首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maroteaux–Lamy syndrome (mucopolysaccharidosis type VI, MPS VI) is an autosomal recessive disorder due to the deficiency of the lysosomal enzyme N-acetylgalactosamine-4-sulfatase (arylsulfatase B, ASB). Mutation analysis in Maroteaux–Lamy syndrome resulted in the identification of approximately 40 molecular defects underlying a great genetic heterogeneity. Here we report five novel mutations in Italian subjects: S65F, P116H, R315Q, Q503X, P531R; each defect was confirmed by restriction enzyme or amplification refractory mutation system (ARMS) analysis. We also performed a three-dimensional (3-D) structure analysis of the alterations identified by us, and of an additional 22 point mutations reported by other groups, in an attempt to draw helpful information about their possible effects on protein conformation.  相似文献   

2.
Maroteaux-Lamy syndrome, or mucopolysaccharidosis type VI (MPS-VI), is a lysosomal storage disorder characterized by the defective degradation of dermatan sulfate due to the deficiency of N-acetylgalactosamine-4-sulfatase (4S). The clinical severity of MPS-VI ranges in a continuum from mildly affected to severely affected patients. Mutations in MPS-VI patient samples were identified by chemical cleavage and direct DNA sequencing of PCR products derived from patient cDNA. Five amino acid substitutions were identified (T92M, R95Q, Y210C, H393P, and L498P), individually introduced into the wild-type 4S cDNA by site-directed in vitro mutagenesis, and transfected into Chinese hamster ovary cells. Three of the five mutations (R95Q, Y210C, and H393P) were observed in >1 of 25 unrelated MPS-VI patients; however, the mutations were not found in 20 control individuals. The residual 4S activity and protein (biochemical phenotype) were determined for each mutant in order to confirm their identity as mutations and to dissect the contribution of each mutant allele to the overall clinical phenotype of the patient. For each patient, the combined biochemical phenotypes of the two 4S mutant alleles demonstrated a good correspondence with the observed clinical phenotype (with the possible exception of a patient who was a compound heterozygote for T92M and L498P). This preliminary correspondence between genotype and the phenotype in MPS-VI may, with further refinement, contribute to the assessment of therapeutic approaches for MPS-VI patients.  相似文献   

3.
Sanfilippo syndrome type A or mucopolysaccharidosis IIIA (MPS IIIA) results from the deficiency of the enzyme heparan N-sulfatase (NS, EC 3.10.1.1), required for the degradation of heparan sulfate. Molecular defects of 24 Italian MPS IIIA patients were recently reported by our group. We report here two novel mutations: 1040insT and Q365X and the expression studies on 15 of the identified defects. Transient expression of COS cells by cDNA mutagenized to correspond to heparan N-sulfatase mutations Y40N, A44T, 166delG, G122R, P128L, L146P, R150Q, D179N, R182C, R206P, P227R, 1040insT, 1093insG, E369K, R377C did not yield active enzyme, demonstrating the deleterious nature of the mutations. Western blot analysis and metabolic labeling experiments revealed, for cells transfected with wild-type enzyme, a precursor 62-kDa form and a mature 56-kDa form. Western blot resulted, for 11 mutations, in the presence of both forms, indicating a normal maturation of the mutant enzyme. Western blot, metabolic labeling and immunofluorescence experiments suggested, for mutations 166delG, L146P, 1040insT and 1093insG, an increased degradation of the mutant enzymes.  相似文献   

4.
Mucopolysaccharidosis type VI, or Maroteaux-Lamy syndrome, is a lysosomal storage disorder caused by a deficiency of the enzyme arylsulfatase B (ASB), also known as N-acetylgalactosamine-4-sulfatase. Multiple clinical phenotypes of this autosomal recessively inherited disease have been described. Recent isolation and characterization of the human ASB gene facilitated the analysis of molecular defects underlying the different phenotypes. Conditions for PCR amplification of the entire open reading frame from genomic DNA and for subsequent direct automated DNA sequencing of the resulting DNA fragments were established. Besides two polymorphisms described elsewhere that cause methionine-for-valine substitutions in the arylsulfatase B gene, six new mutations in six patients were detected: four point mutations resulting in amino acid substitutions, a 1-bp deletion, and a 1-bp insertion. The point mutations were two G-to-A and two T-to-C transitions. The G-to-A transitions cause an arginine-for-glycine substitution at residue 144 in a homoallelic patient with a severe disease phenotype and a tyrosine-for-cysteine substitution at residue 521 in a potentially heteroallelic patient with the severe form of the disease. The T-to-C transitions cause an arginine-for-cysteine substitution at amino acid residue 192 in a homoallelic patient with mild symptoms and a proline-for-leucine substitution at amino acid 321 in a homoallelic patient with the intermediate form. The insertion between nucleotides T1284 and G1285 resulted in a loss of the 100 C-terminal amino acids of the wild-type protein and in the deletion of nucleotide C1577 in a 39-amino-acid C-terminal extension of the ASB polypeptide. Both mutations were detected in homoallelic patients with the severe form of the disease. Expression of mutant cDNAs encoding the four amino acid substitutions and the deletion resulted in severe reduction of both ASB protein levels and arylsulfatase enzyme activity in comparison with a wild-type control. The six mutations described in the present study were unique among 25 unrelated mucopolysaccharidosis VI patients, suggesting a broad molecular heterogeneity of the Maroteaux-Lamy syndrome.  相似文献   

5.
Mucopolysaccharidosis type VI (MPS VI; Maroteaux-Lamy disease) results from the deficient activity of the lysosomal enzyme, arylsulfatase B (ASB; N-acetylgalactosamine-4-sulfatase E.C.3.1.6.1). The enzymatic defect leads to the accumulation of the glycosaminoglycan, dermatan sulfate, primarily in connective tissue and reticuloendothelial cell lysosomes. Although MPS VI patients have normal intelligence and no neurologic abnormalities, the disease is clinically heterogeneous: severely affected individuals expire in childhood or early adolescence while those with the mild or intermediate phenotypes have a slower, milder disease course and a longer life span. The recent isolation of the full-length cDNA-encoding human ASB permitted an investigation of the molecular lesions underlying the phenotypic heterogeneity in MPS VI. The ASB cDNA-coding sequences were determined from two unrelated MPS VI patients with the severe (proband 1) and mild (proband 2) phenotypes. These patients had about 2% and 7% of normal ASB activity in cultured fibroblasts, respectively. Proband 1 was homoallelic for a T-to-C transition in nucleotide (nt) 349, which predicted a cysteine-to-arginine substitution in the ASB polypeptide at residue 117 (C117R). Proband 2 was heteroallelic, having a T-to-C transition in nt 707, which predicted a leucine-to-proline replacement at ASB residue 236 (L236P), and having a G-to-A transition in nt 1214, which predicted a cysteine-to-tyrosine substitution at ASB residue 405 (C405Y). These mutations did not occur in three other unrelated MPS VI patients or in 120 ASB alleles from normal individuals, indicating that they were not polymorphisms. The identification of these three ASB mutations documents the first evidence of molecular heterogeneity in MPS VI and provides an initial basis for genotype/phenotype correlations in this lysosomal storage disease.  相似文献   

6.
The Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI) is a lysosomal storage disease with autosomal recessive inheritance caused by deficiency of the enzyme arylsulfatase B. Severe, intermediate, and mild forms of the disease have been described. The molecular correlate of the clinical heterogeneity is not known at present. To identify the molecular defect in a patient with the intermediate form of the disease, arylsulfatase B mRNA from his fibroblasts was reverse-transcribed, amplified by the polymerase chain reaction, and subcloned. Three point mutations were detected by DNA sequence analysis, two of which, a silent A to G transition at nucleotide 1191 and a G to A transition at nucleotide 1126 resulting in a methionine for valine 376 substitution, were polymorphisms. A G to T transversion at nucleotide 410 causing a valine for glycine 137 substitution (G137V) was identified as the mutation underlying the Maroteaux-Lamy phenotype of the patient, who was homozygous for the allele. The kinetic parameters of the mutant arylsulfatase B enzyme toward a radiolabeled trisaccharide substrate were normal excluding an alteration of the active site. The G137V mutation did not affect the synthesis but severely reduced the stability of the arylsulfatase B precursor. While the wild type precursor is converted by limited proteolysis in late endosomes or lysosomes to a mature form, the majority of the mutant precursor was degraded presumably in a compartment proximal to the trans Golgi network and only a small amount escaped to the lysosomes accounting for the low residual enzyme activity in fibroblasts of a patient with the juvenile form of the disease.  相似文献   

7.
Y Mao  C Yu  T S Hsieh  J L Nitiss  A A Liu  H Wang  L F Liu 《Biochemistry》1999,38(33):10793-10800
Two mutations, R450Q and P803S, in the coding region of the human topoisomerase II alpha gene have been identified in the atypical multidrug resistant (at-MDR) cell line, CEM/VM-1, which exhibits resistance to many structurally diverse topoisomerase II-targeting antitumor drugs such as VM-26, doxorubicin, m-AMSA, and mitoxantrone. The R450Q mutation mapped in the ATP utilization domain, while the P803S mutation mapped in the vicinity of the active site tyrosine of human topoisomerase II alpha. However, the roles of these two mutations in conferring multidrug resistance are unclear. To study the roles of these two mutations in conferring multidrug resistance, we have characterized the recombinant human DNA topoisomerase II alpha containing either single or double mutations. We show that both R450Q and P803S mutations confer resistance in the absence of ATP. However, in the presence of ATP, the R450Q, but not the P803S, mutation can confer multidrug resistance. The R450Q enzyme was shown to exhibit impaired ATP utilization both for enzyme catalysis and for its ability to form the circular protein clamp. Interestingly, an unrelated mutation, G437E, which is also located in the same domain as the R450Q mutation, exhibited multidrug hypersensitivity in the absence of ATP. However, in the presence of ATP, the G437E enzyme is only minimally hypersensitive to various topoisomerase II drugs. In contrast to the R450Q enzyme, the G437E enzyme exhibited enhanced ATP utilization for enzyme catalysis. In the aggregate, these results support the notion that the multidrug resistance and sensitivity of these mutant enzymes are due to a specific defect in ATP utilization during enzyme catalysis.  相似文献   

8.
Mucopolysaccharidosis type I (MPS I; McKusick 25280; Hurler syndrome, Hurler-Scheie syndrome and Scheie syndrome) is caused by a deficiency in the lysosomal hydrolase, alpha-L-iduronidase (EC 3.2.1.76). MPS I patients present within a clinical spectrum bounded by the extremes of Hurler and Scheie syndromes. The alpha-L-iduronidase missense mutations R89Q and R89W were investigated and altered an important arginine residue proposed to be a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase. The R89Q alpha-L-iduronidase mutation was shown to result in a reduced level of alpha-L-iduronidase protein (< or =10% of normal control) compared to a normal control level of alpha-L-iduronidase protein that was detected for the R89W alpha-L-iduronidase mutation. When taking into account alpha-L-iduronidase specific activity, the R89W mutation had a greater effect on alpha-L-iduronidase activity than the R89Q mutation. However, overall the R89W mutation produced more residual alpha-L-iduronidase activity than the R89Q mutation. This was consistent with MPS I patients, with an R89W allele, having a less severe clinical presentation compared to MPS I patients with either a double or single allelic R89Q mutation. The effects of the R89Q and R89W mutations on enzyme activity supported the proposed role of R89 as a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase.  相似文献   

9.
MUTYH is a base excision repair (BER) enzyme that prevents mutations in DNA associated with 8-oxoguanine (OG) by catalyzing the removal of adenine from inappropriately formed OG:A base-pairs. Germline mutations in the MUTYH gene are linked to colorectal polyposis and a high risk of colorectal cancer, a syndrome referred to as MUTYH-associated polyposis (MAP). There are over 300 different MUTYH mutations associated with MAP and a large fraction of these gene changes code for missense MUTYH variants. Herein, the adenine glycosylase activity, mismatch recognition properties, and interaction with relevant protein partners of human MUTYH and five MAP variants (R295C, P281L, Q324H, P502L, and R520Q) were examined. P281L MUTYH was found to be severely compromised both in DNA binding and base excision activity, consistent with the location of this variation in the iron-sulfur cluster (FCL) DNA binding motif of MUTYH. Both R295C and R520Q MUTYH were found to have low fractions of active enzyme, compromised affinity for damaged DNA, and reduced rates for adenine excision. In contrast, both Q324H and P502L MUTYH function relatively similarly to WT MUTYH in both binding and glycosylase assays. However, P502L and R520Q exhibited reduced affinity for PCNA (proliferation cell nuclear antigen), consistent with their location in the PCNA-binding motif of MUTYH. Whereas, only Q324H, and not R295C, was found to have reduced affinity for Hus1 of the Rad9–Hus1–Rad1 complex, despite both being localized to the same region implicated for interaction with Hus1. These results underscore the diversity of functional consequences due to MUTYH variants that may impact the progression of MAP.  相似文献   

10.
Phenylketonuria is a wide-spread autosomal-recessive hereditary disease due to a deficient activity of the enzyme phenylalanine hydroxylase (EC 1.14.16.1). A decrease of the enzyme activity results from mutations in structure of the phenylalanine hydroxylase gene, whose incidence has pronounced regional and ethnic peculiarities. We have carried out a search for mutations in structure of exons of the phenylalanine hydroxylase gene in the group of 34 phenylketonuric patients, inhabitants of the Novosibirsk region, and evaluated frequencies of the alleles in comparison with other populations. The performed study has shown that the spread of mutant alleles in Siberia seems to be affected by gene flows from Eastern Europe (mutations R408W and R252W) and, to a lesser degree, from Scandinavia (mutations IVS12ntl and Y414C), Western (mutations E280K, R158Q, and R261Q) and Southern Europe (P281L). Alleles have been revealed also characteristic of Southeast Asia (R243Q) and Turkey (R261Q).  相似文献   

11.
Functional consequences of PRODH missense mutations   总被引:5,自引:0,他引:5       下载免费PDF全文
PRODH maps to 22q11 in the region deleted in the velocardiofacial syndrome/DiGeorge syndrome (VCFS/DGS) and encodes proline oxidase (POX), a mitochondrial inner-membrane enzyme that catalyzes the first step in the proline degradation pathway. At least 16 PRODH missense mutations have been identified in studies of type I hyperprolinemia (HPI) and schizophrenia, 10 of which are present at polymorphic frequencies. The functional consequences of these missense mutations have been inferred by evolutionary conservation, but none have been tested directly. Here, we report the effects of these mutations on POX activity. We find that four alleles (R185Q, L289M, A455S, and A472T) result in mild (<30%), six (Q19P, A167V, R185W, D426N, V427M, and R431H) in moderate (30%-70%), and five (P406L, L441P, R453C, T466M, and Q521E) in severe (>70%) reduction in POX activity, whereas one (Q521R) increases POX activity. The POX encoded by one severe allele (T466M) shows in vitro responsiveness to high cofactor (flavin adenine dinucleotide) concentrations. Although there is limited information on plasma proline levels in individuals of known PRODH genotype, extant data suggest that severe hyperprolinemia (>800 microM) occurs in individuals with large deletions and/or PRODH missense mutations with the most-severe effect on function (L441P and R453C), whereas modest hyperprolinemia (300-500 microM) is associated with PRODH alleles with a moderate reduction in activity. Interestingly, three of the four alleles associated with or found in schizophrenia (V427M, L441P, and R453C) resulted in severe reduction of POX activity and hyperprolinemia. These observations plus the high degree of polymorphism at the PRODH locus are consistent with the hypothesis that reduction in POX function is a risk factor for schizophrenia.  相似文献   

12.
The identification of a second structural gene mutation at the feline arylsulfatase B locus (MPS VIb) provided the opportunity to investigate the expression of allelism by characterization of the residual enzymatic activity in feline mucopolysaccharidosis VI, an animal analogue of human Maroteaux-Lamy syndrome. Matings were designed to produce affected homozygotes who were homoallelic for the MPS VIa and MPS VIb mutations or heteroallelic genetic compounds (MPS VIa/VIb). The physicokinetic and immunological properties of the partially purified residual hepatic arylsulfatase B isozymes from the affected homoallelic and heteroallelic cats were compared to those of the normal feline enzyme. The residual hepatic arylsulfatase B activities from the inbred MPS VIa and MPS VIb homozygotes were distinguished by differences in physicokinetic and immunological properties. The newly identified mutant isozyme b had abnormal kinetic properties toward artificial and natural substrates, normal cryo- and thermostabilities, a normal molecular weight and an altered electrophoretic mobility. Polyacrylamide gel electrophoresis demonstrated that the mutant b subunits formed dimers with normal subunits in obligate heterozygotes (MPS VI+/b). In contrast, mutant isozyme a subunits from obligate MPS VIa/+ heterozygotes did not dimerize with the normal subunit, and the mutant and normal isozymes could be separated by anion exchange chromatography and polyacrylamide gel electrophoresis. Characterization of the partially purified residual hepatic arylsulfatase B activity from the heteroallelic homozygotes revealed the presence of both mutant isozymes a and b. The demonstration of two allelic mutations in the feline arylsulfatase B gene documented the occurrence of genetic heterogeneity in feline mucopolysaccharidosis VI and permitted characterization of the enzymatic defect in homoallelic and heteroallelic (genetic compound) homozygotes, providing a model for the study of allelism in human genetic disorders.  相似文献   

13.
Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene.  相似文献   

14.
The lysosomal storage disorder, mucopolysaccharidosis type I (MPS I), is caused by a deficiency of the enzyme alpha-L-iduronidase, which is involved in the breakdown of dermatan and heparan sulphates. There are three clinical phenotypes, ranging from the Hurler form characterised by skeletal abnormalities, hepatosplenomegaly and severe mental retardation, to the milder Scheie phenotype where there is aortic valve disease, corneal clouding, limited skeletal problems, but no mental retardation. In this study, 85 MPS I families (73 Hurler, 5 Hurler/Scheie, 7 Scheie) were screened for 9 known mutations (Q70X, A75T, 474-2a>g, L218P, A327P, W402X, P533R, R89Q, 678-7g>a). W402X was the most frequent mutation in our population (45.3%) and Q70X was the second most frequent (15.9%). In 30 families, either one or both of the mutations were not identified, which accounted for 25.9% of the total alleles. Therefore, all 14 exons of the alpha-L-iduronidase gene were screened in these patients and 23 different sequence changes were found, 17 of which were previously unknown. The novel sequence changes include 4 deletions (153delC, 628del5, 740delC, 747delG), 5 nonsense mutations (Q60X, Y167X, Q400X, R619X, R628X), 6 missense mutations (C205Y, G208V, H240R, A319V, P496R, S633L), a splice site mutation (IVS12+5g>a), and a rare polymorphism (A591T). The polymorphism and novel missense mutations were transiently expressed in COS-7 cells and all of them except the polymorphism showed complete loss of enzyme activity. In total, 165 of the 170 mutant alleles were identified in this study and despite the high frequency of W402X and Q70X, the identification of many novel mutations unique to individual families further highlights the genetic heterogeneity of MPS I.  相似文献   

15.
Lesions in the gene encoding steroid 21-hydroxylase result in congenital adrenal hyperplasia, with impaired secretion of cortisol and aldosterone from the adrenal cortex and overproduction of androgens. A limited number of mutations account for the majority of mutated alleles, but additional rare mutations are responsible for the symptoms in some patients. A total of 11 missense mutations has previously been implicated in this enzyme deficiency. We describe two novel missense mutations, both affecting the same amino acid residue, Arg356. The two mutations, R356P and R356Q, were reconstructed by in vitro site-directed mutagenesis, the proteins were transiently expressed in COS-1 cells, and enzyme activity towards the two natural substrates, 17-hydroxyprogesterone and progesterone, was determined. The R356P mutant reduced enzyme activity to 0.15% towards both substrates, whereas the R356Q mutant exhibited 0.65% of normal activity towards 17-hydroxyprogesterone, and 1.1% of normal activity towards progesterone. These activities correspond to the degrees of disease manifestation of the patients in whom they were found. Arg356 is located in a region which recently has been implicated in redox partner interaction, by modelling the structure of two other members of the cytochrome P450 superfamily. Of the 11 previously described missense mutations, three affect arginine residues within this protein domain. With the addition of R356P and R356Q, there is a clear clustering of five mutations to three closely located basic amino acids. This supports the model in which this protein domain is involved in redox partner interaction, which takes places through electrostatic interactions between charged amino acid residues. Received:17 December 1996 / Revised: 28 January 1997  相似文献   

16.
We describe a simple and technically feasible method for mutation screening of the phenylalanine hydroxylase (PAH) gene and its application to Japanese and Chinese patients with hyperphenylalaninemia. The strategy is based on the identification of a nucleotide substitution by restriction enzyme analysis, coupled with PCR and direct sequencing of exon 7 of the PAH gene. Because the detection of various mutations can proceed simultaneously using the same technique, it is quite rapid and reproducible, making it possible to perform effective molecular diagnosis and carrier screening in most laboratories. Using this procedure, we found that the most common molecular defects were R413P in Hokkaido, Japan (35 %) and R243Q in Heilongjiang, China (50%). R111X, IVS4nt-1, and five mutations in exon 7 (R241C, R243Q, R252W, A259T, and S273P) accounted for 55% of phenylketonuria (PKU) alleles in Hokkaido. In Heilongjiang, the R111X, Y356X, and R408W mutations accounted for 35% of PKU alleles. Clinically, homozygotes or compound heterozygotes of null alleles, which express nonfunctional enzyme activity, were all associated with classic PKU. On the other hand, patients heterozygous for the R241C allele had a benign phenotype of mild hyperphenylalaninemia. The DNA diagnosis in early infancy can predict various PKU phenotypes, and can prove useful in decision-making concerning dietary therapy.  相似文献   

17.
Five point mutations (R88H, R88P, T118I, 959delT, R468Q) previously identified in the iduronate-2-sulfatase (IDS) gene of Italian Hunter patients were expressed in COS cells to evaluate their functional consequence on enzyme activity, processing and intracellular localization. The 88 arginine residue belongs to the CXPSR pentapeptide conserved in all human sulfatases, where cysteine modification to formylglycine is required for enzyme activity. Substitution of arginine with histidine residue resulted in 13.7% residual enzyme activity, with an apparent K(m) value (133 microM) lower than that found for the normal enzyme (327 microM), indicating a higher affinity for the substrate; substitution of arginine with proline resulted in total absence of residual activity, in agreement with the phenotypes observed in patients carrying R88H and R88P mutations. For the four missense mutations, pulse-chase labelling experiments showed an apparently normal maturation; however, subcellular fractionation demonstrated poor transport to lysosomes. Therefore, residues 88, 118 and 468 appear to be not essential for processing but important for IDS conformation.  相似文献   

18.
Mucopolysaccharidosis type VI, or Maroteaux-Lamy syndrome, is an autosomal recessive disease caused by the deficiency of arylsulfatase B (ARSB; N-acetyl-galactosamine-4-sulfatase, E.C.3.1.6.12), which is involved in the stepwise degradation of dermatan sulfate and chondroitin sulfate. The deficiency of this enzyme causes storage in the lysozomes and excretion in the urine of partially degraded dermatan sulfate. Twenty patients with MPSVI were analyzed, including 2 siblings. Genomic DNA from patients was extracted and amplified by PCR followed by analysis by single-strand conformation polymorphism (SSCP), which detects altered patterns in the single-stranded DNA. Amongst the patients analyzed for exon 8 of the ARSB gene, 5 patients presented an altered band pattern when compared to controls. After sequencing, we have detected a 23-bp deletion, extending from nucleotides 1,533 to 1,555, causing a frameshift and changing 2 amino acids before creating a premature stop codon at amino acid 514.  相似文献   

19.
Yuichi Matsushima 《BBA》2009,1787(5):290-20499
The mitochondrial replicative DNA helicase is an essential cellular protein that shows high similarity with the bifunctional primase-helicase of bacteriophage T7, the gene 4 protein (T7 gp4). The N-terminal primase domain of T7 gp4 comprises seven conserved sequence motifs, I, II, III, IV, V, VI, and an RNA polymerase basic domain. The putative primase domain of metazoan mitochondrial DNA helicases has diverged from T7 gp4 and in particular, the primase domain of vertebrates lacks motif I, which comprises a zinc binding domain. Interestingly, motif I is conserved in insect mtDNA helicases. Here, we evaluate the effects of overexpression in Drosophila cell culture of variants carrying mutations in conserved amino acids in the N-terminal region, including the zinc binding domain. Overexpression of alanine substitution mutants of conserved amino acids in motifs I, IV, V and VI and the RNA polymerase basic domain results in increased mtDNA copy number as is observed with overexpression of the wild type enzyme. In contrast, overexpression of three N-terminal mutants W282L, R301Q and P302L that are analogous to human autosomal dominant progressive external ophthalmoplegia mutations results in mitochondrial DNA depletion, and in the case of R301Q, a dominant negative cellular phenotype. Thus whereas our data suggest lack of a DNA primase activity in Drosophila mitochondrial DNA helicase, they show that specific N-terminal amino acid residues that map close to the central linker region likely play a physiological role in the C-terminal helicase function of the protein.  相似文献   

20.
Carbamoyl phosphate synthetase I (CPSI) deficiency, a recessively inherited error of the urea cycle, causes life-threatening hyperammonaemia. CPSI is a multidomain 1500-residue liver mitochondrial matrix protein that is allosterically activated by N-acetyl-l-glutamate, and which synthesises carbamoyl phosphate (CP) in three steps: bicarbonate phosphorylation by ATP, carbamate synthesis from carboxyphosphate and ammonia, and carbamate phosphorylation by ATP. Several missense mutations of CPSI have been reported in patients with CPSI deficiency, but the actual pathogenic potential and effects on the enzyme of these mutations remain non-characterised. Since the structure of Escherichia coli CPS is known and systems for its overexpression and purification are available, we have constructed and purified eight site-directed mutants of E.coli CPS affecting the enzyme large subunit (A126M, R169H, Q262P, N301K, P360L, V640R, R675L, S789P) that are homologous to corresponding missense mutations found in patients with CPSI deficiency, studying their stability and their ability to catalyse the CPS reaction as well as the partial reactions that reflect the different reactional steps, and analysing the substrate kinetics for the overall and partial reactions. The results show that all the mutations significantly decrease CP synthesis without completely inactivating the enzyme (as reflected in the catalysis of at least one partial reaction), that one of these mutations (Q262P) causes marked enzyme instability, and validate the use of E.coli CPS as a pathogenicity testing model for CPSI deficiency. The causality of the reported clinical mutations is supported and the derangements caused by the mutations are identified, revealing the specific roles of the residues that are mutated. In particular, the findings highlight the importance for carbamate phosphorylation and for allosteric activation of a loop that coordinates K(+), stress the key role of intersubunit interactions for CPS stability, and suggest that lid opening at both phosphorylation sites is concerted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号