a non-compensated non-respiratory acidosis.The initial alkalosis associated with a positive base excess is interpreted as being due to the concomitant degradation of phospho-l-arginine (Pörtner et al. 1984a). The amount of succinate, propionate, and acetate accumulated in the extracellular fluid (coelomic plasma) could not be correlated quantitatively with a concomitant negative base excess. This discrepancy suggests that protons and anionic metabolites are distributed between various body compartments according to different equilibria and kinetics.Comparison of the changes in the acid-base status with the concentration changes of characteristic anaerobic metabolites (Pörtner et al. 1984a) indicates that (at least inSipunculus nudus) pHi is not the crucial factor initiating the observed shift of the metabolite flux from the Embden-Meyerhofpathway towards the succinate-propionate pathway.  相似文献   

5.
Clinical observations have indicated that patients who are in shock and who have coexisting acidosis respond relatively poorly to sympathomimetic amines. In experiments with dogs, it was found that, in the presence of acidosis, the pressor action of epinephrine, norepinephrine and metaraminol was considerably reduced. The effect on cardiac rhythm was also considerably lessened after the pH value of the blood had been lowered. In view of these observations in animals, six human patients with profound shock and acidosis were studied. All had a considerably lessened pressor response to vasopressor agents; then, after elevation of the blood pH by intravenous infusion of a 1-molar solution of sodium lactate, responsiveness was restored. These observations emphasize the desirability of close observation of the acid-base status, and early treatment of acidosis, as an important aspect in the management of patients with shock.  相似文献   

6.
Blood gas and acid-base status was determined in 126 Caesarean-derived calves. The newborn calves were assigned by venous blood pH value at birth to three groups as follows: Group 1 (normal): pH above 7.2; Group 2 (slight acidosis): pH 7.2 to 7.0; and Group 3 (severe acidosis): pH below 7.0. Following Caesarean section births 80 (63.5%) calves had normal acid-base values, while 30 (23.8%) had a slight acidosis, and 16 (12.7%) had severe acidosis. The degree of hypoxia was similar in each group. Six calves (37.5%) in Group 3 died within 48 h of birth. The blood gas and acid-base status of Caesarean-derived. calves was not significantly influenced by any examined parameters with the exception of sex in Groups 1 and 2. The occurrence of meconium-stained calves was 9.1% (n = 11), and only two calves were slightly or severely acidotic immediately after birth.  相似文献   

7.
Clinical observations have indicated that patients who are in shock and who have coexisting acidosis respond relatively poorly to sympathomimetic amines. In experiments with dogs, it was found that, in the presence of acidosis, the pressor action of epinephrine, norepinephrine and metaraminol was considerably reduced. The effect on cardiac rhythm was also considerably lessened after the pH value of the blood had been lowered.In view of these observations in animals, six human patients with profound shock and acidosis were studied. All had a considerably lessened pressor response to vasopressor agents; then, after elevation of the blood pH by intravenous infusion of a 1-molar solution of sodium lactate, responsiveness was restored.These observations emphasize the desirability of close observation of the acid-base status, and early treatment of acidosis, as an important aspect in the management of patients with shock.  相似文献   

8.
In order to evaluate the impact of water-borne copper on acid-base regulation in fresh water rainbow trout, chronically cannulated fish were exposed to copper (0.6 mg 1−1), hypercapnia (water PCO2 of 6 mmHg) or a combination of copper and hypercapnia, while a fourth untreated group served as the control. Blood samples obtained at 0 h, 4 h and 24 h were analysed for acid-base status, ion concentrations and respiratory parameters. Tissue samples from caudal skeletal muscle, liver and gill filaments were examined for intracellular acid-base status, ion- and water contents, and copper concentration. Exposure to copper alone elicited a small extracellular metabolic alkalosis, no changes in arterial PO2, and a minor decrease in plasma ion concentrations. Hypercapnia alone increased arterial PCO2 from approximately 2 mmHg to 7.2 mmHg, but the extracellular respiratory acidosis present at 4 h was almost completely compensated at 24 h due to an increase in plasma bicarbonate concentration [HCO3 ] from 8.1 mM to 24.4 mM. Combined exposure to hypercapnia and copper resulted in a slightly larger acidosis at 4 h, and the fish failed to restore extracellular pH at 24 h, because plasma [HCO3 ] only increased to 16.3 mM. Fish exposed to hypercapnia and copper also showed a delayed recovery of intracellular pH in skeletal muscle, compared to fish exposure to hypercapnia only. Thus, copper exposure impaired both extracellular and intracellular acid-base regulation during hypercapnia. When seen in connection with only minor effects of copper on osmoregulatory and respiratory parameters, the reduced ability to regulate acid-base suggests that acid-base regulation may be one of the most copper-sensitive branchial functions. Accepted: 18 August 1998  相似文献   

9.

Background

Hypercapnic Chronic Obstructive Pulmonary Disease (COPD) exacerbation in patients with comorbidities and multidrug therapy is complicated by mixed acid-base, hydro-electrolyte and lactate disorders. Aim of this study was to determine the relationships of these disorders with the requirement for and duration of noninvasive ventilation (NIV) when treating hypercapnic respiratory failure.

Methods

Sixty-seven consecutive patients who were hospitalized for hypercapnic COPD exacerbation had their clinical condition, respiratory function, blood chemistry, arterial blood gases, blood lactate and volemic state assessed. Heart and respiratory rates, pH, PaO2 and PaCO2 and blood lactate were checked at the 1st, 2nd, 6th and 24th hours after starting NIV.

Results

Nine patients were transferred to the intensive care unit. NIV was performed in 11/17 (64.7%) mixed respiratory acidosis–metabolic alkalosis, 10/36 (27.8%) respiratory acidosis and 3/5 (60%) mixed respiratory-metabolic acidosis patients (p = 0.026), with durations of 45.1±9.8, 36.2±8.9 and 53.3±4.1 hours, respectively (p = 0.016). The duration of ventilation was associated with higher blood lactate (p<0.001), lower pH (p = 0.016), lower serum sodium (p = 0.014) and lower chloride (p = 0.038). Hyponatremia without hypervolemic hypochloremia occurred in 11 respiratory acidosis patients. Hypovolemic hyponatremia with hypochloremia and hypokalemia occurred in 10 mixed respiratory acidosis–metabolic alkalosis patients, and euvolemic hypochloremia occurred in the other 7 patients with this mixed acid-base disorder.

Conclusions

Mixed acid-base and lactate disorders during hypercapnic COPD exacerbations predict the need for and longer duration of NIV. The combination of mixed acid-base disorders and hydro-electrolyte disturbances should be further investigated.  相似文献   

10.
The aim of the study was to determine the seasonal influence of vitamin D status on bone metabolism in French submariners over a 2-mo patrol. Blood samples were collected as follows: prepatrol and patrol days 20, 41, and 58 on crewmembers from both a winter (WP; n = 20) and a summer patrol (SP; n = 20), respectively. Vitamin D status was evaluated for WP and SP. Moreover, extended parameters for acid-base balance (Pco(2), pH, and bicarbonate), bone metabolism (bone alkaline phosphatase and COOH-terminal telopeptide of type I collagen), and mineral homeostasis (parathyroid hormone, ionized calcium and phosphorus) were scrutinized. As expected, SP vitamin D status was higher than WP vitamin D status, regardless of the considered experimental time. A mild chronic respiratory acidosis (CRA) was identified in both SP and WP submariners, up to patrol day 41. Such an occurrence paired up with an altered bone remodeling coupling (decreased bone alkaline phosphatase-to-COOH-terminal telopeptide of type I collagen ratio). At the end of the patrol (day 58), a partial compensation of CRA episode, combined with a recovered normal bone remodeling coupling, was observed in SP, not, however, in WP submariners. The mild CRA episode displayed over the initial 41-day submersion period was mainly induced by a hypercapnia resulting from the submarine-enriched CO(2) level. The correlated impaired bone remodeling may imply a physiological attempt to compensate this acidosis via bone buffering. On patrol day 58, the discrepancy observed in terms of CRA compensation between SP and WP may result from the seasonal influence on vitamin D status.  相似文献   

11.
Thirty-nine episodes of hyperglycemia and disturbance of acid-base equilibrium were classified according to the result of nitroprusside test for serum (or urine) ketones, serum electrolytes, glucose, lactate, beta-hydroxybutyrate and arterial blood pH and gas analysis into the following 6 groups; (1) diabetic ketoacidosis (DKA), (2) mild DKA, (3) DKA with mixed acid-base disturbance, (4) DKA with lactic acidosis, (5) lactic acidosis with mild ketonemia, (6) lactic acidosis. Their clinical manifestations, laboratory findings, insulin and i.v. fluid requirement in the early phase of therapy were surveyed and compared with those reported from Western countries. The fundamental problems of groups (1) to (4) were hyperglycemia and acid-base disturbance. Groups (5) and (6) were characterized by underlying serious medical illness, accompanied by lactic acidosis and hyperglycemia. All patients in groups (1) to (4) recovered but 7 of 10 patients in groups (5) and (6) died within the first 7 days. DKA with or without lactic acidosis and lactic acidosis with or without mild ketonemia appeared as two separate conditions from the standpoint of management and prognosis and were differentiated only by nitroprusside test for serum ketones. DKA with lactic acidosis and DKA without it could not be differentiated by routine blood chemistries and therapy for the two did not differ so that they were thought to be in the same spectrum of metabolic alteration.  相似文献   

12.
Experiments were conducted on dogs which had sustained a 10-minute circulatory arrest caused by electrotrauma; the acid-base balance of the cerebrospinal fluid (CSF) and the blood was studied during the postreanimation period. Although the systemic uncompensated acidosis persisted in the course of the first hour of the postreanimation period, compensation of the CSF acidosis occurred much earlier and the pH was maintained at the initial level for 6 hours. Despite a high lactate concentration for a period of 3 hours of the postreanimation period the bicarbonate concentration remained near the initial one at this period.  相似文献   

13.
Glutamate modifies ventilation by altering neural excitability centrally. Metabolic acid-base perturbations may also alter cerebral glutamate metabolism locally and thus affect ventilation. Therefore, the effect of metabolic acid-base perturbations on central nervous system glutamate metabolism was studied in pentobarbital-anesthetized dogs under normal acid-base conditions and during isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid transfer rates of radiotracer [13N]ammonia and of [13N]glutamine synthesized de novo via the reaction glutamate+NH3-->glutamine in brain glia were measured during normal acid-base conditions and after 90 min of acute isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid [13N]ammonia and [13N]glutamine transfer rates decreased in metabolic acidosis. Maximal glial glutamine efflux rate jm equals 85.6 +/- 9.5 (SE) mumol.l-1 x min-1 in all animals. No difference in jm was observed in metabolic alkalosis or acidosis. Mean cerebral cortical glutamate concentration was significantly lower in acidosis [7.01 +/- 0.45 (SE) mumol/g brain tissue] and tended to be larger in alkalosis, compared with 7.97 +/- 0.89 mumol/g in normal acid-base conditions. There was a similar change in cerebral cortical gamma-aminobutyric acid concentration. Within the limits of the present method and measurements, the results suggest that acute metabolic acidosis but not alkalosis reduces glial glutamine efflux, corresponding to changes in cerebral cortical glutamate metabolism. These results suggest that glutamatergic mechanisms may contribute to central respiratory control in metabolic acidosis.  相似文献   

14.
Metabolic acidosis (6 days NH4Cl) causes a fourfold increase in the relative abundance of mRNA encoding phosphoenolpyruvate carboxykinase in rat kidney. Streptozotocin-diabetes (6 days) also results in an increased abundance of the mRNA but this increase can be prevented if the acidosis associated with bicarbonate is corrected by treatment with bicarbonate. The results confirm that renal phosphoenolpyruvate carboxykinase is regulated primarily by changes in acid-base status and that this control is at a pretranslational step. Isolated kidney tubules in short-term incubation have been used to identify which agents regulate levels of phosphoenolpyruvate carboxykinase mRNA. The relative abundance of the mRNA was increased by glucocorticoids and hormones which act via cAMP, or by cAMP analogues directly, but was not affected by hormones acting via Ca2+. Neither incubation at pH 7.1 nor the presence of serum from acidotic rats had any effect on the level of phosphoenolpyruvate carboxykinase mRNA. It is concluded that acidosis, glucocorticoids, and cAMP independently regulate expression of renal phosphoenolpyruvate carboxykinase.  相似文献   

15.
In a rat model of volume-controlled irreversible haemorrhagic shock, which results in a severe metabolic acidosis and the death of all control animals within 30 min., intracerebroventricular injection of histamine (100 nmol) produces a prompt and long-lasting increase in mean arterial pressure and heart rate, with a 100% survival of 2 h after treatment. Histamine action is accompanied by a decrease in haematocrit value, haemoglobin concentration, erythrocyte and platelet count, and an increase in residual blood volume at the end of the experiment (2 h). Cardiovascular effects are also associated with a long-lasting rise in respiratory rate and biphasic blood acid-base changes - initial increase of metabolic acidosis with the decrease in arterial and venous pH, bicarbonate concentration and base excess, followed by almost a complete recovery of blood gas and acid-base parameters to the pre-bleeding values, with normalisation of arterial and venous pH, Pco2 bicarbonate concentration and base excess at the end of experiment. It can be concluded that in the late phase of central histamine-induced reversal of haemorrhagic hypotension there is almost a complete restoration of blood gas and acid-base status due to circulatory and respiratory compensations, while accompanying haematological changes are the result of the haemodilution and the increase in residual blood volume.  相似文献   

16.
H. Levison  P. R. Swyer 《CMAJ》1965,92(21):1127-1129
The relation between oxygen consumption, metabolic status and prognosis was studied in two infants with identically low arterial oxygen tensions (20 mm. Hg) due to cyanotic congenital heart disease. The first patient had low oxygen consumption, arterial blood acidosis and increased arterial lactate, and died at the age of 36 hours. The second had normal oxygen consumption, arterial acid-base balance, lactate and pyruvate, and survived. Since arterial oxygen tensions were similar in both, it was concluded that compensatory factors, such as cardiac output, pulmonary and systemic blood flow and increased oxygen saturation at normal pH levels (Bohr effect), are important in maintaining tissue oxidation and preventing anaerobiosis and lactate production. The importance of a knowledge of acid-base status in the immediate prognosis of cyanotic congenital heart disease is stressed. The treatment of acidosis by buffer therapy may be an important palliative, improving cardiac output and tissue oxidation, and should be undertaken as soon as possible before irreversible cellular damage has occurred.  相似文献   

17.
Dichlorphenamide was administered to 13 patients with chronic respiratory failure, and the effects on gas exchange at rest and during exercise and on the acid-base state of CSF were observed. The ventilation for a given level of CO2 production was increased both at rest and during exercise, resulting in an increased arterial Po2 and decreased Pco2.The ventilatory stimulation paralleled the development of a metabolic acidosis but was not associated with tissue CO2 accumulation. Indeed, CSF Pco2 and the oxygenated mixed venous (rebreathing) Pco2 fell by the same amount as arterial Pco2. The level of CO2 elimination after two minutes of exercise was as great for a given work load after dichlorphenamide as before. These findings do not support the view that the drug impairs CO2 transport from tissues either at rest or during exercise. They are most consistent with the view that the primary locus of action of dichlorphenamide in therapeutic doses is the kidney. The metabolic acidosis which results is likely the basis of the respiratory stimulatin, perhaps by its effects on the CSF H2CO3-HCO3 - system. Inhibition of carbonic anhydrase in the red cell and choroid plexus are probably unimportant effects.  相似文献   

18.
The Astrup method for determination of arterial pH, pCO2, and “base excess” provides a simple and accurate means for quantitation of acid-base disorders. The “base excess” value, a measure of metabolic acidosis or alkalosis, gives the clinician a valuable tool with which to estimate electrolyte replacement. The pCO2 is a measure of respiratory acidosis or alkalosis. The pH is used as a measure of the adequacy of compensation. Several representative cases illustrate the use and interpretation of the test.  相似文献   

19.
Acid-base balance has been studied in 21 patients with acute upper gastrointestinal bleeding. A low plasma bicarbonate concentration was found in nine patients, accompanied in each case by a base deficit of more than 3 mEq/litre, indicating a metabolic acidosis. Three patients had a low blood pH. Hyperlactataemia appeared to be a major cause of the acidosis. This was not accompanied by a raised blood pyruvate concentration. The hyperlactataemia could not be accounted for on the basis of hyperventilation, intravenous infusion of dextrose, or arterial hypoxaemia. Before blood transfusion it was most pronounced in patients who were clinically shocked, suggesting that it may have resulted from poor tissue perfusion and anaerobic glycolysis. Blood transfusion resulted in a rise in lactate concentration in seven patients who were not clinically shocked, and failed to reverse a severe uncompensated acidosis in a patient who was clinically shocked. These effects of blood transfusion are probably due to the fact that red blood cells in stored bank blood, with added acid-citrate-dextrose solution, metabolize the dextrose anaerobically to lactic acid. Monitoring of acid-base balance is recommended in patients with acute gastrointestinal bleeding who are clinically shocked. A metabolic acidosis can then be corrected with intravenous sodium bicarbonate.  相似文献   

20.
We examined changes in blood gases, plasma ions, and acid-base status during prolonged submergence (6 h) of four aquatic turtle species in aerated water at 20 °C. Our objective was to determine whether the temperate species, Chrysemys picta bellii, exhibits greater tolerance to submergence apnea than the tropical species, Pelomedusa subrufa, Elseya novaeguineae, and Emydura subglobosa. Blood was sampled from indwelling arterial catheters for measurements of blood PO2, PCO2, pH, and hematocrit and for plasma concentrations of lactate, glucose, Na+, K+, Cl, total Ca, and total Mg. The pattern of change was similar in all species: a combined respiratory and metabolic acidosis associated with a marked decrease of blood PO2. The severity of the acidosis developed in the temperate species, however, was significantly less than that of the tropical turtles. Lactate rose significantly and HCO3 fell proportionately in all turtles; changes in other plasma ion concentrations were small but were generally in the directions consistent with compensatory exchanges with other body compartments; i.e., cations (K+, Ca, and Mg increased) and anions (Cl decreased). The results indicate that hypoxia tolerance is a conserved trait in turtles, even in those that do not experience enforced winter submergence, and that the temperate species may be superior in this capacity because of reduced metabolic rate. Accepted: 3 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号