首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On a few occasions, soybeans with broken root tips were included in tests to evaluate resistance to Heterodera glycines. Although females developed on these plants, the numbers tended to be lower than on similarly treated intact roots. To test the possibility that removal of the root meristem affected nematode development, a culture system using pruned soybeans was devised that permitted access to the roots without disturbing the plants. Treatments included removal of 2 mm of root tip at various times ranging from 24 hours before to 10 days after inoculation, or roots left intact. In each experiment, all roots were inoculated at the same time with equal numbers of freshly hatched second-stage juveniles of Heterodera glycines. No differences in nematode development were detected in plants with root tips removed after inoculation compared to the control. When tips were removed at or before inoculation, fewer juveniles entered roots and relatively fewer nematodes developed. Penetration levels and development correlated with root tip removal such that progressively fewer nematodes entered roots and relatively greater numbers of nematodes remained undeveloped as the time interval between root tip removal and inoculation was increased.  相似文献   

2.
In vivo pyruvate synthesis by malic enzyme (ME) and pyruvate kinase and in vivo malate synthesis by phosphoenolpyruvate carboxylase and the Krebs cycle were measured by 13C incorporation from [1-13C]glucose into glucose-6-phosphate, alanine, glutamate, aspartate, and malate. These metabolites were isolated from maize (Zea mays L.) root tips under aerobic and hypoxic conditions. 13C-Nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry were used to discern the positional isotopic distribution within each metabolite. This information was applied to a simple precursor-product model that enabled calculation of specific metabolic fluxes. In respiring root tips, ME was found to contribute only approximately 3% of the pyruvate synthesized, whereas pyruvate kinase contributed the balance. The activity of ME increased greater than 6-fold early in hypoxia, and then declined coincident with depletion of cytosolic malate and aspartate. We found that in respiring root tips, anaplerotic phosphoenolpyruvate carboxylase activity was high relative to ME, and therefore did not limit synthesis of pyruvate by ME. The significance of in vivo pyruvate synthesis by ME is discussed with respect to malate and pyruvate utilization by isolated mitochondria and intracellular pH regulation under hypoxia.  相似文献   

3.
The numbers of Meloidogyne incognita larvae which migrated from cotton roots declined over a 16-day period, but the difference in numbers migrating from resistant and susceptible cultivars was not significant. Larvae penetrated susceptible roots, matured, and reproduced within 14 days following inoculation, whereas nematode development in the resistant roots was greatly retarded. Three types of histological responses were observed in infected, resistant roots, and these correlated with the degree of nematode development. Some galls were examined which contained only fragments of nematodes; others contained no detectable traces of developing larvae. Formation of druses in galls, but not in healthy tissue, was noted in both cultivars 20 days after inoculation. Massive invasion of roots resulted in deep longitudinal fissures of root cortex.  相似文献   

4.
Changes in DNA and RNA in roots of bur marigold fed upon by Longidorus africanus were studied using analytical methods, radioactive precursors, and analytical CsC1 density-gradient centrifugation. The analyses showed that almost twice as much RNA and DNA was present in parasitized root tips as in those of nonparasitized control plants. Studies on the rates of incorporation of labeled thymidine and uridine confirmed the DNA levels determined by analytical methods, but revealed a much higher incorporation rate of RNA in healthy root tips than in those attacked by L. africanus. However, ³²P incorporation followed by DNase and RNase digestion showed that the seemingly greater amount of RNA in healthy root tips was due to a rapid formation of a pool of unlabeled uridine following infection.The possibility that L. africanus injected DNA into roots during feeding was examined by the density-gradient centrifugation method, with negative results. However, the rapid increase of RNA precursors in the parasitized roots might have been caused by injection of plant virus particles during nematode feeding.  相似文献   

5.
Ethylene production was determined in excised tomato (Lycopersicon esculentum) root cultures of Meloidogyne javanica susceptible and resistant cultivars infected with M. javanica. Uninfected cultivars produced very low amounts of ethylene. Relatively high amounts of ethylene were produced by the infected susceptible cultivars. Peak production of 1.6 n moles * g root⁻¹ * h¹⁻ occurred between 9 and 16 days after inoculation (DAI). The period of high ethylene production coincided with that of rapid increase in gall weight. Low amounts of ethylene were also released by the infected resistant cultivar between 9 and 12 DAI, which follows the hypersensitivity reaction. Ethylene production in infected intact plants during the period of rapid gall growth was twice as much as in uninfected plants during the same time. Exposing excised root cultures to 0.5 or l0 ppm ethylene accelerated the rate of increase in gall weight of M. javanica infected roots. In contrast, overall root growth was inhibited by these treatments, compared to infected roots which were not exposed to ethylene.  相似文献   

6.
Selenium (Se) has been becoming an emerging pollutant causing severe phytotoxicity, which the biochemical mechanism is rarely known. Although hydrogen sulfide (H2S) has been suggested as an important exogenous regulator modulating plant physiological adaptions in response to heavy metal stress, whether and how the endogenous H2S regulates Se-induce phytotoxicity remains unclear. In this work, a self-developed specific fluorescent probe (WSP-1) was applied to track endogenous H2S in situ in the roots of Brassica rapa under Se(IV) stress. Se(IV)-induced root growth stunt was closely correlated with the inhibition of endogenous H2S generation in root tips. Se(IV) stress dampened the expression of most LCD and DCD homologues in the roots of B. rapa. By using various specific fluorescent probes for bio-imaging root tips in situ, we found that the increase in endogenous H2S by the application of H2S donor NaHS could significantly alleviate Se(IV)-induced reactive oxygen species (ROS) over-accumulation, oxidative impairment, and cell death in root tips, which further resulted in the recovery of root growth under Se(IV) stress. However, dampening the endogenous H2S could block the alleviated effect of NaHS on Se(IV)-induced phytotoxicity. Finally, the increase in endogenous H2S resulted in the enhancement of glutathione (GSH) in Se(IV)-treated roots, which may share the similar molecular mechanism for the dominant role of H2S in removing ROS by activating GSH biosynthesis in mammals. Altogether, these data provide the first direct evidences confirming the pivotal role of endogenous H2S in modulating Se(IV)-induced phytotoxicity in roots.  相似文献   

7.
In two of three trials, detectable color reactions in ELISA for Prunus necrotic ringspot virus (PNRSV) were observed for Criconemella xenoplax handpicked from the root zone of infected peach trees. Criconemella xenoplax (500/pot) handpicked from root zones of peach trees infected with PNRSV failed to transmit the virus to cucumber or peach seedlings. The nematode also failed to transmit tomato ringspot (TomRSV) or tobacco ringspot viruses between cucumbers, although Xiphinema americanum transmitted TomRSV under the same conditions. Plants of peach, cucumber, Chenopodium quinoa, and Catharanthus roseus were not infected by PNRSV when grown in soil containing C. xenoplax collected from root zones of PNRSV-infected trees. Shirofugen cherry scions budded on Mazzard cherry seedling rootstocks remained symptomless when transplanted into root zones of PNRSV-infected trees. Virus transmission was not detected by ELISA when C. xenoplax individuals were observed to feed on cucumber root explants that were infected with PNRSV and subsequently fed on roots of Prunus besseyi in agar cultures. Even if virus transmission by C. xenoplax occurs via contamination rather than by a specific mechanism, it must be rare.  相似文献   

8.
9.
We examined differences in fine root morphology, mycorrhizal colonisation and root-inhabiting fungal communities between Picea abies individuals infected by Heterobasidion root-rot compared with healthy individuals in four stands on peat soils in Latvia. We hypothesised that decreased tree vitality and alteration in supply of photosynthates belowground due to root-rot infection might lead to changes in fungal communities of tree roots. Plots were established in places where trees were infected and in places where they were healthy. Within each stand, five replicate soil cores with roots were taken to 20 cm depth in each root-rot infected and uninfected plot. Root morphological parameters, mycorrhizal colonisation and associated fungal communities, and soil chemical properties were analysed. In three stands root morphological parameters and in all stands root mycorrhizal colonisation were similar between root-rot infected and uninfected plots. In one stand, there were significant differences in root morphological parameters between root-rot infected versus uninfected plots, but these were likely due to significant differences in soil chemical properties between the plots. Sequencing of the internal transcribed spacer of fungal nuclear rDNA from ectomycorrhizal (ECM) root morphotypes of P. abies revealed the presence of 42 fungal species, among which ECM basidiomycetes Tylospora asterophora (24.6 % of fine roots examined), Amphinema byssoides (14.5 %) and Russula sapinea (9.7 %) were most common. Within each stand, the richness of fungal species and the composition of fungal communities in root-rot infected versus uninfected plots were similar. In conclusion, Heterobasidion root-rot had little or no effect on fine root morphology, mycorrhizal colonisation and composition of fungal communities in fine roots of P. abies growing on peat soils.  相似文献   

10.
The influence of various c oncentrations of K⁺, nitrogen sources, and inoculation with root-knot nematode Meloidogyne javanica were evaluated in tomato plants. Increased potassium concentration increased top and root fresh weights of intact plants and fresh weights of excised roots. Nitrate-fertilized plants weighed more than plants receiving ammonium independent of the K level in the medium. Nematode counts on roots were not affected by nutritional differences in intact or excised roots. In intact roots a high percentage of males was recorded at low K⁺ levels, whereas in excised roots the proportion of males in the population rose as the K⁺ levels increased. Inoculated intact roots accumulated K⁺ when the level of potassium supply was low; infected excised roots contained less K⁺ than did nematode-free roots.  相似文献   

11.
The duration of the embryogenic development of Nacobbus aberrans (= N. batatiformis) took 9-10 days at 25 C and 51 days at 15 C. The J₁ molted in the egg; hence the Je emerged from the egg. The effect of distilled water attd root leachates of kochia and sugarbeet was investigated at 5, 10, 15, 20, and 25 C. Root leachates did not significantly affect the percent of cumulative hatch of eggs, but temperature did significantly affect emergence of juveniles (p = 0.05). Less than 1, 5, and 20% of eggs hatched at 5, 10, and 15 C, respectively. The percent of cumulative hatch at 20 C was four times greater than at 15 C, while the highest percentage of juveniles emerged at 25 C. The duration of postembryogenic development from J₂ inoculation until the appearance of mature females with egg masses took 38 days, and the life cycle from egg to egg was completed in 48 days at 25 C. All immature stages, young females and males were migratory endoparasites. Young females were able to leave the root swellings, where they developed from juvenile stages, and re-enter the root, where they formed a true gall and became sedentary. Thirty days after inoculation with J₂ nematodes, specimens were detected in root tissues at 10, 15, 20, 25, and 30 C, hut not at 5 C. Five days after inoculation at 23 C ( ± 2 C), juveniles had penetrated the roots and caused slight swellings of the tip and axis of sugarbeet feeder roots. Large cavities extended from the cortical parenchyma to the periphery of the stelar area, and 50 % of the central cylinder was destroyed 25 days after inoculation at 23 C. No syncytia formation were detected in the sugarbeet root swellings infected with juveniles. Syncytia were associated only with adult females; hyperplasia, abnormal proliferation of lateral roots, and asymmetry of root structure were additional anatomical changes induced by adult females. Only very smooth annules but no cuticular ornamentations were noted by SEM on the perineal area of adult females.  相似文献   

12.
S. Nemec 《Mycopathologia》1970,41(3-4):331-346
A qualitative and quantitative study of the fungi associated with apparently healthy and root rot-diseased strawberry main roots was made during a 1-year period. Eighty-one genera were isolated from lesions and stele segments of diseased roots, and tips and segments 5–6 cm from the tip of apparently healthy roots. A diverse mycoflora was isolated from each segment of the root. However, each segment had a typical dominant mycoflora, indicating that a changing mycoflora is associated with the root as it passes from a healthy to a diseased condition.Pythium spp. andRhizoctonia Spp. accounted for 25.09 and 5.67 percent, respectively, of the isolates from Surecrop lesions, and 4.96 and 25.92 percent, respectively, of the isolates from Cyclone lesions.  相似文献   

13.
Postinfection development of Meloidogyne chitwoodi from second-stage juveniles (J2) to mature females and egg deposition on ''Nugaines'' winter wheat required 105, 51, 36, and 21 days at 10, 15, 20, and 25 C. At 25 C, the J2 induced cavities and hyperplasia in the cortex and apical meristem of root tips with hypertrophy of cortical and apical meristem cell nuclei, 2 and 5 days after inoculation. Giant cells induced by late J2 were observed in the stele 10 days after inoculation. Clusters of egg-laying females were common on wheat root galls 25 days after inoculation. Juveniles penetrated wheat roots at 4 C and above, but not at 2 C, when inoculum was obtained from cultures grown at 20 C, but no penetration occurred at 4 C when inoculum was stored for 12 hours at 4 C before inoculation. In northern Utah, J2 penetrated Nugaines wheat roots in the field in mid-May, about 5 months after seedling emergence. M. chitwoodi eggs were first observed on wheat roots in mid-July when plants were in blossom. Only 40% of overwintered M. chitwoodi eggs hatched at 25 C.  相似文献   

14.
Al-resistant (alr) mutants of Arabidopsis thaliana were isolated and characterized to gain a better understanding of the genetic and physiological mechanisms of Al resistance. alr mutants were identified on the basis of enhanced root growth in the presence of levels of Al that strongly inhibited root growth in wild-type seedlings. Genetic analysis of the alr mutants showed that Al resistance was semidominant, and chromosome mapping of the mutants with microsatellite and random amplified polymorphic DNA markers indicated that the mutants mapped to two sites in the Arabidopsis genome: one locus on chromosome 1 (alr-108, alr-128, alr-131, and alr-139) and another on chromosome 4 (alr-104). Al accumulation in roots of mutant seedlings was studied by staining with the fluorescent Al-indicator dye morin and quantified via inductively coupled argon plasma mass spectrometry. It was found that the alr mutants accumulated lower levels of Al in the root tips compared with wild type. The possibility that the mutants released Al-chelating organic acids was examined. The mutants that mapped together on chromosome 1 released greater amounts of citrate or malate (as well as pyruvate) compared with wild type, suggesting that Al exclusion from roots of these alr mutants results from enhanced organic acid exudation. Roots of alr-104, on the other hand, did not exhibit increased release of malate or citrate, but did alkalinize the rhizosphere to a greater extent than wild-type roots. A detailed examination of Al resistance in this mutant is described in an accompanying paper (J. Degenhardt, P.B. Larsen, S.H. Howell, L.V. Kochian [1998] Plant Physiol 117: 19–27).  相似文献   

15.
The development of Meloidogyne platani on sycamore was followed for 40 days (22-28 C). Juveniles penetrated the feeder roots behind the root cap and invaded the vascular cylinder within 3 days after inoculation. All subsequent development of the nematodes and host effects occurred only within the stele. The second juvenile molt and sex differentiation occurred by the 17th day. Young females were observed by the 26th day. Eggs were observed inside the roots by the 35th day and were exposed to the surface of galls by the 40th day. In pathogenicity studies, a significant negative correlation was shown to exist between fresh shoot and root weights and inoculum density. Besides sycamore, white ash was the only hardwood species tested to become infected. Of the herbacious plants tested, tobacco was heavily galled, tomato and watermelon moderately galled, and pepper only slightly galled. Egg production was moderate on tobacco, slight on tomato and watermelon, and absent on pepper.  相似文献   

16.
One susceptible (D6) and two resistant (E2 and N4) clones of Solanum sparsipilum × (S. phureja × haploid of S. tuberosum) were used to study the responses of potato roots and tubers to race 1 of Meloidogyne incognita (Kofoid &White) Chitwood. The compatible response was characterized by rapid penetration of large numbers of second-stage juveniles (J2) into roots, cessation of root growth, and occasional curving of root tips. The life cycle of M. incognita in the susceptible clone was completed in 25 days at 23-28 C. The incompatible response was characterized by penetration of fewer J2 into roots, necrosis of feeding sites within 2-7 days, and lack of nematode development. There were no differences in response of tubers from resistant and susceptible clones to nematode infection. Small numbers of J2 were detected in tubers, but they did not develop.  相似文献   

17.
Soybean is stress-sensitive crop that exhibits markedly reduced growth under flooding and drought conditions. Three S-adenosylmethionine synthetases (SAMs) proteins were identified as flooding and drought responsive proteins in soybean using a proteomic technique. To better understand the role of these SAMs proteins in soybean under flooding and drought stresses, temporal, organ, and stress specificities were examined at mRNA and enzyme activity levels. The activity of SAMs decreased in response to the flooding, however, it was not significantly changed by NaCl, cold, gibberellic acid, and calcium in soybean roots. The activity of SAMs was induced in roots and hypocotyls under drought. The mRNA expression of the S-adenosylmethionine synthetase (SAMs) family was down-regulated in root tips and roots under the flooding and the drought, and SAMs 1 and SAMs 2 were down-regulated in roots under both stresses. A gene 1-aminocyclopropane-1-carboxylate synthase was up-regulated in root tips, roots, and hypocotyls under drought, however, it was not changed in root tips and roots under the flooding. In addition, 1-aminocyclopropane-1-carboxylate oxidase was induced in root tips under flooding and drought. These results suggest that SAMs was involved in the response to the flooding and drought and it might affect ethylene biosynthesis in soybean.  相似文献   

18.
Root rot caused by Fusarium solani, is one of the most severe diseases in pepper (Capsicum annuum L.). Grafting has been attempted as an effective means to control the disease, but little is known about the disease resistance mechanism in grafted pepper. Therefore, we investigated the changes of biomass, cell structure, and the secondary metabolism in roots of control (non-grafted pepper) and grafted peppers using cvs. Weishi and Buyeding as rootstocks and the cv. Xinfeng 2 as a scion. After a manual inoculation, less F. solani invaded grafted pepper roots and consequently less serious injury to the root cell ultra-structure compared with the control was found. The roots of grafted pepper infected with F. solani exhibited greater biomass production and root activity than the roots of infected controls. Grafting led to an increased content of salicylic acid, benzoic acid, vanillin, lignin, and polyamines, as well as activities of phenylalanine ammonia lyase, polyphenoloxidase, and peroxidase. These results suggest that grafting improved the resistance of peppers to root rot.  相似文献   

19.
We examined the role of alcohol dehydrogenase (ADH) in the metabolism and survival of hypoxic maize (Zea mays L.) root tips. The dependence of the rate of ethanolic fermentation, cytoplasmic pH, and viability on the activity of ADH in maize root tips during extreme hypoxia was determined. Maize lines with ADH activities differing over about a 200-fold range were studied. Effects of genetic background were controlled by comparing pairs of F4 progeny of crosses between mutant (low ADH activity) and reference inbred lines. The capacity of hypoxic root tips to perform ethanolic fermentation exhibited a dependence on ADH activity only at activities found in Adh 1 nulls. The ability of maize root tips to withstand prolonged and extreme hypoxia was like-wise independent of ADH activity, except at the lowest activities. Root tips that exhibited lower tolerance of hypoxia had more acidic cytoplasm during extreme hypoxia. We conclude that the activity of ADH in normal maize root tips does not limit the capacity for energy production via fermentation, and does not determine viability under extreme hypoxia. The significance of the induction of ADH activity in plants by hypoxia is discussed.  相似文献   

20.
Calonectria crotalariae enhanced root penetration of Lee 74 (susceptible) and Centennial (resistant) soybeans by juveniles of race 3 of Heterodera glycines. Numbers of cysts in and on the roots of Lee 74 increased during the first 30 days in the presence of the fungus. Percentage of root infection by the fungus increased at 40 days in Lee 74 in the presence of the nematode. Numbers of cysts in soil at 80 and 120 days after inoculation with both organisms accounted for the significantly increased nematode population levels on Lee 74. In the presence of the fungus on the resistant cultivar, significantly increased levels of cysts were recovered from soil at 120 days. Fungus infection of Centennial roots also infected with the nematode increased from 58 to 86% at 120 days. An inoculum timing study in which Lee 74 was infested with the nematode and fungus individually, sequentially, and in combination at days 0 and 35 indicated that enhanced nematode reproduction was related more to early plant-fungus than to early plant-fungus-nematode interaction(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号