首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Population dynamics of A. ritzemabosi and D. dipsaci were studied in two alfalfa fields in Wyoming. Symptomatic stem-bud tissue and root-zone soil from alfalfa plants exhibiting symptoms of D. dipsaci infection were collected at intervals of 3 to 4 weeks. Both nematodes were extracted from stem tissue with the Baermann funnel method and from soil with the sieving and Baermann funnel method. Soil moisture and soil temperature at 5 cm accounted for 64.8% and 61.0%, respectively, of the variability in numbers of both nematodes in soil at the Big Horn field. Also at the Big Horn field, A. ritzemabosi was found in soil on only three of the 14 collection dates, whereas D. dipsaci was found in soil on 12 dates. Aphelenchoides ritzemabosi was found in stem tissue samples on 9 of the 14 sampling dates whereas D. dipsaci was found on all dates. Populations of both nematodes in stem tissue peaked in October, and soil populations of both peaked in January, when soil moisture was greatest. Numbers of D. dipsaci in stem tissue were related to mean air temperature 3 weeks prior to tissue collection, while none of the climatic factors measured were associated with numbers of A. ritzemabosi. At the Dayton field, soil moisture plus soil temperature at 5 cm accounted for 98.2% and 91.4% of the variability in the soil populations of A. ritzemabosi and D. dipsaci, respectively. Aphelenchoides ritzemabosi was extracted from soil at two of the five collection dates, compared to extraction of D. dipsaci at three dates. Aphelenchoides ritzemabosi was collected from stem tissue at six of the seven sampling dates while D. dipsaci was found at all sampling dates. The only environmental factor that was associated with an increase in the numbers of both nematodes in alfalfa stem tissue was total precipitation 1 week prior to sampling, and this occurred only at the Dayton field. Numbers of A. ritzemabosi in stem tissue appeared to be not affected by any of the environmental factors studied, while numbers of D. dipsaci in stem tissue were associated with cumulative monthly precipitation, snow cover at time of sampling, and the mean weekly temperature 3 weeks prior to sampling. Harvesting alfalfa reduced the numbers of A. ritzemabosi at the Big Horn field and both nematodes at the Dayton field.  相似文献   

2.
This study examined the ribosomal cistron of Ditylenchus destructor, D. myceliophagus and seven host races of D. dipsaci from different geographic locations. The three species showed restriction fragment length polymorphisms (RFLPs) in the ribosomal cistron, the 18S rDNA gene, and the ribosomal internal transcribed spacer (ITS). Southern blot analysis with a 7.5-kb ribosomal cistron probe differentiated the five host races of D. dipsaci examined. Polymerase chain reaction (PCR) amplification of the ITS, followed by digestion with some restriction endonucleases (but not others), produced restriction fragments diagnostic of the giant race. Because the PCR product from D. myceliophagus and the host races of D. dipsaci was about 900 base pairs and the ITS size in D. destructor populations was 1,200 base pairs, mixtures of populations could be detected by PCR amplification. ITS fragments differentiated between D. dipsaci and Aphelenchoides rhyntium in mixed populations. This study establishes the feasibility of differentiation of the host races of D. dipsaci by probing Southern blots with the whole ribosomal cistron.  相似文献   

3.
Three North Carolina populations of Belonolairnus longicaudatus differed significantly from three Georgia populations in stylet measurements, the c ratio, the distance of the excretory pore from the anterior end for both sexes; the a ratio for females only; and the total body length, tail length, and spicule length for males only. The Georgia nematodes were stouter, and the females possessed sclerotized vaginal pieces. The distal portion of the spicules of North Carolina males had an indentation and hump lacking in those of the Georgia males. The haploid number of chromosomes was eight for males from all populations of B. longicaudatus and a North Carolina population of B. maritimus. Interpopulation matings of the Tarboro, N.C. and Tifton, Ga. populations indicated that the offspring produced were infertile. Morphological differences and reproductive isolation suggest that the North Carolina and the Georgia populations belong to different species.  相似文献   

4.
Meloidogyne hapla, Pratylenchus penetrans, and Helicotylenchus dihystera, reduced the growth of ''Saranac AR alfalfa seedlings when applied at concentrations of 50 nematodes per plant. All except P. penetrans reduced seedling growth when applied at 25 per seedling. M. hapla reduced growth when applied at 12 per seedling. Nematodes interacted with three pseudomonads to produce greater growth reductions than were obtained with single pathogens, suggesting synergistic relationships. Ditylenchus dipsaci, applied at 25 or 50 nematodes per seedling, reduced plant weight compared with weights of control plants, but did not interact with test bacteria. All of the nematodes except D. dipsaci produced root wounds which were invaded by bacteria.  相似文献   

5.
Effects of soil type on the reproduction and damage potential of Meloidogyne incognita on soybean, Glycine max (L.) Merr., were determined at five locations in North Carolina, including one site where plots with six soil types were established. M. incognita reproduced readily on a susceptible soybean cultivar in most soil types, with somewhat limited reproduction in muck soils. The relationship between initial population densities and yield varied among soil types and nematode populations. Yield losses were greatest in sandy and muck soil types, with less nematode damage occurring in the clay soil types. A North Carolina and a Georgia population of M. incognita differed greatly in their ability to reproduce on soybean and suppress growth. The North Carolina population had a moderate effect on yield in 1981 and only a slight effect in 1982. In contrast, a Georgia population severely limited soybean growth and yield at lower initial population densities in 1983, Initial population densities of the nematodes and physical and chemical edaphic factors accounted for much of the variation of soybean yield and nematode reproduction.  相似文献   

6.
Extracts of nematodes of the Raleigh, North Carolina (RNC), Waynesville, N. C. (WNC), and onion populations of Ditylenchus dipsaci were examined for pectolytic activity. RNC nematodes contained a NaCl-stimulated endo-polymethylgalacturonase with optimal pH for activity of 6.0, whereas nematodes of the WNC and onion populations possessed a NaCl-stimulated endo-polygalacturonase with pH optimum of 4.0. Nematodes of each population also contained a CaCl₂-activated endo-pectin methyl-trans-eliminase with optimal pH of 9.0. Nematode extracts containing 0.5 M NaCl macerated potato discs. RNC and onion nematodes induced gall formation in Wando pea seedlings, but WNC nematodes induced a resistant, hypersensitive response. Thus pectolytic activity was not correlated with pathogenicity of D. dipsaci on Wando pea.  相似文献   

7.
The reliability of morphological characters and host differential plants for distinguishing between two populations of Meloidogyne incognita was studied. Population A (originally from North Carolina) had incognita-type perineal patterns. A single egg mass subpopulation of population A had a mixture of incognita and acrita perineal patterns with 33% of the patterns atypical for either species. Population B (from Georgia) had predominantly acrita-type patterns with only about 5% atypical patterns. The head shapes of males from both populations were mainly M. incognita. On the basis of stylet length, both populations conformed to M. incognita acrita. Both populations were identified as M. incognita race 1 by reaction on the North Carolina differential hosts. Reactions on azalea and pepper gave no clear identification of the populations. We concluded that there is no relation between perineal pattern, male head shape, and parasitism of host differentials with the two populations studied.  相似文献   

8.
Persistence of dormant Ranger and nondormant Moapa alfalfas, both susceptible to Ditylenchus dipsaci, varied with stand age and cutting frequency. Stand reduction increased with cutting frequency. In D. dipsaci-infested soil, stand reductions in Ranger 1, 4, and 5 years old exceeded reductions in stands 2 and 3 years old; persistence was greatest in 2-year-old stands. In Moapa alfalfa, D. dipsaci reduced stands the most in years 2 and 3; whereas persistence was greatest in 1-year-old stands. Harvesting Ranger alfalfa one, two, three, and four times during the growing season reduced 2-year-old stands by 10, 14, 19, and 29% in D. dipsaci-infested soil and by 2, 4, 4, and 7% in uninfested soil, respectively. Comparable reductions in Moapa alfalfa were 13, 16, 18, and 38% in infested soil and 0, 2, 4, and 6% in uninfested soil. Cutting frequency had less effect on persistence of resistant semidormant Lahontan grown in D. dipsaci-infested soil relative to susceptible cultivars. Increasing the number of cuttings per year decreased storage of total nonstructural carbohydrate and adversely affected persistence of alfalfa stands and yields; the greatest negative effects occurred on both resistant and susceptible alfalfa in D. dipsaci-infested soil.  相似文献   

9.
Various taxonomically useful profiles of four dehydrogenases (lactate, malate, glucose-6-phosphate, and a-glycerophosphate) and three hydrolases (acid and alkaline phosphatase and esterase) were detected in whole nematode homogenates of Meloidogyne javanica, M. hapla, M. incognita, M. arenaria, Ditylenchus dipsaci, D. triformis, Heterodera glycines, and Aphelenchus avenae. The enzyme profiles were stable in populations cultured on several different hosts. A tentative enzymically-determined phylogeny of Meloidogyne is given.  相似文献   

10.
Blueberry replant disease (BRD) is an emerging threat to continued blueberry (Vaccinium spp.) production in Georgia and North Carolina. Since high populations of ring nematode Mesocriconema ornatum were found to be associated with commercially grown blueberries in Georgia, we hypothesized that M. ornatum may be responsible for predisposing blueberry to BRD. We therefore tested the pathogenicity of M. ornatum on 10-wk-old Rabbiteye blueberries (Vaccinium virgatum) by inoculating with initial populations (Pi) of 0 (water control), 10, 100, 1,000. and 10,000 mixed stages of M. ornatum/pot under both greenhouse (25 ± 2°C) and field microplot conditions. Nematode soil population densities and reproduction rates were assessed 75, 150, 225, and 255, and 75, 150, 225, and 375 d after inoculation (DAI) in both the greenhouse and field experiments, respectively. Plant growth parameters were recorded in the greenhouse and field microplot experiments at 255 and 375 DAI, respectively. The highest M. ornatum population density occurred with the highest Pi level, at 75 and 150 DAI under both greenhouse (P < 0.01) and field (P < 0.01) conditions. However, M. ornatum rate of reproduction increased significantly in pots receiving the lowest Pi level of 10 nematodes/plant compared with the pots receiving Pi levels of 100, 1,000, and 10,000 nematodes 75 DAI. Plant-parasitic nematode populations were determined in commercial blueberry replant sites in Georgia and North Carolina during the 2010 growing season. Mesocriconema ornatum and Dolichodorus spp. were the predominant plant-parasitic nematodes in Georgia and North Carolina, respectively, with M. ornatum occurring in nearly half the blueberry fields sampled in Georgia. Other nematode genera detected in both states included Tylenchorhynchus spp., Hoplolaimus spp., Hemicycliophora spp., and Xiphinema spp. Paratrichodorus spp. was also found only in Georgia. In Georgia, our results indicate that blueberry is a host for M. ornatum and its relationship to BRD warrants further investigation.  相似文献   

11.
Treatment of daffodil (Narcissus pseudonarcissus) bulbs in a 0.37% formaldehyde water solution at 44 C for 240 minutes is a standard practice in California for management of the stem and bulb nematode, Ditylenchus dipsaci. Recent concern over the safety of formaldehyde and growers'' requests for a shorter treatment time prompted a reevaluation of the procedure. The time (Y, in minutes) required to raise the temperature at the bulb center from 25 to 44 C was related to bulb circumference (X, in cm) and is described by the linear regression Y = -15 + 3.4X. The time required for 100% mortality of D. dipsaci in vitro without formaldehyde was 150, 60, and 15 minutes at 44, 46, and 48 C, respectively. Hot water treatment (HWT) with 0.37% formaldehyde at 44 C for 150 minutes controlled D. dipsaci and did not have a detrimental effect on plant growth and flower production. Shorter formaldehyde-HWT of 90, 45, and 30 minutes at 46, 48, and 50 C, respectively, controlled D. dipsaci but suppressed plant growth and flower production. Fungal genera commonly isolated from the bulbs in association with D. dipsaci were Penicillium sp., Fusarium oxysporum f. sp. narcissi, and Mucor plumbeus, representing 60, 25, and 5%, respectively, of the total fungi isolated. These fungi caused severe necrosis in daffodil bulbs. HWT at 44 C for 240 minutes reduced the number of colonies recovered from bulbs. The effects of formaldehyde, glutaraldehyde, and sodium hypochlorite in reducing the population of fungi within bulbs were variable. Satisfactory control of D. dipsaci within bulbs can be achieved with HWT of bulbs at 44 C for 150 minutes with 0.37% formaldehyde or at 44 C for 240 minutes without chemicals.  相似文献   

12.
Aqueous extracts of a population of Ditylenchus dipsaci isolated from onion and maintained monoxenically on onion callus contained endo-polygalacturonase (endo-PG) and endo-pectinmethyltranseliminase (endo-PMTE). In viscometric tests pH 4.2 and 4.0 were optimal for degradation of sodium polypectate and pectin N.F., respectively, by endo-PG. Endo-PMTE reduced viscosity of pectin N.F. optimally at pH 8.5 or above. Activity was dependent on CaCl₂. Pectinmethylesterase activity was not detected in water, NaCl, or sucrose extracts of these nematodes. The extracts macerated potato tuber tissue, onion cotyledonary tissue, and strips of onion epidermis from the ventral surface of onion bulb scales at pH 4.2, 5.3, and 6.2. Pectin could not be localized with hydroxylamine-ferric chloride reagent in macerated tissues treated for 24 hr with active extract.  相似文献   

13.
Ditylenchus dipsaci and Fusarium oxysporum f. sp. medicaginis synergistically affected the mortality and plant growth of Ranger alfalfa, a cultivar susceptible to stem nematode and Fusarium wilt. The nematode-fungus relationship had an additive effect on mortality and plant growth of Lahontan (nematode resistant and Fusarium wilt susceptible) and of Moapa 69 (nematode susceptible and Fusarium wilt resistant). Mortality rates were 13, 16, 46, and 49% for Ranger; 4, 18, 26, and 28% for Lahontan; and 19, 10, 32, and 30% for Moapa 69 inoculated with D. dipsaci, F. oxysporum f. sp. medicaginis, and simultaneously and sequentially with D. dipsaci and F. oxysporum f. sp. medicaginis, respectively. Shoot weights as a percentage of uninoculated controls for the same treatments were 52, 84, 26, and 28%, for Ranger; 74, 86, 64, and 64% for Lahontan; and 50, 95, 44, and 39% for Moapa 69. Plant growth suppression was related to vascular bundle infection and discoloration of alfalfa root tissue. Disease severity and plant growth of alfalfa did not differ with simultaneous or sequential inoculations of the two pathogens. Fusarium oxysporum f. sp. medicaginis affected alfalfa growth but not nematode reproduction.  相似文献   

14.
Numbers ofDitylenchus dipsaci or Meloidogyne hapla invading Ranger alfalfa, Tender crop bean, Stone Improved tomato, AH-14 sugarbeet, Yellow sweet clover, and Wasatch wheat from single inoculations were not significantly different from numbers by invasion of combined inoculations. D. dipsaci was recovered only from shoot and M. hapla only from root tissue. Combined inoculations did not affect reproduction of either D. dipsaci or M. hapla. D. dipsaci suppressed shoot growth of all species at 15-30 C, and M. hapla suppressed shoot growth of tomato, sugarbeet, and sweet clover at 20, 25, and 30 C. There was a positive correlation (P < 0.05) between shoot and root growth suppression by D. dipsaci on all cultivars except wheat at 20 C and tomato at 30 C. M. hapla suppressed (P < 0.05) root growth of sugarbeet at 20-50 C and wheat at 30 C. Growth suppression was synergistic in combined inoculations of sweet clover shoot growth at 15 C and root growth at 20-30 C, wheat root growth at 15 and 20 C, and tomato root growth at 15-30 C (P < 0.05) D. dipsaci invasions caused mortality of alfalfa and sweet clover at 15-30 C and sugarbeet at 20-30 C. Mortality rates of alfalfa and sweet clover increased synergistically (P < 0.05) from combined inoculations.  相似文献   

15.
Hot-water dips with and without the additives abamectin and sodium hypochlorite were evaluated for control of Ditylenchus dipsaci infection of garlic seed cloves. All treatments were compared to hot water-formalin clove dip disinfection and to nontreated infected controls for garlic emergence, midseason infection, bulb damage, and yield at harvest in field plots in 12 experiments. Hot-water treatments without additives only partially controlled D. dipsaci when a warming presoak dip (38 C) of 30, 45, or 60 minutes'' duration was followed by a hot-water dip (49 C) of 15-30 minutes'' duration. Exposure to 49 C for 30 minutes caused slight retardation of garlic emergence, although normal stand was established. Abamectin at 10-20 ppm as the 20-minute hot dip (49 C) or as a 20-minute cool dip (18 C) following a 20-minute hot-water dip and sodium hypochlorite at 1.052-1.313% aqueous solution as the 20-minute hot dip were highly effective in controlling D. dipsaci and were noninjurious to garlic seed cloves. None of these treatments was as effective as a hot water-formalin dip and were noneradicative, but showed high efficacy on heavily infected seed cloves relative to nontreated controls. Abamectin was most effective as a cool dip. These abamectin cool-dip (following hot-water dip) and sodium hypochlorite hot-dip treatments can be considered as effective alternatives to replace formalin as a dip additive for control of clove-borne D. dipsaci. Sodium hypochlorite was less effective as the cool dip, and at concentrations of 1.75-2.63% was phytotoxic to garlic.  相似文献   

16.
Trifolium repens (white clover) stolons were inoculated with Ditylenchus dipsaci (stem nematode), and the development of resulting infestations was monitored. Nematodes initially remained confined to superficial locations, concentrating in petiole axils near inoculation points. They were able to migrate slowly from the inidal inoculation points and infest adjacent axils, especially in regions near the stolon tip. As time progressed, in some axils, nematodes migrated through the stolon epidermis and colonized slowly expanding subepidermal pockets of host tissue (ca. 0.2-mm length of stolon/day). In these loci nematodes established exponentially increasing populations, but the rates of locus expansion remained constant, indicating that locus expansion was limited by unidentified host-dependent factors. As a result of increasing population pressure within subepidermal loci, J4 entered a "diapause" state and the rate of egg production by adults declined, thereby reducing rate of population growth to more sustainable levels. Typically, these populations peaked at ca. 10,000 individuals in ca. 160 days occupying 3-cm lengths of stolon. Thereafter, heavily infested regions of stolons started to die, leading to the formation of longitudinal splits in their epidermis. In other axils, nematodes did not migrate into the stolons but remained confined to axils. Some of these populations increased a hundred-fold in 95 days, with population growth ending when petioles started to die. Host plant stolon morphology was affected only when subepidermal stolon populations developed high population levels (>100 nematodes) within close proximity (<2 cm) to active terminal meristems. This occurred either when axillary buds became active on previously infested nodes or when nematodes established endoparasitic populations at locations near the stolon tip during winter and spring, when the rate of stolon extension was limited by low light intensity. Affected stolon tips could "escape" from the influence of such infestations when light intensity and temperature increased. Nematode activity was limited by low temperature rather than light intensity. Global warming is likely to lead to greater damage to infested plants during the winter and early spring because the predicted milder winter temperatures will enhance nematode activity but not necessarily promote stolon growth.  相似文献   

17.
Three nematicides were evaluated as seed treatments to control the alfalfa stem nematode (Ditylenchus dipsaci) on seedling alfalfa. Alfalfa seeds were soaked for 10 hours in a 0.5% (formulated by weight) concentration of either carbofuran, phenamiphos or oxamyl in acetone with no adverse effect on seed germination. All three treatments decreased nematode damage and increased survival of ''Ranger'' (susceptible) and ''Lahontan'' (resistant) alfalfa plants, when seeds were planted in soil infested with D. dipsaci. Mean live plant counts after 6 weeks in the untreated control, acetone alone, carbofuran, phenamiphos, and oxamyl treatments, respectively, were 4.3, 6.3, 19.0, 19.8, and 19.0 for Lahontan and 4.5, 1.5, 18.5, 19.3, and 18.0 for Ranger from 20 seeds/pot. Nematicide seed treatments resulted in significantly healthier Ranger alfalfa plants 4 months after planting. The combination of seed treatment and host resistance may provide a means of establishing alfalfa in an alfalfa monocropped system where soil populations of D. dipsaci are high.  相似文献   

18.
Aggressiveness and reproduction differed among four geographical populations of M. arenaria on six soybean cultivars in field microplots. These differences were consistent over 3 years. The populations did not differ in virulence; i.e., population by cultivar interactions were not significant. Perineal pattern morphology, the North Carolina differential host test, chromosome counts of immature oocytes, and esterase phenotypes confirmed that the four populations were M. arenaria. Three populations were host race 2 and one population was host race 1.  相似文献   

19.
Pratylenchus penetrans and Ditylenchus dipsaci were reared at 15-16 C, and their behavior towards single and combined heat and CO₂ stimuli was studied at ambient temperatures of 8.6 and 27.3 C. At the lower temperature, attractivity of the heat source was prevalent in both species, but CO₂ was also attractive. At the higher ambient temperature (27.3 C), the reaction to CO₂ was more positive and more rapid than to heat. In fact, at this temperature only D. dipsaci was attracted to the heat source, whereas P. penetrans did not react positively. The combined stimulation of heat and CO₂ caused D. dipsaci to aggregate more strongly than did a single stimulus; this applied to both ambient temperatures. For P. penetrans exposed to the low temperature (8.6 C), the combined stimuli were about as attractive as was the better of the single stimuli; i.e., heat. At the high temperature (27.3 C), the combined stimulation was less effective than the better of the single stimuli; i.e., CO₂. At this ambient temperature, the thermonegative reaction seems to dominate over the CO₂-positive one. The reaction of D. dipsaci was generally stronger in all experimental variants than that of P. penetrans. Insofar as temperature gradients play a role in locating host plant roots, their efficacy would seem to be restricted to a favorable temperature range. Within this range, combined heat and CO₂ stimuli might improve attractivity.  相似文献   

20.
The stem nematode, a parasite of the herbaceous perennial weed, Cirsium arvense (L.) Scop. and identified as Ditylenchus dipsaci (Kühn) Filipjev, was reported in the Canadian prairies in 1979. Recently, D. weischeri Chizhov parasitizing Cirsium arvense was described in Russia, and it has been shown that this species is not an agricultural pest. In this study, we examined Ditylenchus species found in field pea (Pisum sativum L.) grain harvest samples in 2009 and 2010 and from C. arvense shoots in pea fields in the Saskatchewan, Alberta, and Manitoba provinces. Samples from 538 fields (mainly yellow pea) were provided by 151 growers throughout the main pea-growing area of the Canadian prairies. Of the samples collected, 2% were positive for Ditylenchus. The population density of the nematode ranged between 4 and 1,500 nematodes kg-1 pea harvest sample and related to presence of C. arvense seeds. Positive samples occurred in 2009 but not in 2010 and were from throughout the pea-growing area of the Canadian prairies and not related to cropping history. C. arvense collected from yellow pea fields in Saskatchewan and Manitoba, but not Alberta, were infested with Ditylenchus. Morphological and molecular (ITS-PCR-RFLP) traits indicated that this species belongs to D. weischeri. The results indicated the stem nematode found in yellow pea grain is D. weischeri which resided with C. arvense seeds and debris to pea samples. Unlike D. dipsaci, D. weischeri is not a nematode pest of economic importance; therefore, its presence in the pea harvest samples was not a concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号