首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During growth on glycerol two marine Desulfovibrio strains that can grow on an unusually broad range of substrates contained high activities of glycerol kinase, NAD(P)-independent glycerol 3-phosphate dehydrogenase and the other enzymes necessary for the conversion of dihydroxyacetone phosphate to pyruvate. Glycerol dehydrogenase and a specific dihydroxyacetone kinase were absent. During growth on dihydroxyacetone, glycerol kinase is involved in the initial conversion of this compound to dihydroxyacetone phosphate which is then further metabolized. Some kinetic properties of the partially purified glycerol kinase were determined. The role of NAD as electron carrier in the energy metabolism during growth of these strains on glycerol and dihydroxyacetone is discussed.Glycerol also supported growth of three out of four classical Desulfovibrio strains tested. D. vulgaris strain Hildenborough grew slowly on glycerol and contained glycerol kinase, glycerol 3-phosphate dehydrogenase and enzymes for the dissimilation of dihydroxyacetone phosphate. In D. gigas which did not grow on glycerol the enzymes glycerol kinase and glycerol 3-phosphate dehydrogenase were absent in lactate-grown cells.Abbreviations DHA dihydroxyacetone - DHAP dihydroxyacetone phosphate - G3P glycerol 3-phosphate - GAP glyceraldehyde 3-phosphate - 3-PGA 3-phosphoglycerate - 2-PGA 2-phosphoglycerate - 2,3-DPGA 2,3-diphosphoglycerate - PEP phosphoenolpyruvate - DH dehydrogenase - GK glycerol kinase - DHAK dihydroxyacetone kinase - TIM triosephosphate isomerase - PGK 3-phosphoglycerate kinase - PK pyruvate kinase - LDH lactate dehydrogenase - DTT dithiotreitol - HEPES 4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid - PIPES piperazine-1,1-bis(2-ethane sulfonic acid) - BV2+/BV+ oxidized/reduced benzylviologen - PMS phenazine methosulfate - DCPIP 2,6-dichlorophenolindophenol - MTT 3-(4,5-dimethylthiazol-2-yl)-2,4-diphenyltetrazolium bromide  相似文献   

2.
GLYCEROL KINASE AND DIHYDROXYACETONE KINASE IN RAT BRAIN   总被引:4,自引:0,他引:4  
—The enzymatic phosphorylation of glycerol and dihydroxyacetone by ATP to sn-glycerol-3-phosphate and dihydroxyacetone phosphate respectively in various subcellular fractions of rat brain was studied. A sensitive radiochemical assay was used where the labelled phosphorylated products were separated from the radioactive substrates by high voltage paper electrophoresis and the radioactivity in these compounds determined. Using this assay the glycerol kinase (EC 2.7.1.30) activity was found to be associated with the mitochondrial fraction of the brain. Under optimum conditions 2.45 nmol of glycerol was phosphorylated/min per mg of protein. The Km for glycerol was 70 μm at pH 7. This mitochondrial enzyme, like other glycerol kinases from different sources, also phosphorylated dihydroxyacetone. Under optimum conditions 1.7 nmol of dihydroxyacetone phosphate was formed/min per mg of mitochondrial protein. The Km for dihydroxyacetone was 0.6 mm . Glycerol kinase activity was also present in the cytoplasm of brain. However, the specific activity of this enzyme in cytosol is about 15% of the mitochondrial glycerol kinase. Compared to glycerol, dihydroxyacetone was phosphorylated by ATP in cytoplasm at a much higher rate. The pH optimum for this soluble dihydroxyacetone kinase was much lower (pH 6.5) than that of the soluble or mitochondrial glycerol kinase (pH 10.0). Using ammonium sulfate, brain cytoplasm was fractionated to yield a fraction in which the dihydroxyacetone kinase was enriched 2–3 fold with no glycerol kinase activity. Under optimum conditions 1.0 nmol of dihydroxyacetone was phosphorylated/min per mg protein. The Km for dihydroxyacetone was 60 μm . This cytosol fraction was also found to phosphorylate d -glyceraldehyde and l -glyceraldehyde at a rate of 30–40% to that of the dihydroxyacetone phosphorylation. The properties and the possible metabolic role of these enzymes in brain are discussed.  相似文献   

3.
A novel compound, serinol phosphate, was identified in sugarcane (Saccharum officinarum) clone 51NG97. It was produced by an enzyme-mediated transamination of dihydroxyacetone phosphate with either alanine, glutamate, aspartate, or glutamine serving equally well as an amino donor. Some detectable phosphatase activity was present in crude leaf enzyme preparation that hydrolyzed serinol phosphate. A proposal for a pathway of the biosynthesis of serinol in sugarcane was formulated.

Serinol can serve as an “activator” of toxin production in attenuated cultures of the sugarcane pathogen Helminthosporium sacchari and it is present in susceptible clone 51NG97. Resistant clone H50-7209 does not possess serinol and likewise no dihydroxyacetone phosphate transaminase activity could be demonstrated in enzyme preparations of this clone. The concept of toxin activation in attenuated fungus cultures is briefly discussed relative to disease resistance and susceptibility.

  相似文献   

4.
Due to its availability, low‐price, and high degree of reduction, glycerol has become an attractive carbon source for the production of fuels and reduced chemicals. Using the platform we have established from the identification of key pathways mediating fermentative metabolism of glycerol, this work reports the engineering of Escherichia coli for the conversion of glycerol into 1,2‐propanediol (1,2‐PDO). A functional 1,2‐PDO pathway was engineered through a combination of overexpression of genes involved in its synthesis from the key intermediate dihydroxyacetone phosphate (DHAP) and the manipulation of the fermentative glycerol utilization pathway. The former included the overexpression of methylglyoxal synthase (mgsA), glycerol dehydrogenase (gldA), and aldehyde oxidoreductase (yqhD). Manipulation of the glycerol utilization pathway through the replacement of the native E. coli PEP‐dependent dihydroxyacetone kinase (DHAK) with an ATP‐dependent DHAK from C. freundii increased the availability of DHAP allowing for higher 1,2‐PDO production. Analysis of the major fermentative pathways indentified ethanol as a required co‐product while increases in 1,2‐PDO titer and yield were achieved through the disruption of the pathways for acetate and lactate production. Combination of these key metabolic manipulations resulted in an engineered E. coli strain capable of producing 5.6 g/L 1,2‐PDO, at a yield of 21.3% (w/w). This strain also performed well when crude glycerol, a by‐product of biodiesel production, was used as the substrate. The titer and yield achieved in this study were favorable to those obtained with the use of E. coli for the production of 1,2‐PDO from common sugars. Biotechnol. Bioeng. 2011; 108:867–879. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
Dihydroxyacetoone synthase (EC 2.2.1.3), which is a key enzyme of the C1-compound-assimilating pathway in yeasts, catalyzes transketolation between formaldehyde and hydroxypyruvate, leading to the formation of dihydroxyacetone and CO2. When [13C]formaldehyde was used as a substrate with dihydroxyacytone synthase from Candida boidinii 2201, 13C was confirmed to be incorporated to the C-1 and C-3 positions of dihydroxyacetone, and the 13C content of each carbon (atoms/100 atoms) was estimated to be 50%. [13C]Methanol was also useful for the enrichment of dihydroxyacetone with 13C, when alcohol oxidase from a methylotrophic yeast was added for the conversion of methanol to formaldehyde. A fed-batch reaction with periodic addition of the substrates was required for the accumalation of 13C-labelled dihydroxyacetone at a higher concentration, because the enzyme system was relatively susceptible to the C donor, formaldehyde or methanol. The optimum conditions for the production gave 160mM (14.4 mg/ml) dihydroxyacetone for 180 min; the molar yield relative to methanol added was 80%. Diyhdroxyacetone kinase (EC 2.7.1.29) from methanol-grown Hansenula polymorpha CBS 4732 was a suitable enzyme for the phosphorylation of dihydroxyacytone. The phosphorylation system, comprising of dihydroxyacetone kinase, adenylate kinase, and ATP, could be coupled with the system for dihydroxyacetone production. A fed-batch reaction afforded 185 mM [1, 3-13C]dihydroxyacetone phosphate from [13C]methanol; the molar yield of the ester relative to methanol added was 92.5%  相似文献   

6.
The only species of fission yeasts capable of growing on glycerol or dihydroxyacetone were Schizosaccharomyces pombe and S. malidevorans. When growing on glycerol or grown on glucose until it was exhausted, these species contained glycerol:NAD+ 2-oxidoreductase and dihydroxyacetone kinase but no glycerol kinase, consistent with utilization of glycerol via dihydroxyacetone. When grown to exhaustion of glucose, S. octosporus, S. slooffiae and S. japonicus contained dihydroxyacetone kinase but no glycerol:NAD+ 2-oxidoreductase or glycerol kinase. Prior to exhaustion of glucose in the medium, all species contained dihydroxyacetone kinase, all species except S. japonicus contained glycerol:NADP+ 2-oxidoreductase, and only S. pombe and S. malidevorans contained glycerol:NAD+ 2-oxidoreductase. Possible roles for the glycerol:NAD+ 2-oxidoreductase, glycerol:NADP+ 2-oxidoreductase and dihydroxyacetone kinase in metabolism of glycerol and dihydroxyacetone are discussed.Non-standard abbreviations DHA dihydroxyacetone - DHAK dihydroxyacetone kinase - DHAP dihydroxyacetone phosphate - GK glycerol kinase - G2DH-NAD glycerol - NAD+ 2-oxidoreductase - G2DH-NADP glycerol - NADP+ 2-oxidoreductase - MEA malt extract agar - YEP yeast extract phosphate medium  相似文献   

7.
Dunaliella has been extensively studied due to its intriguing adaptation to high salinity. Its di‐domain glycerol‐3‐phosphate dehydrogenase (GPDH) isoform is likely to underlie the rapid production of the osmoprotectant glycerol. Here, we report the structure of the chimeric Dunaliella salina GPDH (DsGPDH) protein featuring a phosphoserine phosphatase‐like domain fused to the canonical glycerol‐3‐phosphate (G3P) dehydrogenase domain. Biochemical assays confirm that DsGPDH can convert dihydroxyacetone phosphate (DHAP) directly to glycerol, whereas a separate phosphatase protein is required for this conversion process in most organisms. The structure of DsGPDH in complex with its substrate DHAP and co‐factor nicotinamide adenine dinucleotide (NAD) allows the identification of the residues that form the active sites. Furthermore, the structure reveals an intriguing homotetramer form that likely contributes to the rapid biosynthesis of glycerol.  相似文献   

8.
9.
A study of enzyme profiles in Hansenula polymorpha grown on various carbon substrates revealed that the synthesis of the methanol dissimilatory and assimilatory enzymes is regulated in the same way, namely by catabolite repression and induction by methanol. Mutants of H. polymorpha blocked in dihydroxyacetone (DHA) synthase (strain 70 M) or DHA kinase (strain 17 B) were unable to grow on methanol which confirmed the important role attributed to these enzymes in the biosynthetic xylulose monophosphate (XuMP) cycle. Both mutant strains were still able to metabolize methanol. In the DNA kinase-negative strain 17 B this resulted in accumulation of DHA. Although DHA kinase is thought to be involved in DHA and glycerol metabolism in methylotrophic yeasts, strain 17 B was still able to grow on glycerol at a rate similar to that of the wild type. DHA on the other hand only supported slow growth of this mutant when relatively high concentrations of this compound were provided in the medium. This slow but definite growth of strain 17 B on DHA was not based on the reversible DHA synthase reaction but on conversion of DHA into glycerol, a reaction catalyzed by DNA reductase. The subsequent metabolism of glycerol in strain 17 B and in wild type H. polymorpha, however, remains to be elucidated.Abbreviations XuMP xylulose monophosphate - DHA dihydroxyacetone - EMS ethyl methanesulphonate  相似文献   

10.
An NAD-dependent glycerol 3-phosphate dehydrogenase (sn-glycerol 3-phosphate: NAD oxidoreductase; EC 1.1.1.8) has been purified from spinach leaves by a three-step procedure involving ion-exchange, gel filtration, and affinity chromatography. The enzyme has been purified over 10,000-fold to a specific activity of 38. It has a molecular weight of approximately 63,500. The pH optimum for the reduction of dihydroxyacetone phosphate is 6.8 and for glycerol 3-phosphate oxidation it is 9.5. During dihydroxyacetone phosphate reduction hyperbolic kinetics were observed when either NADH or dihydroxyacetone phosphate was the variable substrate, but concentrations of NADH greater than 150 μm were inhibitory. Michaelis constants were 0.30–0.35 mm for dihydroxyacetone phosphate and 0.01 mm for NADH. Glycerol 3-phosphate oxidation obeyed Michaelis-Menten kinetics with a Km of 0.19 mm for NAD and 1.6 mm for glycerol 3-phosphate. The enzyme was specific for those substrates, and dihydroxyacetone, glyceraldehyde, glyceraldehyde 3-phosphate, NADPH, NADP, and glycerol were not utilized. The spinach leaf enzyme appears to be in the cytoplasm and probably functions for the production of glycerol 3-phosphate from dihydroxyacetone phosphate.  相似文献   

11.
Investigations were carried out to detect a blocked step in the glycerol biosynthesis of the glycerol auxotroph GL-21 derived from Corynebacterium alkanolyticum No. 314.

The enzyme required for the conversion of dihydroxyacetone phosphate to α-glycerophosphate was assumed to be defective, because some of glycerol derivatives and glycerol analogues substituted for glycerol as a growth factor, in which glycerides, phospholipids, surfactants and intermediary metabolites in the glycolysis pathway were included.

To confirm this assumption, the activities of α-glycerophosphate dehydrogenase of the mutant were compared to those of the parent. From these results, the auxotroph GL-21 was found to be deficient for a specific l-glycerol-3-phosphate: NADP oxidoreductase which is indispensable for the synthesis of glycerol.  相似文献   

12.
1. Owing to a (3)H isotope effect, the mitochondrial sn-glycerol 3-phosphate oxidase (EC 1.1.99.5) had a mean activity which was 8.4 times less with sn-[2-(3)H]-rather than with sn-[1-(14)C]glycerol 3-phosphate as a substrate. 2. A method for measuring the simultaneous synthesis of lipid from glycerol phosphate and dihydroxyacetone phosphate in rat liver mitochondria is described. 3. The lipid synthesized by rat liver mitochondria from sn-[1-(14)C]glycerol 3-phosphate was mainly phosphatidate and lysophosphatidate, whereas that synthesized from dihydroxy[1-(14)C]acetone phosphate was mainly acyldihydroxyacetone phosphate. 4. Additions of NADPH facilitated the conversion of acyldihydroxyacetone phosphate into lysophosphatidate and phosphatidate. 5. Hydrazine (1.4mm) or KCN (1.4mm) inhibited the synthesis of lipids from dihydroxyacetone phosphate but not from glycerol phosphate. 6. Clofenapate (1-2.5mm) inhibited the synthesis of lipids from dihydroxyacetone phosphate but slightly stimulated synthesis from glycerol phosphate. 7. The methanesulphonate of N-(2-benzoyloxyethyl)norfenfluramine, at 0.25-0.75mm, inhibited lipid synthesis from both glycerol phosphate and dihydroxyacetone phosphate.  相似文献   

13.
A synthetic platform for the cascade synthesis of rare sugars using Escherichia coli whole cells was established. In the cascade, the donor substrate dihydroxyacetone phosphate (DHAP) was generated from glycerol by glycerol kinase (GK) and glycerol phosphate oxidase (GPO). The acceptor d-glyceraldehyde was directly produced from glycerol by an alditol oxidase. Then, the aldol reaction between DHAP and d-glyceraldehyde was performed by l-rhamnulose-1-phosphate aldolase (RhaD) to generate the corresponding sugar-1-phosphate. Finally, the phosphate group was removed by fructose-1-phosphatase (YqaB) to obtain the rare sugars d-sorbose and d-psicose. To accomplish this goal, the alditol oxidase from Streptomyces coelicolor (AldOS.coe) was expressed in E. coli and the purified AldOS.coe was characterized. Furthermore, a recombinant E. coli strain overexpressing six enzymes including AldOS.coe was constructed. Under the optimized conditions, it produced 7.9 g/L of d-sorbose and d-psicose with a total conversion rate of 17.7% from glycerol. This study provides a useful and cost-effective method for the synthesis of rare sugars.  相似文献   

14.
When cell suspensions of Zygosaccharomyces rouxii were subjected to osmotic shock with NaCl, the cell volume decreased sharply and plasmolysis was observed. The cell subsequently recovered and volumes similar to those of cells growing at the respective water activity (aw) values were found. Cycloheximide prevented cell recovery, indicating the involvement of protein synthesis in the recovery process. The intracellular glycerol concentration of Z. rouxii incubated in the presence of [14C]glycerol increased from 13 to 96 mmol/l during the initial 20 min after an upshock from 0.998 aw to 0.96 aw. All the intracellular glycerol was labelled and therefore derived from the medium. Labelled glycerol was subsequently utilized and replaced by unlabelled glycerol produced by the cell within 90 min. The initial increase in glycerol concentration following the upshock was confirmed by 13C-nuclear magnetic resonance (NMR) spectroscopic studies of cell extracts. The combined dihydroxyacetone and dihydroxyacetone phosphate concentrations fluctuated during this period, whereas glycerol-3-phosphate initially increased and then remained constant. This indicates that the production of glycerol is regulated. Decreases in ATP and polyphosphate levels were observed following osmotic upshock and may reflect a greater demand for ATP during the period of adjustment to decreased aw. The changes in cell volume and in ATP concentration following osmotic upshock may serve as osmoregulatory signals in Z. rouxii, as suggested previously for other microorganisms. Correspondence to: S. G. Kilian  相似文献   

15.
Investigations into physiological aspects of glycerol conversion to dihydroxyacetone (DHA) by Gluconobacter oxydans ATCC 621 were made. The activity levels of the enzymes involved in the three catabolic pathways previously known and the effects of specific inhibitors and uncoupling agents on cellular development, DHA synthesis, and cellular respiratory activity were determined. It was established that only two catabolic pathways are involved in glycerol dissimilation by this micro-organism. The only enzyme responsible for DHA production is membrane-bound glycerol dehydrogenase, which employs oxygen as the final acceptor of reduced equivalents without NADH mediation. The ketone is directly released into the culture broth. As the glycolytic and carboxylic acid pathways are absent, the pathway provided by the membrane-bound enzyme is indispensable for the energy requirements of G. oxydans. The cytoplasmic pathway, which begins by phosphorylation of glycerol followed by a dehydrogenation to dihydroxyacetone phosphate, allows growth of the bacterium. At the same time, the substrate transport mode was characterized as facilitated diffusion using radioactive [1(3)-3H]-glycerol. Concerning the DHA inhibition of microbial activity, the enzymatic study of the membrane-bound glycerol dehydrogenase showed the enzymatic origin of this phenomenon: a 50% decrease of the enzyme activity was observed in the presence of 576 mm DHA. The decrease in the rate of penetration of glycerol into cells in the presence of DHA indicates that growth inhibition is essentially due to the high inhibition exerted by the ketone on the substrate transport system.  相似文献   

16.
Rates of phosphatidate synthesis from dihydroxyacetone phosphate via acyl dihydroxyacetone phosphate or glycerol phosphate are compared in homogenates of 13 tissues, most of which are deficient in glycerol phosphate dehydrogenase (EC 1.1.1.8). In all tissues examined, dihydroxyacetone phosphate entered phosphatidate more rapidly via acyl dihydroxyacetone phosphate than via glycerol phosphate. Tissues with a relatively low rate of phosphatidate synthesis via glycerol phosphate, showed no compensating increase in the rate of synthesis via acyl dihydroxyacetone phosphate. The rates at which tissue homogenates synthesize phosphatidate from dihydroxyacetone phosphate via glycerol phosphate increase as glycerol phosphate dehydrongenase increase. Both glycerol phosphate dehydrogenase and glycerol phosphate: acyl CoA acyltransferase (EC 2.3.1.15) are more active than dihydroxyacetone phosphate : acyl CoA acyltransferase (EC 2.3.1.42). Thus, all the tissue homogenates possessed an apparently greater capability to synthesize phosphatidate via glycerol phosphate than via acyl dihydroxyacetone phosphate, but did not express this potential. This result is discussed in relation to in vivo substrate limitations.  相似文献   

17.
The activities, properties, and steady-state kinetics of the five enzymes catalyzing the synthesis of 1-acyl- and 1-alkyl-sn-glycerol 3-phosphate in the cultured skin fibroblasts from Zellweger syndrome patients and normal controls were studied in detail. Judging from their Km and Vmax values, glycerol phosphate acyltransferase (EC 2.3.1.15), acyl/alkyl dihydroxyacetone phosphate reductase (EC 1.1.1.101), and acyl coenzyme A reductase (long-chain alcohol forming), appear to be affected only slightly by the absence of peroxisomes characteristic of the Zellweger syndrome. Glycerophosphate acyltransferase also showed no differences in N-ethylmaleimide sensitivity nor in inhibition by dihydroxyacetone phosphate between these cell types. Dihydroxyacetone phosphate acyltransferase (EC 2.3.1.42) and alkyl dihydroxyacetone phosphate synthase (EC 2.5.1.26) have altered activity and kinetic constants in homogenates from Zellweger syndrome fibroblasts. Dihydroxyacetone phosphate acyltransferase has similar Km (DHAP) values in both control and Zellweger syndrome cells; however, the value for the Vmax in Zellweger syndrome cells is only 6% of that found in the controls. This is interpreted as indicating that this enzyme is not defective in this disease but is simply present at a depressed level. Also, this enzyme activity has a maximum rate at pH 7.0-7.5 in the mutant cells as opposed to pH 5.4 in the controls. Acylation of dihydroxyacetone phosphate by control cell homogenate was stimulated by N-ethylmaleimide at both pH 5.7 and 7.5 whereas this activity from Zellweger syndrome cells was slightly inhibited at pH 5.7 and strongly inhibited at pH 7.5. In the absence of detergent, dihydroxyacetone phosphate acyltransferase in the Zellweger syndrome cells was much more labile to trypsin than in the control cells. Alkyl dihydroxyacetone phosphate synthase had a slightly higher Km (33 vs 17 microM) for palmitoyl dihydroxyacetone phosphate and a lower Vmax (0.07 vs 0.24 mU/mg protein) in the Zellweger syndrome cells as compared to controls. Although this is a substantial decrease in activity, it probably contributes little to the decreased rate of ether lipid synthesis in these cells. The major problem in this respect is apparently the loss of dihydroxyacetone phosphate acyltransferase activity. All of these enzymes, in both control and Zellweger syndrome cell homogenates, are sedimentable by centrifugation at 100,000g. Also, with the exception of dihydroxyacetone phosphate acyltransferase they had similar patterns of inactivation by heat in both cell types.  相似文献   

18.
An NADP+-dependent dihydroxyacetone reductase, which catalyzes specifically the reduction of dihydroxyacetone to glycerol, has been isolated from the halophilic alga Dunaliella parva. The enzyme has been purified about 220-fold. It has a molecular weight of about 65,000 and is highly specific for NADPH. The pH optima for dihydroxyacetone reduction and for glycerol oxidation are 7.5 and 9.2, respectively. The enzyme has a very narrow substrate specificity and will not catalyze the reduction of glyceraldehyde or dihydroxyacetone phosphate. It is suggested that this enzyme functions physiologically as a dihydroxyacetone reductase in the path of glycerol synthesis and accumulation in Dunaliella.  相似文献   

19.
We studied a mouse doubly homozygous for mutations in the genes encoding malic enzyme (EC1.1.1.40) and cytosolic glycerol phosphate dehydrogenase (EC 1.1.1.8) (cGPD). This mouse, which we call the mmgg mouse and which is the product of intercrosses between the Mod-1 mouse and the BALB/cHeA mouse, lacks activity of both enzymes. Like both parental strains the mmgg mouse is completely normal in appearance. cGPD is one of the two enzymes that catalyze the reactions of the glycerol phosphate shuttle. The activity of the other enzyme of the glycerol phosphate shuttle, mitochondrial glycerol phosphate dehydrogenase (EC 1.1.99.5) (mGPD), is abundant in tissues, such as brain, skeletal muscle and the pancreatic islet, suggesting that the glycerol phosphate shuttle is important in these tissues which rapidly metabolize glucose. Cytosolic malic enzyme activity is important for shuttles which transport NADPH equivalents from mitochondria to the cytosol. The major finding of the study was a highly abnormal metabolite pattern in tissues of the mmgg mouse suggesting a block in the glycerol phosphate shuttle due to cGPD deficiency. The metabolite pattern did not suggest that malic enzyme deficiency caused an abnormality. Tissue levels of glycerol phosphate (low) and dihydroxyacetone phosphate (high) were only abnormal in skeletal muscle. Glycolytic intermediates, situated at or before the triose phosphates in the pathway, such as fructose bisphosphate and glyceraldehyde phosphate were increased depending on the tissue. Taken together with previous extensive data on the mouse deficient only in cGPD this suggests a block in glycolysis at the step catalyzed by glyceraldehyde phosphate dehydrogenase caused by an abnormally low NAD/NADH ratio resulting from a nonfunctional glycerol phosphate shuttle. Consistent with this idea the lactate/pyruvate ratio was high in skeletal muscle signifying a low cytosolic NAD/NADH ratio. The mmgg mouse was normal in all other factors studied including blood glucose and serum insulin levels, pancreatic islet mass, insulin release from isolated pancreatic islets, as well as the activities of five metabolic enzymes, including mGPD, in liver, kidney, skeletal muscle and pancreatic islets. cGPD enzyme activity was undetectable in pancreatic islets, 0.5% of normal in liver, and 2.1% of normal in kidney and skeletal muscle. Malic enzyme activity was undetectable in these same tissues.  相似文献   

20.
Summary Various factors controlling dihydroxyacetone (DHA) and glycerol production from methanol by resting cell suspensions of a mutant of Hansenula polymorpha, blocked in DHA kinase and glycerol kinase, were investigated. The presence of methanol (250mM) and an additional substrate (0.5%, w/v) to replenish the xylulose-5-phosphate required for the assimilation reaction (DHA synthase) was essential for significant triose production by this double mutant. A number of sugars were tested as additional substrates and C5 sugars gave the highest triose accumulation (ca. 20mM after 45h). Glucose was the poorest additional substrate and triose production only started after its exhaustion, which occurred in the first few hours. Other sugars were metabolized at a much lower rate and accumulation of trioses began right at the start of the experiments and gradually increased with time. The production rate of total trioses increased, and the relative amount of glycerol diminished with higher oxygen supply rates. The data suggest that conversion of DHA into glycerol, catalysed by reduced nicotine adenine dinucleotide (NADH)-dependent DHA reductase, is partly regulated via intracellular NADH levels. Further support for this hypothesis was obtained in experiments with antimycin A, an inhibitor of the electron transport chain. Addition of higher amounts of methanol and xylose, either by increasing the initial concentrations or by repeated addition of these substrates, resulted in considerably enhanced productivity and a switch towards glycerol formation. After reaching a level of approximately 25mM the DHA concentration remained constant while the glycerol level gradually increased with time. After an incubation period of 350 h, a total of 3.9 M methanol and 0.62 M xylose had been converted, which resulted in accumulation of 0.76 M trioses, mostly glycerol.Offprint requests to: L. Dijkhuizen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号