首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formylmethanofuran:tetrahydromethanopterin formyltransferase is an essential enzyme in the one-carbon metabolism of methanogenic and sulfate-reducing archaea and of methylotrophic bacteria. The enzyme, which is devoid of a prosthetic group, catalyzes the reversible formyl transfer between the two substrates coenzyme methanofuran and coenzyme tetrahydromethanopterin (H4MPT) in a ternary complex catalytic mechanism. The structure of the formyltransferase without its coenzymes has been determined earlier. We report here the structure of the enzyme in complex with both coenzymes at a resolution of 2.0 A. Methanofuran, characterized for the first time in an enzyme structure, is embedded in an elongated cleft at the homodimer interface and fixed by multiple hydrophobic interactions. In contrast, tetrahydromethanopterin is only weakly bound in a shallow and wide cleft that provides two binding sites. It is assumed that the binding of the bulky coenzymes induces conformational changes of the polypeptide in the range of 3A that close the H4MPT binding cleft and position the reactive groups of both substrates optimally for the reaction. The key residue for substrate binding and catalysis is the strictly conserved Glu245. Glu245, embedded in a hydrophobic region and completely buried upon tetrahydromethanopterin binding, is presumably protonated prior to the reaction and is thus able to stabilize the tetrahedral oxyanion intermediate generated by the nucleophilic attack of the N5 atom of tetrahydromethanopterin onto the formyl carbon atom of formylmethanofuran.  相似文献   

2.
韩梅  杨利民  张永刚  周广胜 《生态学报》2006,26(6):1825-1832
在全球动态植被模型的发展中, 受限于人力、物力和财力使得在物种水平上的研究变得既不可能也无必要。 植物功能群的划分是从生态学的, 而不是系统发育的角度来相互比较地对待不同地区的植物, 从而削减了植被变化研究中植物分类群的数量, 已成为研究植被变化及生物多样性对生态系统功能作用的重要单位。 植物的不同光合途径(C3、C4和CAM)从叶片组织结构到生理功能, 从生态适应到地理分布均表现出对不同水、热、光环境的响应, 是理想的植物功能群分类。 为此,分析了中国东北样带以羊草(Leymus chinensis)为建群种或共建种的草原群落植物光合类型功能群生物量及其与群落初级生产力和环境变化的关系。 结果表明:  (1)C4植物生物量具有明显的变化规律, 且对环境变化的响应显著, 其变异性较高, 更能反映样地间环境变化的差异; (2)C4与C3植物变化具有明显的互补性, 并且多数C4植物常在逆境中起到更大作用, 如干旱化、盐碱化和放牧干扰; (3)C4植物种类少,在所有调查样方中仅出现7种,占总出现种类的9.72%。这些特点说明C4植物可以考虑作为评估和预测我国温带草原植被及其生态系统变化的重要植物功能群。  相似文献   

3.
BACKGROUND AND AIMS: It is well documented that C(4) grasses have a shorter distance between longitudinal veins in the leaves than C(3) grasses. In grass leaves, however, veins with different structures and functions are differentiated: large longitudinal veins, small longitudinal veins and transverse veins. Thus, the densities of the three types of vein in leaves of C(3) and C(4) grasses were investigated from a two-dimensional perspective. METHODS: Vein densities in cleared leaves of 15 C(3) and 26 C(4) grasses representing different taxonomic groups and photosynthetic subtypes were analysed. KEY RESULTS: The C(4) grasses had denser transverse veins and denser small longitudinal veins than the C(3) grasses (1.9 and 2.1 times in interveinal distance), but there was no significant difference in large longitudinal veins. The total length of the three vein types per unit area in the C(4) grasses was 2.1 times that in the C(3) grasses. The ratio of transverse vein length to total vein length was 14.3 % in C(3) grasses and 9.9 % in C(4) grasses. The C(3) grasses generally had greater species variation in the vascular distances than the C(4) grasses. The bambusoid and panicoid C(3) grasses tended to have a denser vascular system than the festucoid C(3) grasses. There were no significant differences in the interveinal distances of the three vein types between C(4) subtypes, although the NADP-malic enzyme grasses tended to have a shorter distance between small longitudinal veins than the NAD-malic enzyme and phosphoenolpyruvate carboxykinase grasses. CONCLUSIONS: It seems that C(4) grasses have structurally a superior photosynthate translocation and water distribution system by developing denser networks of small longitudinal and transverse veins, while keeping a constant density of large longitudinal veins. The bambusoid and panicoid C(3) grasses have a vascular system that is more similar to that in C(4) grasses than to that in the festucoid C(3) grasses.  相似文献   

4.
Background and Aims: The grass Alloteropsis semialata is the only plant species withboth C3 and C4 subspecies. It therefore offers excellent potentialas a model system for investigating the genetics, physiologyand ecological significance of the C4 photosynthetic pathway.Here, a molecular phylogeny of the genus Alloteropsis is constructedto: (a) confirm the close relationship between the C3 and C4subspecies of A. semialata; and (b) infer evolutionary relationshipsbetween species within the Alloteropsis genus. Methods: The chloroplast gene ndhF was sequenced from 12 individuals,representing both subspecies of A. semialata and all four ofthe other species in the genus. ndhF sequences were added tothose previously sequenced from the Panicoideae, and used toconstruct a phylogenetic tree. Key Results: The phylogeny confirms that the two subspecies of A. semialataare among the most recently diverging lineages of C3 and C4taxa currently recognized within the Panicoideae. Furthermore,the position of the C3 subspecies of A. semialata within theAlloteropsis genus is consistent with the hypothesis that itsphysiology represents a reversion from C4 photosynthesis. Thedata point to a similar evolutionary event in the Panicum stenodesP.caricoidesP. mertensii clade. The Alloteropsis genusis monophyletic and occurs in a clade with remarkable diversityof photosynthetic biochemistry and leaf anatomy. Conclusions: These results confirm the utility of A. semialata as a modelsystem for investigating C3 and C4 physiology, and provide moleculardata that are consistent with reversions from C4 to C3 photosynthesisin two separate clades. It is suggested that further phylogeneticand functional investigations of the Alloteropsis genus andclosely related taxa are likely to shed new light on the mechanismsand intermediate stages underlying photosynthetic pathway evolution.  相似文献   

5.
To model the effect of increasing atmospheric CO2 on semi-arid grasslands, the gas exchange responses of leaves to seasonal changes in soil water, and how they are modified by CO2, must be understood for C3 and C4 species that grow in the same area. In this study, open-top chambers were used to investigate the photosynthetic and stomatal responses of Pascopyrum smithii (C3) and Bouteloua gracilis (C4) grown at 360 (ambient CO2) and 720 micro mol mol-1 CO2 (elevated CO2) in a semi-arid shortgrass steppe. Assimilation rate (A) and stomatal conductance (gs) at the treatment CO2 concentrations and at a range of intercellular CO2 concentrations and leaf water potentials (psileaf) were measured over 4 years with variable soil water content caused by season and CO2 treatment. Carboxylation efficiency of ribulose bisphosphate carboxylase/oxygenase (Vc,max), and ribulose bisphosphate regeneration capacity (Jmax) were reduced in P. smithii grown in elevated CO2, to the degree that A was similar in elevated and ambient CO2 (when soil moisture was adequate). Photosynthetic capacity was not reduced in B. gracilis under elevated CO2, but A was nearly saturated at ambient CO2. There were no stomatal adaptations independent of photosynthetic acclimation. Although photosynthetic capacity was reduced in P. smithii growing in elevated CO2, reduced gs and transpiration improved soil water content and psileaf in the elevated CO2 chambers, thereby improving A of both species during dry periods. These results suggest that photosynthetic responses of C3 and C4 grasses in this semi-arid ecosystem will be driven primarily by the effect of elevated CO2 on plant and soil water relations.  相似文献   

6.
It is still an open question that how the teeth root development is initiated at the molecular level. But what we know is that the teeth root development begins after the crown part is completely formed, and then the terminal cervical loop structure faces two developmental fate options when the crown development is quite advanced: it can remain as a ‘crown’ pattern, and continue enamel production, or it can adopt the ‘root’ fate, and begins teeth root development. Epithelial notch and mesenchymal fgf10 signaling are thought to be the key switches of root or crown development pattern. But, for a rodent's molars and incisors, it is very interesting that after a similar teeth crown developmental process, the late development for the molars and incisors is quite different: the molar germ forms a multi-rooted pattern, while the incisor germ forms a single-rooted analogue and without a really root development process. In a recent study, one of the negative regulating factors for notch signaling, sel1l was found strongly related to the molar root development. So we hypotheses that the negative regulating factors of notch signaling, may be the key signals to determine the tooth root developmental onset, and the quantity or function's abnormal of that factors, may lead to hypoplasia of the teeth root.  相似文献   

7.
BACKGROUND AND AIMS: Photorespiration occurs in C4 plants, although rates are small compared with C3 plants. The amount of glycine decarboxylase in the bundle sheath (BS) varies among C4 grasses and is positively correlated with the granal index (ratio of the length of appressed thylakoid membranes to the total length of all thylakoid membranes) of the BS chloroplasts: C4 grasses with high granal index contained more glycine decarboxylase per unit leaf area than those with low granal index, probably reflecting the differences in O2 production from photosystem II and the potential photorespiratory capacity. Thus, it is hypothesized that the activities of peroxisomal enzymes involved in photorespiration are also correlated with the granal development. METHODS: The granal development in BS chloroplasts was investigated and activities of the photorespiratory enzymes assayed in 28 C4 grasses and seven C3 grasses. KEY RESULTS: The NADP-malic enzyme grasses were divided into two groups: one with low granal index and the other with relatively high granal index in the BS chloroplasts. Both the NAD-malic enzyme and phosphoenolpyruvate carboxykinase grasses had high granal index in the BS chloroplasts. No statistically significant differences were found in activity of hydroxypyruvate reductase between the C3 and C4 grasses, or between the C4 subtypes. The activity of glycolate oxidase and catalase were smaller in the C4 grasses than in the C3 grasses. Among the C4 subtypes, glycolate oxidase activities were significantly smaller in the NADP-malic enzyme grasses with low granal index in the BS chloroplasts, compared with in the C4 grasses with substantial grana in the BS chloroplasts. CONCLUSIONS: There is interspecies variation in glycolate oxidase activity associated with the granal development in the BS chloroplasts and the O2 production from photosystem II, which suggests different potential photorespiration capacities among C4 grasses.  相似文献   

8.
C4 photosynthesis involves cell-to-cell exchange of photosyntheticintermediates between the Kranz mesophyll (KMS) and bundle sheath(BS) cells. This was believed to occur by simple diffusion throughplentiful plasmodesmatal (PD) connections between these celltypes. The model of C4 intermediates’ transport was elaboratedover 30 years ago and was based on experimental data derivedfrom measurements at the time. The model assumed that plasmodesmataoccupied about 3% of the interface between the KMS and BS cellsand that the plasmodesmata structure did not restrict metabolitemovement. Recent advances in the knowledge of plasmodesmatalstructure put these assumptions into doubt, so a new model ispresented here taking the new anatomical details into account.If one assumes simple diffusion as the sole driving force, thencalculations based on the experimental data obtained for C4grasses show that the gradients expected of C4 intermediatesbetween KMS and BS cells are about three orders of magnitudehigher than experimentally estimated. In addition, if one takesinto account that the plasmodesmata microchannel diameter mightconstrict the movement of C4 intermediates of comparable Stokes’radii, the differences in concentration of photosynthetic intermediatesbetween KMS and BS cells should be further increased. We believethat simple diffusion-driven transport of C4 intermediates betweenKMS and BS cells through the plasmodesmatal microchannels isnot adequate to explain the C4 metabolite exchange during C4photosynthesis. Alternative mechanisms are proposed, involvingthe participation of desmotubule and/or active mechanisms aseither apoplasmic or vesicular transport. Key words: C4 photosynthesis, grasses, modelling, plasmodesmata, symplasmic transport Received 10 October 2007; Revised 4 February 2008 Accepted 5 February 2008  相似文献   

9.
人细胞质硫氧还蛋白(hTrx1)在抗氧化和氧化还原调控中起重要作用.如果静脉注射重组hTrx1,动物抗氧化能力将增高.近年来,随着人们对氧化还原调控的关注,hTrx1需求不断增加.为了快速获得高纯度重组hTrx1,N末端亲和标签,如组氨酸标签(His-tag)和谷胱甘肽S-转移酶标签(GST-tag),被用于hTrx1亲和纯化.带N末端标签的hTrx1融合蛋白在实验中用的越来越多.但N末端延长是否会影响hTrx1特性尚不清楚.我们构建与优化了hTrx1原核表达质粒,在大肠杆菌中高效表达了含天然N末端、带His-tag或带GST-tag的3种重组hTrx1.纯化蛋白在SDS-PAGE上呈现1条带,对应的分子量分别为12kD、17kD及38kD.在无氧化剂存在时,它们催化胰岛素还原的能力不分仲伯.当有H2O2存在时,天然N末端hTrx1通过形成可逆二聚体,对H2O2表现出较强的耐受性;而N末端亲和标签有干扰二聚体形成,使hTrx1对H2O2耐受性降低的作用,其中GST-tag干扰作用明显大于His-tag.此外,体内重要的氧化还原对GSH/GSSG,有增进hTrx1及其还原酶催化NADPH氧化的作用,N末端亲和标签可明显扩大GSH/GSSG的这种作用.我们分析了N末端亲和标签对hTrx1活性影响的可能机理.  相似文献   

10.
BACKGROUND AND AIMS: Species having C4 photosynthesis belonging to the phosphoenolpyruvate carboxykinase (PEP-CK) subtype, which are found only in family Poaceae, have the most complex biochemistry among the three C4 subtypes. In this study, biochemical (western blots and immunolocalization of some key photosynthetic enzymes) and structural analyses were made on several species to further understand the PEP-CK system. This included PEP-CK-type C4 species Urochloa texana (subfamily Panicoideae), Spartina alterniflora and S. anglica (subfamily Chloridoideae), and an NADP-ME-type C4 species, Echinochloa frumentacea, which has substantial levels of PEP-CK. KEY RESULTS: Urochloa texana has typical Kranz anatomy with granal chloroplasts scattered around the cytoplasm in bundle sheath (BS) cells, while the Spartina spp. have BS forming long adaxial extensions above the vascular tissue and with chloroplasts in a strictly centrifugal position. Despite some structural and size differences, in all three PEP-CK species the chloroplasts in mesophyll and BS cells have a similar granal index (% appressed thylakoids). Immunolocalization studies show PEP-CK (which catalyses ATP-dependent decarboxylation) is located in the cytosol, and NAD-ME in the mitochondria, in BS cells, and in the BS extensions of Spartina. In the NADP-ME species E. frumentacea, PEP-CK is also located in the cytosol of BS cells, NAD-ME is very low, and the source of ATP to support PEP-CK is not established. CONCLUSIONS: Representative PEP-CK species from two subfamilies of polyphyletic origin have very similar biochemistry, compartmentation and chloroplast grana structure. Based on the results with PEP-CK species, schemes are presented with mesophyll and BS chloroplasts providing equivalent reductive power which show bioenergetics of carbon assimilation involving C4 cycles (PEP-CK and NAD-ME, the latter functioning to generate ATP to support the PEP-CK reaction), and the consequences of any photorespiration.  相似文献   

11.
12.
BACKGROUND AND AIMS: In crops other than sugarcane there is good evidence that the size and activity of carbon sinks influence source activity via sugar-related regulation of the enzymes of photosynthesis, an effect that is partly mediated through coarse regulation of gene expression. METHODS: In the current study, leaf shading treatments were used to perturb the source-sink balance in 12-month-old Saccharum spp. hybrid 'N19' (N19) by restricting source activity to a single mature leaf. Changes in leaf photosynthetic gas exchange variables and leaf and culm sugar concentrations were subsequently measured over a 14 d period. In addition, the changes in leaf gene response to the source-sink perturbation were measured by reverse northern hybridization analysis of an array of 128 expressed sequence tags (ESTs) related to photosynthetic and carbohydrate metabolism. KEY RESULTS: Sucrose concentrations in immature culm tissue declined significantly over the duration of the shading treatment, while a 57 and 88% increase in the assimilation rate (A) and electron transport rate (ETR), respectively, was observed in the source leaf. Several genes (27) in the leaf displayed a >2-fold change in expression level, including the upregulation of several genes associated with C(4) photosynthesis, mitochondrial metabolism and sugar transport. Changes in gene expression levels of several genes, including Rubisco (EC 4.1.1.39) and hexokinase (HXK; EC 2.7.1.1), correlated with changes in photosynthesis and tissue sugar concentrations that occurred subsequent to the source-sink perturbation. CONCLUSIONS: These results are consistent with the notion that sink demand may limit source activity through a kinase-mediated sugar signalling mechanism that correlates to a decrease in source hexose concentrations, which, in turn, correlate with increased expression of genes involved in photosynthesis and metabolite transport. The signal feedback system reporting sink sufficiency and regulating source activity may be a potentially valuable target for future genetic manipulation to increase sugarcane sucrose yield.  相似文献   

13.
Pirellula-like planctomycetes are ubiquitous aquatic bacteria, which are often detected in anoxic or micro-oxic habitats. By contrast, the taxonomically described representatives of these bacteria, with very few exceptions, are strict aerobes. Here, we report the isolation and characterization of the facultatively anaerobic planctomycete, strain PX69T, which was isolated from a boreal lake. Its 16S rRNA gene sequence is affiliated with the Pirellula-related Pir4 clade, which is dominated by environmental sequences retrieved from a variety of low-oxygen habitats. Strain PX69T was represented by ellipsoidal cells that multiplied by budding and grew on sugars, some polysaccharides and glycerol. Anaerobic growth occurred by means of fermentation. Strain PX69T grew at pH 5.5–7.5 and at temperatures between 10 and 30 °C. The major fatty acids were C18:1ω9c, C16:0 and C16:1ω7c; the major intact polar lipid was dimethylphosphatidylethanolamine. The complete genome of strain PX69T was 6.92 Mb in size; DNA G + C content was 61.7 mol%. Among characterized planctomycetes, the highest 16S rRNA gene similarity (90.4%) was observed with ‘Bythopirellula goksoyri’ Pr1d, a planctomycete from deep-sea sediments. We propose to classify PX69T as a novel genus and species, Lacipirellula parvula gen. nov., sp. nov.; the type strain is strain PX69T (=KCTC 72398T = CECT 9826T = VKM B-3335T). This genus is placed in a novel family, Lacipirellulaceae fam. nov., which belongs to the order Pirellulales ord. nov. Based on the results of comparative genome analysis, we also suggest establishment of the orders Gemmatales ord. nov. and Isosphaerales ord. nov. as well as an emendation of the order Planctomycetales.  相似文献   

14.
黄土塬区麦田CO2通量季节变化   总被引:2,自引:0,他引:2  
利用涡度相关法对黄土塬区小麦地CO2通量季节变化进行了研究。结果表明:(1)小麦CO2通量日变化与生育期、光合有效辐射、土壤温度密切相关。(2)小麦各生育期CO2的平均日收支由大到小依次为拔节孕穗期>返青期>起身期>抽穗期>成熟期>灌浆期>出苗分蘖期>越冬期。(3)白昼CO2通量与光合有效辐射在出苗分蘖期、起身期、成熟期几乎不相关,在灌浆期低度相关,在其他生育期内都达到了显著相关。CO2通量与夜间2cm土壤温度在越冬、起身、拔节孕穗期显著相关,其他5个生育期内为低度相关。(4)小麦收割后表现为碳源,各天具体状况与前一天是否降雨、当天的天气状况有关。  相似文献   

15.
Hydrogen gas stimulated sulphate reduction in a saltmarsh sediment and the importance of H2 transferred from organotrophic bacteria to the sulphate-reducers is discussed. -fluorolactate inhibited sulphate reduction whether lactate, ethanol or hydrogen was being used as growth substrate. When added to sediment -fluorolactate inhibited sulphate reduction with a consequent increase in methane production.Addition of H2 stimulated methanogenesis in sediment and this stimulation was greater if CO2 was also present. Hydrogen availability was the primary limitation of methanogenesis but the low concentration of dissolved CO2 in seawater may limit methane production even if H2 is available.The removal of inhibition of methanogenesis by the use of fluorolactate to suppress sulphate reduction or by the provision of hydrogen indicates competitive inhibition of methanogens by sulphate reducers utilizing transferred hydrogen.Abbreviations HSRB hydrogen utilizing sulphate reducing bacteria - HDO hydrogen donating organism  相似文献   

16.
Ponce R 《Genetica》2007,131(3):315-324
Transposable elements comprise a considerable part of eukaryotic genomes, and there is increasing evidence for their role in the evolution of genomes. The number of active transposable elements present in the host genome at any given time is probably small relative to the number of elements that no longer transpose. The elements that have lost the ability to transpose tend to evolve neutrally. For example, non-LTR retrotransposons often become 5′ truncated due to their own transposition mechanism and hence lose their ability to transpose. The resulting transposons can be characterized as “dead-on-arrival” (DOA) elements. Because they are abundant and ubiquitous, and evolve neutrally in the location where they were inserted, these DOA non-LTR elements make a useful tool to date molecular events. There are four copies of a “dead-on-arrival” RT1C element on the recently formed Sdic gene cluster of Drosophila melanogaster, that are not present in the equivalent region of the other species of the melanogaster subgroup. The life history of the RT1C elements in the genome of D. melanogaster was used to determine the insertion chronology of the elements in the cluster and to date the duplication events that originated this cluster.  相似文献   

17.
Isotope screening is a simple test for determining the photosynthetic pathway used by plants. The scope of this work was to classify the photosynthetic type of some herbs and medicinal plants through studies of the carbon isotope composition (δ13C). Also, we propose the use of carbon isotope composition as a tool to control the quality of herbs and medicinal plants. For studies of δ13C, δ13C‰ = [R (sample)/R (standard) − 1] × 10−3, dry leaves powdered in cryogenic mill were analyzed in a mass spectrometer coupled with an elemental analyzer for determining the ratio R = 13CO2/12CO2. In investigation of δ13C of 55 species, 23 botanical families, and 44 species possessed a C3 photosynthetic type. Six species found among the botanical families Euphorbiaceae and Poaceae were C4 plants, and 5 species found among the botanical families Agavaceae, Euphorbiaceae, and Liliaceae possessed CAM-type photosynthesis. Carbon isotope composition of plants can be used as quality control of herbs and medicinal plants, allowing the identification of frauds or contaminations. Also, the information about the photosynthetic type found for these plants can help in introducing and cultivating exotic and wild herbs and medicinal plants.  相似文献   

18.
In eubacteria, the respiratory bc(1) complex (complex III) consists of three or four different subunits, whereas that of mitochondria, which have descended from an alpha-proteobacterial endosymbiont, contains about seven additional subunits. To understand better how mitochondrial protein complexes evolved from their simpler bacterial predecessors, we purified complex III of Seculamonas ecuadoriensis, a member of the jakobid protists, which possess the most bacteria-like mitochondrial genomes known. The S. ecuadoriensis complex III has an apparent molecular mass of 460 kDa and exhibits antimycin-sensitive quinol:cytochrome c oxidoreductase activity. It is composed of at least eight subunits between 6 and 46 kDa in size, including two large "core" subunits and the three "respiratory" subunits. The molecular mass of the S. ecuadoriensis bc(1) complex is slightly lower than that reported for other eukaryotes, but about 2x as large as complex III in bacteria. This indicates that the departure from the small bacteria-like complex III took place at an early stage in mitochondrial evolution, prior to the divergence of jakobids. We posit that the recruitment of additional subunits in mitochondrial respiratory complexes is a consequence of the migration of originally alpha-proteobacterial genes to the nucleus.  相似文献   

19.
Alterations of mitochondrial-encoded subunits of the FoF1-ATPsynthase are frequently associated with cytoplasmic male sterility(CMS) in plants; however, little is known about the relationshipof the nuclear encoded subunits of this enzyme with CMS. Inthe present study, the full cDNA of the gene TaFAd that encodesthe putative FAd subunit of the FoF1-ATP synthase was isolatedfrom the wheat (Triticum aestivum) fertility restorer ‘2114’for timopheevii cytoplasm-based CMS. The deduced 238 amino acidpolypeptide is highly similar to its counterparts in dicotsand other monocots but has low homology to its mammalian equivalents.TaFAd is a single copy gene in wheat and maps to the short armof the group 6 chromosomes. Transient expression of the TaFAd–GFPfusion in onion epidermal cells demonstrated TaFAd's mitochondriallocation. TaFAd was expressed abundantly in stem, leaf, anther,and ovary tissues of 2114. Nevertheless, its expression wasrepressed in anthers of CMS plants with timopheevii cytoplasm.Genic male sterility did not affect its expression in anthers.The expression of the nuclear gene encoding the 20 kDa subunitof Fo was down-regulated in a manner similar to TaFAd in theT-CMS anthers while that of genes encoding the 6 kDa subunitof Fo and the subunit of F1 was unaffected. These observationsimplied that TaFAd is under mitochondrial retrograde regulationin the anthers of CMS plants with timopheevii cytoplasm. Key words: CMS, FAd subunit, FoF1-ATP synthase, retrograde regulation, wheat Received 8 October 2007; Revised 9 January 2008 Accepted 28 January 2008  相似文献   

20.
We have analyzed the relationships of homologues of the Escherichia coli CcmC protein for probable topological features and evolutionary relationships. We present bioinformatic evidence suggesting that the integral membrane proteins CcmC (E. coli; cytochrome c biogenesis System I), CcmF (E. coli; cytochrome c biogenesis System I) and ResC (Bacillus subtilis; cytochrome c biogenesis System II) are all related. Though the molecular functions of these proteins have not been fully described, they appear to be involved in the provision of heme to c-type cytochromes, and so we have named them the putative Heme Handling Protein (HHP) family (TC #9.B.14). Members of this family exhibit 6, 8, 10, 11, 13 or 15 putative transmembrane segments (TMSs). We show that intragenic triplication of a 2 TMS element gave rise to a protein with a 6 TMS topology, exemplified by CcmC. This basic 6 TMS unit then gave rise to two distinct types of proteins with 8 TMSs, exemplified by ResC and the archaeal CcmC, and these further underwent fusional or insertional events yielding proteins with 10, 11 and 13 TMSs (ResC homologues) as well as 15 TMSs (CcmF homologues). Specific evolutionary pathways taken are proposed. This work provides the first evidence for the pathway of appearance of distantly related proteins required for post-translational maturation of c-type cytochromes in bacteria, plants, protozoans and archaea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号