首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of Meloidogyne incognita or M. javanica at five initial inoculum levels of 20, 100, 200, 1,000, and 2,000 eggs and infective juveniles per seedling on ''Floradade,'' ''Nemarex,'' ''Patriot,'' and ''PI 129149-2(sib)-5'' tomatoes maintained at 25 or 32.5 C were studied. The number of egg masses on roots of the susceptible cultivar Floradade was similar for both species of root-knot nematodes at either 2.5 or 32.5 C soil temperatures. At 25 C, very low numbers of egg masses were produced by both species of root-knot nematodes on Nematex, Patriot, and Lycopersicon peruvianum PI 129149-2(sib)-5. At 32.5 C, the best inoculum level for assessing resistance in these tomato genotypes was 200 eggs and infective juveniles per seedling. With 28 days of incubation, this temperature and inoculum level produced quantitative differences in resistance for both species of Meloidogyne.  相似文献   

2.
From infestation of lettuce with preinfective females to egg deposition, populations of Rotylenchulus reniformis from Baton Rouge, Louisiana; Lubbock and Weslaco, Texas; and Mayaguez, Puerto Rico, required 41, 13, 7, and 7 days at 15, 20, 25, and 34 C, respectively. No nematode infection occurred at 10 C with any R. reniformis population, and the population from Puerto Rico did not reproduce at 15 C. Nematode survival was not influenced by temperature, since populations from Texas and Louisiana survived for 6 months without a host at - 5 , - 1 , 4, and 25 C. Survival of R. reniformis was substantially influenced by soil moisture. Soil moistures greater than 7% (< 1 bar) aided nematode survival at storage temperature of 25 C, whereas moisture adversely affected nematode survival below freezing. Soil moisture below 4% (> 15 bars) favored nematode survival below freezing but adversely affected nematodes in soils stored at 25 C. Soil moisture effects on nematode survival were less accentuated at 4 and 0 C.  相似文献   

3.
The effect of soil water content on Rotylenchulus reniformis infectivity of ''Lee'' soybean roots was investigated in an autoclaved sandy clay loam. Nematodes were introduced into soil masses maintained at constant soil water levels ranging from 3.4 to 19% by weight. Seedling growth and the soil water content-water potential relationships of the soil were determined. Nematode infectivity was greatest when the soil water content was maintained just below field capacity in the 7.2 (-1/3 bar) to 13.0% (-1/7 bar) ranges. Nematode invasion of roots was reduced in the wetter 15.5 (-1/10 bar) to 19.0% (-1 /2 0 bar) soil moisture ranges and in the dryer 3.4 (-15 bar) to 5.8% (-3/4 bar) soil moisture ranges.  相似文献   

4.
Sancassania (Caloglyphus) berlesei (Michael) is a cosmopolitan and free-living mite that inhabits soil as well as laboratory colonies of insects and fungi and may have a role as a biocontrol agent of nematodes. In this study, we investigated the effects of temperature on the development, reproduction, and food consumption of S. berlesei fed egg masses of root-knot nematodes, Meloidogyne spp., an important group of agricultural pests. Mites were reared at 20, 25 or 30 °C in the dark. The mites could feed on the nematode egg masses, and their developmental time decreased at higher temperatures. Time from the egg to adult was similar in females and males reared at the same temperature. Adult females lived longer than males at 25 °C, but not at 20 or 30 °C. Generally, females showed a higher rate of food consumption than males. Females laid the largest number of eggs at 20 and 25 °C (199.7 and 189.8 eggs/female, respectively), but the intrinsic rate of natural increase was highest at 30 °C (r m = 0.29). In comparing our data with previous reports, we noted that S. berlesei that fed on egg masses of root-knot nematodes showed a longer developmental time and a lower reproductive rate than Sancassania mites that fed on other diets. Nonetheless, the relatively high value of r m (e.g., at 25 and 30 °C) suggests that this mite may have certain advantages as a biocontrol agent of root-knot nematodes.  相似文献   

5.
It has been hypothesized Rotylenchulus reniformis (Rr) has a competitive advantage over Meloidogyne incognita (Mi) in the southeastern cotton production region of the United States. This study examines the reproduction and development of Meloidogyne incognita (Mi) and Rotylenchulus reniformis (Rr) in separate and concomitant infections on cotton. Under greenhouse conditions, cotton seedlings were inoculated simultaneously with juveniles (J2) of M. incognita and vermiform adults of R. reniformis in the following ratios (Mi:Rr): 0:0, 100:0, 75:25, 50:50, 25:75, and 0:100. Soil populations of M. incognita and R. reniformis were recorded at 3, 6, 9, 14, 19, 25, 35, 45, and 60 days after inoculations. At each date, samples were taken to determine the life stage of development, number of egg masses, eggs per egg mass, galls, and giant cells or syncytia produced by the nematodes. Meloidogyne incognita and R. reniformis were capable of initially inhibiting each other when the inoculum ratio of one species was higher than the other. In concomitant infections, M. incognita was susceptible to the antagonistic effect of R. reniformis. Rotylenchulus reniformis affected hatching of M. incognita eggs, delayed secondary infection of M. incognita J2, reduced the number of egg masses produced by M. incognita, and reduced J2 of M. incognita 60 days after inoculations. In contrast, M. incognita reduced R. reniformis soil populations only when its proportion in the inoculum ratio was higher than that of R. reniformis. Meloidogyne incognita reduced egg masses produced by R. reniformis, but not production of eggs and secondary infection.  相似文献   

6.
''Floratam'' and ''FX-313'' St. Augusfinegrasses (Stenotaphrum secundatum) were compared in a time-course experiment for host suitability and susceptibility to the lance nematode, Hoplolaimus galeatus. Nematode densities were determined in the soil and acid-fuchsin stained roots 42, 84, 126, 168, and 210 days after pots containing 230 cm³ of autoclaved native Margate fine sand/pot were infested with 104 ± 9 nematodes and maintained at 25 ± 2 C in the laboratory. ''FX-313'' was a more suitable host for H. galeatus. Numbers of H. galeatus reached a maximum at 210 days after inoculation, with 5,550 and 4,120 nematodes (adults plus juveniles)/pot for ''FX-313'' and ''Floratam,'' respectively. Root and shoot dry weights of both grasses were not affected by H. galeatus throughout the experiment. Three polyploid, 2n = 30 to 32 (''Floratam,'' ''FX-10,'' and ''Bitterblue'') and three diploid, 2n = 18 (''FX-313,'' ''Florida Common,'' and ''Seville'') S. secundatum genotypes were inoculated with H. galeatus (99 ± 9/pot) and compared with uninoculated controls 210 days after inoculation. St. Augustinegrass genotypes differed as hosts of H. galeatus. ''FX-313'' and ''Florida Common'' represented the high and low extremes, respectively, for nematode reproduction (9,750 and 5,490 nematodes/pot or 4,239 and 2,387 nematodes/100 cm³ of soil). However, differences in root and shoot growth were not detected 210 days after inoculation with H. galeatus.  相似文献   

7.
Sunn hemp (SH), Crotolaria juncea, is known to suppress Rotylenchulus reniformis and weeds while enhancing free-living nematodes involved in nutrient cycling. Field trials were conducted in 2009 (Trial I) and 2010 (Trial II) to examine if SH cover cropping could suppress R. reniformis and weeds while enhancing free-living nematodes if integrated with soil solarization (SOL). Cover cropping of SH, soil solarization, and SH followed by SOL (SHSOL) were compared to weedy fallow control (C). Rotylenchulus reniformis population was suppressed by SHSOL at the end of cover cropping or solarization period (Pi) in Trial I, but not in Trial II. However, SOL and SHSOL did not suppress R. reniformis compared to SH in either trial. SH enhanced abundance of bacterivores and suppressed the % herbivores only at Pi in Trial II. At termination of the experiment, SH resulted in a higher enrichment index indicating greater soil nutrient availability, and a higher structure index indicating a less disturbed nematode community compared to C. SOL suppressed bacterivores and fungivores only in Trial II but not in Trial I. On the other hand, SHSOL enhanced bacterivores and fungivores only at Pi in Trial I. Weeds were suppressed by SH, SOL and SHSOL throughout the experiment. SHSOL suppressed R. reniformis and enhanced free-living nematodes better than SOL, and suppressed weeds better than SH.  相似文献   

8.
The influence of Pratylenchus penetrans on the incidence and severity of Verticillium wilt was examined in the potato cultivars ''Kennebec'', ''Katahdin'', and ''Abnaki''. Single-stem plants were grown in soil maintained at a temperature of 22 ± 1 C. Axenically cultured nematodes were suspended in water and introduced to the soil, at a rate of ca 5,000/25.4-cm pot, through holes made around each stem. Ten days after infestation with nematodes, conidial suspensions of Verticillium albo-atrum were introduced into the soil at a rate of ca 1,000,000/pot. Among Katahdin plants, the severity of foliar symptoms was increased in the presence of both pathogens 2 and 3 weeks after soil intestation. During the remaining 5 weeks, severity of foliar symptoms was not different between plants infected by both pathogens and those infected by Verticillium alone. Within the wilt-susceptible cultivar Kennebec and the resistant eultivar Abnaki, no effects on foliar symptom severity were observed. When plant heights, shoot weights, and tuber yields were analyzed, a Pratylenchus-Verticillium interaction was not evident within any of the cultivars tested. Nematode populations in roots and rhizosphere were suppressed in Kennebec and Katahdin plants in the presence of Verticillium.  相似文献   

9.
Meloidogyne chitwoodi developed and reproduced more rapidly than M. hapla in potato roots at 15, 20, or 25 C when both species of nematodes were inoculated simultaneously at 250 or 1,000 juveniles of each. At 30 C significantly more M. hapla than M. chitwoodi females were found at the lower inoculum level after 41 days. More M. chitwoodi than M. hapla juveniles were extracted from soil at 15, 20, and 25 C, but only at the lower inoculum level at 30 C. Potato was considered a more suitable host for M. chitwoodi than M. hapla because of M. chitwoodi''s greater reproduction at 15, 20, and 25 C. Corn and wheat cultivars tested supported M. chitwoodi reproduction at temperatures of 10, 15, 20, and 25 C, but fewest eggs were produced on these plants at 20 C. Temperatures of 10 to 25 C had little influence on the low reproduction of M. chitwoodi on four alfalfa cultivars. M. chitwoodi reproduced on the alfalfa entry Mn PL9HF.  相似文献   

10.
Heterodera schachtii is a well-known, destructive pathogen of Chinese cabbage (Brassica rapa pekinensis) in Korea, and several studies have attempted to find a potential control measure against it. This study is the first to investigate the effects of varying temperature on the reproduction and damage potential of H. schachtii to Chinese cabbage. Chinese cabbage plants were inoculated with H. schachtii at different densities (1, 2, or 4 juveniles per gram of soil) and grown under three temperature regimes: constant (15, 20, or 25 °C), increasing (10, 14, and 18 °C), and fluctuating (positive, 16.7–22.0 °C; negative, 21.5–11.5 °C). At a constant temperature after 30 days of inoculation, both Chinese cabbage and H. schachtii performed best at 20 °C. However, after 60 days of inoculation, H. schachtii had a significantly higher population at 20 °C, whereas cabbage growth was best at 25 °C. With increasing temperature, the numbers of cysts and females did not change significantly, and reached maxima at an initial temperature of 14 °C. However, the number of leaves and weights of the Chinese cabbage plants significantly differed at 14 °C. Under fluctuating temperatures, temperature decreases reduced the H. schachtii population.  相似文献   

11.
The possible impact of Rotylenchulus reniformis below plow depth was evaluated by measuring the vertical distribution of R. reniformis and soil texture in 20 symptomatic fields on 17 farms across six states. The mean nematode population density per field, 0 to 122 cm deep, ranged from 0.4 to 63 nematodes/g soil, and in 15 fields more than half of the R. reniformis present were below 30.5 cm, which is the greatest depth usually plowed by farmers or sampled by consultants. In 11 fields measured, root density was greatest in the top 15 cm of soil; however, roots consistently penetrated 92 to 122 cm deep by midseason, and in five fields in Texas and Louisiana the ratio of nematodes to root-length density within soil increased with depth. Repeated sampling during the year in Texas indicated that up to 20% of the nematodes in soil below 60 cm in the fall survived the winter. Differences between Baermann funnel and sugar flotation extraction methods were not important when compared with field-to-field differences in nematode populations and field-specific vertical distribution patterns. The results support the interpretation that R. reniformis below plow depth can significantly impact diagnosis and treatment of cotton fields infested with R. reniformis.  相似文献   

12.
Tu C  Koenning SR  Hu S 《Microbial ecology》2003,46(1):134-144
Obligate root-parasitic nematodes can affect soil microbes positively by enhancing C and nutrient leakage from roots but negatively by restricting total root growth. However, it is unclear how the resulting changes in C availability affect soil microbial activities and N cycling. In a microplot experiment, effects of root-parasitic reniform nematodes (Rotylenchulus reniformis) on soil microbial biomass and activities were examined in six different soils planted with cotton. Rotylenchulus reniformis was introduced at 900 nematodes kg–1 soil in May 2000 prior to seeding cotton. In 2001, soil samples were collected in May before cotton was seeded and in November at the final harvest. Extractable C and N were consistently higher in the R. reniformis treatments than in the non-nematode controls across the six different soils. Nematode inoculation significantly reduced microbial biomass C, but increased microbial biomass N, leading to marked decreases in microbial biomass C:N ratios. Soil microbial respiration and net N mineralization rates were also consistently higher in the nematode treatments than in the controls. However, soil types did not have a significant impact on the effects of nematodes on these microbial parameters. These findings indicate that nematode infection of plant roots may enhance microbial activities and the turnover of soil microbial biomass, facilitating soil N cycling. The present study provides the first evidence about the direct role of root-feeding nematodes in enhancing soil N mineralization.  相似文献   

13.
In soil temperature tests, rates of Pratylenchus scribneri and P. alleni reproduction were measured at various lemperatures on ''Clark 63'' and ''Cutler 71'' soybeans and ''Rutgers'' tomatoes. Recovered P. scribneri equaled or exceeded initial inoculum levels at temperatures of 27.5 C or higher on soybeans, and at 20 C or higher on tomatoes. Population increases were greatest at 3.5 C on both hosts. Populations increased on soybeans, but not on tomatoes, when soil temperature was raised from 25 to 35 C for either 3 or 9 days. Recovered P. alleni were less than the initial inoculum at 27.5 C but higher at 32 and 37.5 C and at 27.5 C on tomatoes, the lowest temperature tested for this nematode. In the field, soil temperatures 10 cm deep in eastern Kansas soybean growing areas reach 27.5 C only occasionally and for relatively short periods, which probably explains the relatively low and variable populations of P. scribneri and P. alleni on soybeans there.  相似文献   

14.
Development of the corn cyst nematode, Heterodera zeae, was studied in growth chambers at 20, 25, 29, 33, and 36 ± 1 C on Zea mays cv. Pioneer 3184. The optimum temperature for reproduction appeared to be 33 C, at which the life cycle, from second-stage juvenile (J2) to J2, was completed in 15-18 days; at 36 C, 19-20 days were required. Juveniles emerged from eggs within 28 days at 29 C and after 42 days at 25 C. Although J2 were present within eggs after 63 days at 20 C, emergence was not observed up to 99 days after inoculation. Female nematodes produced fewer eggs at 20 C than at higher temperatures.  相似文献   

15.
Gossypium arboreum ''Nanking CB 1402'' possessed a high level of resistance to Rotylenchulus reniformis. Within 16 h, the nematode penetrated roots of resistant and susceptible cottons equally. After 36 h, significantly fewer nematodes were found in resistant roots. Larvae fed in either an endodermal or pericyclic cell and had no specificity for root tissue of a particular age. In roots of resistant G. arboreum ''1402,'' wall breakdown of pericyclic cells was evident after 3 d, endodermal and cortical cells collapsed, and the hypertrophied pericyclic cells disintegrated within 12 d. Cell walls immediately adjacent to the nematode''s head were thickened and more safranin positive in resistant than in susceptible cotton cultivars. Several other cultivars of G. arboreum were also resistant to R. reniformis, based on nematode fecundity and percent egg reduction.  相似文献   

16.
Thrips tabaci Lindeman (Thysanoptera: Thripidae) is one of the most important pests of asparagus in China. In this study the effects of five constant temperatures (15, 20, 25, 30 and 35 °C) on the growth, survivorship and reproduction of Proprioseiopsis asetus (Chant) (Acari: Phytoseiidae) fed on T. tabaci was examined under laboratory conditions. Development time of immatures decreased with increasing temperature. The lower egg-to-adult developmental threshold (T 0) and thermal constant (K) of P. asetus were estimated at 15.2 °C and 75.8 degree days by means of a linear model. Fertilized females fed on T. tabaci produced offspring of both sexes, whereas the offspring sex ratio [♀/(♀ + ♂)] of P. asetus at 20–35 °C was female-biased (0.68–0.78) and not significantly influenced by temperature. Survivorship during immature development was significantly influenced by temperature, and was especially low at 15 °C. Pre- and post-oviposition periods of fertilized females shortened with the increase in temperature. The longest oviposition period was 20.4 days, at 25 °C, whereas at 15 °C the mites did not reproduce. Maximum average life time fecundity and mean daily fecundity was recorded at 25 and 35 °C, respectively; the intrinsic rate of increase ranged from 0.05 (20 °C) to 0.17 (35 °C). The results indicate the capability of P. asetus to develop and reproduce at a broad range of temperatures, especially above 25 °C, which can be used for better management of T. tabaci in asparagus.  相似文献   

17.
The effect of soybean genotype on competition between Meloidogyne incognita race 2 (Mi) and Rotylenchulus reniformis (Rr) was evaluated in greenhouse and microplot replacement series experiments. Soil in pots containing seedlings of ''Davis'' (susceptible to Mi) or ''Buckshot 66'' (resistant to Mi) was infested with 1,000 vermiform individuals in the following Mi:Rr ratios: 0:0, 100:0, 75:25, 50:50, 25:75, or 0:100. After 91 days, the relative nematode yields (number of nematodes in mixed culture divided by the number in nonmixed culture) of each species were calculated based on soil and root nematode populations expressed as nematodes per gram of dry root tissue. To define the relationship between the two species, calculated relative nematode yields were compared with a theoretical noncompetition model using lack-of-fit regression. In the greenhouse, Mi populations on ''Davis'' were stimulated in the presence of Rr. In microplots, low Mi and Rr population densities likely resulted from severe galling and destruction of feeder roots that probably occurred early in the season. Enhanced susceptibility to Mi was not observed on ''Buckshot 66'', which remained resistant to Mi even when colonized by Rr. Host resistance is a key factor in determining the nature of the relationship between Mi and Rr.  相似文献   

18.
Baermann funnels were modified to eliminate or reverse the small temperature gradient (1-2 C/cm) across the soil layer that normally results from water evaporation. Effects of modifications on extraction efficiency were examined at various ambient temperatures and after overnight adaptation of three nematode species at 20 and 30 C. Extraction of Meloidogyne incognita from sandy loam, Tylenchulus semipenetrans from sandy clay loam, and Rotylenchulus reniformis from silt was greatly accelerated simply by covering funnels to prevent evaporation. In most cases, covering increased the nematodes extracted by 10-100 times after 5.5-48 hours. Faster and more efficient extraction of R. reniformis occurred over a wide range of ambient temperature (18-29 C). Effects of ambient temperature and temperature gradient direction on Baermann funnel extraction of R. reniformis were partly inconsistent with the behavior of R. reniformis in agar. Nematodes in agar moved toward cold at some ambient temperatures and toward heat at other temperatures. They always appeared to move toward cold on Baermann funnels. Differences were not attributable to blockage of gas exchange by covers. In agar and in funnels, the patterns of response to ambient temperature were shifted in the direction of the storage temperature.  相似文献   

19.
Soil solarization was evaluated for control of Rotylenchulus reniformis in the lower Rio Grande Valley of Texas. In field experiments, solarization significantly reduced soil nematode population densities 0-15 cm deep and increased yields of lettuce and cowpea. The length of time required for 90% mortality of nematodes in soil heated under controlled conditions in the laboratory varied from 25 hours to less than 1 hour between 41 and 47 C. Daily exposures of nematode-infested soil to lethal temperatures for sublethal time periods had a cumulative lethal effect. In water, vermiform stages required up to 10 days to recover from sublethal thermal stress. Eggs were similar to juveniles in their sensitivity to high temperatures. Lethal time-temperatures under controlled conditions were in general agreement with field results.  相似文献   

20.
Macropetasma africanus (Balss) has been successfully spawned and its larvae reared under controlled laboratory conditions. The relationship between egg number (E) and female total length (L) was E = 18.59 L2.11. An experiment was designed to test the effect of temperature on larval development, survival and growth. Temperature effected larval development time, from 13–15 days at 25°C, to 25 days at 15°C (nauplius 1 to post-larva). Mortality was low for the naupliar stages at 25, 22 and 18°C, while at 15°C only 52% of the larvae reached nauplius 6. Mortality was highest from nauplius 6 to protozoea 1 (17, 21, and 18% at 25, 22, and 18°C, respectively), but decreased considerably for all temperatures once the mysis stage was reached. Overall survival rates from nauplius 1 to post-larva decreased with decreasing temperature (65, 54, 48, and 39% at 25, 22, 18, and 15°C respectively). Temperature also significantly affected larval growth. At 25°C mean total length was significantly (P < 0.05) larger than at 15°C (protozoea 2 to post-larva), while from protozoea 3 to post-larva total length differences were significantly different (P < 0.05) between 18 and 25°C. M. africanus has a major spawning peak in summer, suggesting that there may be a selective advantage to reproducing during the warmer months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号