首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hexanal and cis-3-hexenal are principal flavor volatiles in ripe tomato fruit, but whether they accumulate during ripening or are formed upon maceration of the tissue has not been clarified. This has been addressed by measuring levels of these aldehydes in green and ripe fruit with discrimination between intrinsic aldehyde content and aldehyde generation following tissue disruption. Volatile sampling of tomato fruit homogenates was accomplished by purge/trapping, followed by thermal desorption on a gas chromatograph equipped with a mass selective detector. Incubation of some samples with alcohol dehydrogenase to convert the aldehydes to their respective alcohols permitted positive identification of the isomeric form of hexenal as cis-3-hexenal. Red and green tomato fruit homogenized in buffer with saturated CaCl2 contained low (0.1-0.8 µg g?1 fresh weight) levels of hexanal and cis-3-hexenal; thus there is minimal endogenous volatile content in intact fruit. Volatile levels increased rapidly, up to 10-fold, following homogenization of ripe tomato fruit in the absence of CaCl2, and more modestly in corresponding green tomato fruit homogenates. Incubation with the appropriate lipoxygenase/hydroperoxide lyase substrate (linoleic acid for hexanal, linolenic acid for cis-3-hexenal) doubled the amount of volatile compound produced. Hexanal generation was suppressed in the presence of linolenic acid, suggesting that the enzyme complex has greater affinity for this substrate. As well, levels of cis-3-hexenal, but not hexanal, tended to decline within 30 min of homogenization, possibly reflecting a specific degradative process. The results collectively indicate that the contribution of six-carbon aldehydes to tomato fruit flavor is attributable to metabolism invoked following tissue disruption rather than within the intact fruit.  相似文献   

2.
3.
Green note aldehydes were successfully reduced into their corresponding alcohol by commercial yeast alcohol dehydrogenase. Among different yeasts tested for their ability to convert (Z)-3-hexenal into (Z)-3-hexenol, Pichia anomala gave the best results. Conversion yields higher than 90% were also obtained by directly conducting the reaction in the medium where (Z)-3-hexenal is produced by the action of lipoxygenase and hydroperoxide lyase on linolenic acid.  相似文献   

4.
Six-Carbon (C6-) volatiles, including the aldehydes trans-2-hexenal, hexanal and cis-3-hexenal, as well as their corresponding alcohols, are produced from damaged or wounded plant tissue as a product of the enzymatic activity of hydroperoxide lyase (HPL), a component of the lipoxygenase (LOX) pathway. Aerial treatment of Arabidopsis seedlings with 10 microM concentrations of trans-2-hexenal induces several genes known to be involved in the plant's defense response, including phenylpropanoid-related genes as well as genes of the LOX pathway. Genes encoding the pathogenesis-related proteins PR-1 or PR-2, however, were not induced. Trans-2-hexenal induction thus closely mimics the group of genes induced by methyl jasmonate (MeJA), also a LOX-derived volatile. However, unlike MeJA, trans-2-hexenal did not induce hydroxymethylglutaryl-coenzyme A reductase (HMGR) or thionin2-1. The inductive effect seemed to be limited to C6-related volatiles, as C8-, C9- and other related volatiles did not induce LOX mRNA levels. As has been demonstrated for MeJA, trans-2-hexenal quantitatively reduced wild-type seed germination. Trans-2-hexenal also reduced the germination frequency of the MeJA resistant Arabidopsis mutant, jar1-1, supporting the notion that trans-2-hexenal and MeJA are recognized via different mechanisms. In addition, trans-2-hexenal had a moderate inhibitory effect on root length relative to similar concentrations of MeJA and was approximately 10-fold less effective than MeJA at inducing anthocyanin accumulation in Arabidopsis seedlings. These results suggest that C6-volatiles of the LOX pathway act as a wound signal in plants, but result in a moderate plant response relative to MeJA at both the physiological and molecular level.  相似文献   

5.
Thea sinensis; Theaceae; tea; cis-3-hexenal: leaf aldehyde; leaf alcohol; linolenic acid; biosynthesis of leaf alcohol.Linolenic acid and cis-3-hexenal were found in macerated leaves of Thea sinensis and this aldehyde may be produced from linolenic acid by an enzyme contained in macerated leaves in the presence of oxygen. This aldehyde was easily isomerized to trans-2-hexenal, and was converted to cis-3-hexenol by alcohol dehydrogenase. During maceration of freshly picked tea leaves, the amounts of trans-2-hexenal quickly increased and were influenced by maceration time, heating, oxygen and the pH. But in unpicked tea leaves the occurrence of trans-2-hexenal is extremely doubtful.  相似文献   

6.
7.
Lipoxygenases catalyze the formation of fatty acid hydroperoxide precursors of an array of compounds involved in the regulation of plant development and responses to stress. To elucidate the function of the potato 13-lipoxygenase H1 (LOX H1), we have generated transgenic potato plants with reduced expression of the LOX H1 gene as a consequence of co-suppression-mediated gene silencing. Three independent LOX H1-silenced transgenic lines were obtained, having less than 1% of the LOX H1 protein present in wild-type plants. This depletion of LOX H1 has no effect on the basal or wound-induced levels of jasmonates derived from 13-hydroperoxylinolenic acid. However, LOX H1 depletion results in a marked reduction in the production of volatile aliphatic C6 aldehydes. These compounds are involved in plant defense responses, acting as either signaling molecules for wound-induced gene expression or as antimicrobial substances. LOX H1 protein was localized to the chloroplast and the protein, expressed in Escherichia coli, showed activity toward unesterified linoleic and linolenic acids and plastidic phosphatidylglycerol. The results demonstrate that LOX H1 is a specific isoform involved in the generation of volatile defense and signaling compounds through the HPL branch of the octadecanoid pathway.  相似文献   

8.
9.
A particular isoform of lipoxygenase (LOX) localized on lipid bodies was shown by earlier investigations to play a role in initiating the mobilization of triacylglycerols during seed germination. Here, further physiological functions of LOXs within whole cotyledons of cucumber (Cucumis sativus L.) were analyzed by measuring the endogenous amounts of LOX-derived products. The lipid-body LOX-derived esterified (13 S)-hydroperoxy linoleic acid was the dominant metabolite of the LOX pathway in this tissue. It accumulated to about 14 micromol/g fresh weight, which represented about 6% of the total amount of linoleic acid in cotyledons. This LOX product was not only reduced to its hydroxy derivative, leading to degradation by beta-oxidation, but alternatively it was metabolized by fatty acid hydroperoxide lyase leading to formation of hexanal as well. Furthermore, the activities of LOX forms metabolizing linolenic acid were detected by measuring the accumulation of volatile aldehydes and the allene oxide synthase-derived metabolite jasmonic acid. The first evidence is presented for an involvement of a lipid-body LOX form in the production of volatile aldehydes.  相似文献   

10.
Homogenates of tomato fruits catalysed the enzymic conversion of linoleic and linolenic acids (but not oleic acid) to C6 aldehydes in low (3–5%) molar yield. Hexanal was formed from linoleic acid; cis-3-hexenal and smaller amounts of trans-2-hexenal were formed from linolenic acid. With the fatty acids as substrates, the major products were fatty acid hydroperoxides (50–80% yield) and the ratio of 9- to 13-hydroperoxides as isolated from an incubation with linoleic acid was at least 95:5 in favour of the 9-hydroperoxide isomer. When the 9- and 13-hydroperoxides of linoleic acid were used as substrates with tomato homogenates, the 13-hydroperoxide was readily cleaved to hexanal in high molar yield (60%) but the 9-hydroperoxide isomer was not converted to cleavage products. Properties of the hydroperoxide cleavage system are described. The results indicate that the C6 aldehydes are formed from C18 polyunsaturated fatty acids in a sequential enzyme system involving lipoxygenase (which preferentially oxygenates at the 9-position) followed by a hydroperoxide cleavage system which is, however, specific for the 13-hydroperoxy isomers.  相似文献   

11.
Six‐carbon (C6) volatile products are released from the enzymatic action of hydroperoxide lyase (HPL), a component of the lipoxygenase (LOX) pathway and form the basis of the "green‐note" flavour characteristic of many consumed plant products. Arabidopsis leaf tissue contains the C6‐aldehydes hexanal, and trans ‐2‐hexenal as well as the C6‐alcohols: hexanol, and 3‐hexenol. Interconversion between C6‐aldehydes and alcohols is thought to proceed through the action of alcohol dehydrogenase (ADH). Using an ADH mutant of Arabidopsis , we have shown that there are large quantitative and qualitative differences in the accumulation of C6‐volatiles in the absence of ADH activity. The total quantity of LOX‐derived volatiles is greater on a fresh weight basis in the ADH mutant. Qualitatively, hexanol and 3‐hexenol levels are approximately 62% and 51% lower in the mutant, respectively, whereas levels of hexenal are approximately 10‐fold higher. Hexanal accumulation, however, is unaffected in the mutant. The altered profile of LOX‐derived volatiles does not have an effect on the steady‐state levels of mRNA for allene oxide synthase (AOS) or LOX. HPL activity and mRNA quantity, however, are higher in the mutant relative to wild type, suggesting that altered product levels in the mutant affect HPL regulation.  相似文献   

12.
The synthetic activity for 3Z-hexenal, an important precursor of 3Z-hexenol (leaf alcohol), was localized in chloroplasts of Thea sinensis leaves. 3Z-Hexenal, which is easily isomerized to 2E-hexenal (leaf aldehyde), was formed from linolenic acid in the presence of oxygen. 13-l-Hydroperoxy-linolenic acid also served as a precursor, but the triglyceride and methyl ester of linolenic acid did not. This enzyme system appeared to be tightly bound to the lamellae membranes of chloroplasts.  相似文献   

13.
Fatty acid hydroperoxide lyase (HPL) is a membrane associated P450 enzyme that cleaves fatty acid hydroperoxides into aldehydes and omega-oxo fatty acids. One of the major products of this reaction is (3Z)-hexenal. It is a constituent of many fresh smelling fruit aromas. For its biotechnological production and because of the lack of structural data on the HPL enzyme family, we investigated the mechanistic reasons for the substrate specificity of HPL by using various structural analogues of HPL substrates. To approach this 13-HPL from Arabidopsis thaliana was cloned and expressed in E. coli utilising a His-Tag expression vector. The fusion protein was purified by affinity chromatography from the E. coli membrane fractions and its pH optimum was detected to be pH 7.2. Then, HPL activity against the respective (9S)- and (13S)-hydroperoxides derived either from linoleic, alpha-linolenic or gamma-linolenic acid, respectively, as well as that against the corresponding methyl esters was analysed. Highest enzyme activity was observed with the (13S)-hydroperoxide of alpha-linolenic acid (13alpha-HPOT) followed by that with its methyl ester. Most interestingly, when the hydroperoxy isomers of gamma-linolenic acid were tested as substrates, 9gamma-HPOT and not 13gamma-HPOT was found to be a better substrate of the enzyme. Taken together from these studies on the substrate specificity it is concluded that At13HPL may not recognise the absolute position of the hydroperoxy group within the substrate, but shows highest activities against substrates with a (1Z4S,5E,7Z)-4-hydroperoxy-1,5,7-triene motif. Thus, At13HPL may not only be used for the production of C6-derived volatiles, but depending on the substrate may be further used for the production of Cg-derived volatiles as well.  相似文献   

14.
Six-carbon aldehydes and alcohols belong to flavours and fragrances with wide application in the food, feed, cosmetic, chemical and pharmaceutical sectors. In the present study, we prepared the expression system for production of recombinant yeast alcohol dehydrogenase 1 (YADH1) from Saccharomyces cerevisiae which is suitable also for catalysis of the interconversion of C-6 aldehydes and alcohols. We have demonstrated that an effective three-step strategy can overcome the insolubility problems during YADH1 production in Escherichia coli. We used trxB and gor deficient expression strain, decreased concentration of isopropyl β-D-1-thiogalactopyranoside and lowered temperature to 20°C during induction. Finally, kinetic parameters of recombinant YADH1 were determined and we concluded it is a promising enzyme also for the interconversion of C-6 alcohols/aldehydes in green note volatile production.  相似文献   

15.
Leaf alcohol (cis-3-hexenol) and leaf aldehyde (trans-2-hexenal)are responsible for the green odor in leaves and fruits. cis-3-Hexenal,a precursor of cis-3-hexenol and trans-2-hexenal, was producedfrom linolenic acid by a homogenate of Farfugium japonicum (Japanesesilver) leaves. n-Hexanal was produced from linoleic acid bya homogenate of the leaves. The enzyme system catalyzing formationof C6-aldehydes from linolenic and linoleic acids was localizedin chloroplast lamellae, and required oxygen for reaction. C18-unsaturatedfatty acids such as linolenic acid, linoleic acid and -linolenicacid, which have carboxyl groups and cis-1, cis-4-pentadienesystems including a double bond at C-12, acted as substrates,and C6-aldehydes (cis-3-hexenal or n-hexanal), but not C9-aldehydes,were produced from them. The properties of the enzyme systemin chloroplasts were as follows: optimal pH 7.0; stable at pH5 to 7; thermolabile and no activity at 50?C. These propertieswere very similar to those of tea chloroplasts. The enzyme systemcould be solubilized from chloroplasts by 2% Triton X-100, butwas very unstable in solubilized form. (Received July 9, 1976; )  相似文献   

16.
The content of linolenic acid and its fat-soluble derivatives in Ginkgo leaves has been determined. By utilization of uniformly 14C-labelled linolenic acid it has been shown that the linolenic acid in Ginkgo leaves is converted into 2-hexenal when the leaves are macerated in the presence of air. The conversion of linolenic acid to 2-hexenal under the conditions of temperature and pH existing in the Ginkgo leaf requires the presence in the leaves of an enzyme or other catalyst. This is not lipoxidase but is a hexane-insoluble, water-soluble substance. A preparation of this substance strongly catalyzes the absorption of oxygen by linolenic acid in water at 20°.  相似文献   

17.
Induction of pumpkin (Cucurbita maxima Duch.) glutathione S-transferases (GSTs) by different stresses and endogenous trans-2-hexenal content were determined in search of a common signal for GST induction. All of the stresses showed significant induction, As2O3 causing the highest induction followed by trans-2-hexenal. The trans-2-hexenal content was highest in trans-2-hexenal-treated seedlings and next-highest in methyl jasmonate-treated seedlings, whereas high temperature- and As2O3-treated seedlings had trans-2-hexenal contents lower than that of control seedlings. Induction of GST, lipoxygenase (LOX) and hydroperoxide lyase (HPL) was compared, since trans-2-hexenal and methyl jasmonate are the products of the LOX pathway. All four stresses showed weak LOX induction, high temperature causing the highest induction. However, only methyl jasmonate caused weak HPL induction. Both antioxidants or oxidants induced GST to different degrees. Glutathione contents of reduced glutathione (GSH) or oxidized glutathione (GSSG)-treated seedlings were significantly higher than the content of control seedlings, whereas those treated with other antioxidants or oxidants had contents similar to or less than control seedlings. The GSH:GSSG ratio was lowest in GSSG-treated seedlings and next-lowest in GSH-treated seedlings. The results of this study suggest that pumpkin GSTs are not induced through a common signalling pathway and that redox perturbation plays a role in pumpkin GST induction.  相似文献   

18.
Fatty acid hydroperoxide lyase (HPL), a member of cytochrome P450 (CYP74), produces aldehydes and oxo-acids involved in plant defensive reactions. In monocots, HPL that cleaves 13-hydroperoxides of fatty acids has been reported, but HPL that cleaves 9-hydroperoxides is still unknown. To find this type of HPL, in silico screening of candidate cDNA clones and subsequent functional analyses of recombinant proteins were performed. We found that AK105964 and AK107161 (Genbank accession numbers), cDNAs previously annotated as allene oxide synthase (AOS) in rice, are distinctively grouped from AOS and 13-HPL. Recombinant proteins of these cDNAs produced in Escherichia. coli cleaved both 9- and 13-hydroperoxide of linoleic and linolenic into aldehydes, while having only a trace level of AOS activity and no divinyl ether synthase activity. Hence we designated AK105964 and AK107161 OsHPL1 and OsHPL2 respectively. They are the first CYP74C family cDNAs to be found in monocots.  相似文献   

19.
Plants produce short‐chain aldehydes and hydroxy fatty acids, which are important industrial materials, through the lipoxygenase pathway. Based on the information that lipoxygenase activity is up‐regulated in tobacco leaves upon infection with tobacco mosaic virus (TMV), we introduced a melon hydroperoxide lyase (CmHPL) gene, a tomato peroxygenase (SlPXG) gene and a potato epoxide hydrolase (StEH) into tobacco leaves using a TMV‐based viral vector system to afford aldehyde and hydroxy fatty acid production. Ten days after infiltration, tobacco leaves infiltrated with CmHPL displayed high enzyme activities of 9‐LOX and 9‐HPL, which could efficiently transform linoleic acid into C9 aldehydes. Protein extracts prepared from 1 g of CmHPL‐infiltrated tobacco leaves (fresh weight) in combination with protein extracts prepared from 1 g of control vector‐infiltrated tobacco leaves (as an additional 9‐LOX source) produced 758 ± 75 μg total C9 aldehydes in 30 min. The yield of C9 aldehydes from linoleic acid was 60%. Besides, leaves infiltrated with SlPXG and StEH showed considerable enzyme activities of 9‐LOX/PXG and 9‐LOX/EH, respectively, enabling the production of 9,12,13‐trihydroxy‐10(E)‐octadecenoic acid from linoleic acid. Protein extracts prepared from 1 g of SlPXGinfiltrated tobacco leaves (fresh weight) in combination with protein extracts prepared from 1 g of StEH‐infiltrated tobacco leaves produced 1738 ± 27 μg total 9,12,13‐trihydroxy‐10(E)‐octadecenoic acid isomers in 30 min. The yield of trihydroxyoctadecenoic acids from linoleic acid was 58%. C9 aldehydes and trihydroxy fatty acids could likely be produced on a larger scale using this expression system with many advantages including easy handling, time‐saving and low production cost.  相似文献   

20.
Natural 2(E)-hexenal was produced in two steps from hydrolysed linseed oil, which contains the most linolenic acid among the available natural sources. In the first step 13-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid (13-HPOT) was formed from linolenic acid (100 mM) by soybean lipoxygenase-1 (Lox-1) isoenzyme with oxygen as co-substrate. The reaction resulted in 57 mM 13-HPOT with a yield of 62%. In the second step 13-HPOT (20 mM) was cleaved by green bell pepper hydroperoxide lyase resulting in 1.6 mM 2(E)-hexenal and 5.9 mM 3(Z)-hexenal (37% yield for the hexenal isomers together). Hexenals were isolated from the reaction mixture by repeated steam distillations. During distillations the 2(E)-hexenal:3(Z)-hexenal isomer ratio was changed from 0.27 to 7.86 as a consequence of heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号