首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The filamentous fungus, Sclerotium glucanicum NRRL 3006, was cultivated in a 0.008 m3 airlift bioreactor with internal recirculation loop (ARL-IL) for production of the biopolymer, scleroglucan. The rheological behaviour of the culture fluid was characterised by measurement of the fluid consistency coefficient (K) and the flow behaviour index (n). Based on these measurements, the culture fluid changed from a low viscosity Newtonian system early in the process, to a viscous non-Newtonian (pseudoplastic) system. In addition, reactor hydrodynamics and mixing behaviour were characterised by measurement of whole mean gas hold-up (ɛ g), liquid re-circulation velocity (U ld) and mixing time (t m). Under identical process conditions, the effects of the viscosity of the culture fluid and air flow rate on ɛ g, U ld and t m were examined and empirical correlations for ɛ g, U ld and t m with both superficial velocity U g and consistency coefficient K were obtained and expressed separately. The correlations obtained are likely to describe the behaviour of real fungal culture fluids more accurately than previous correlations based on Newtonian or simulated non-Newtonian systems. Journal of Industrial Microbiology & Biotechnology (2001) 27, 208–214. Received 05 June 2000/ Accepted in revised form 18 March 2001  相似文献   

2.
Hydrodynamic studies in an airlift reactor with an enlarged degassing zone   总被引:3,自引:0,他引:3  
The hydrodynamic behaviour of a 60?l three-phase airlift bioreactor, of the concentric draught tube type, with an enlarged degassing zone has been studied. Ca-alginate beads were used as the solid phase. Airflow rate (from 1.9 to 90.2?l/min), solids loading (0% to 40% (v/v)) and solids density (1016 and 1038?kg/m3) were manipulated and their influence on solids and gas holdup, circulation and mixing times and in the interstitial liquid velocity was determined. Riser and downcomer solids holdup was found to decrease with the increase of airflow rate and to increase with solids loading and density. On the contrary, gas holdup in the riser and in the downcomer increased with airflow rate and decreased with solids loading and density. By increasing airflow rate, a decrease in circulation time was observed while the effects of solids loading and density were negligible. Mixing time decreased with airflow rate, increased with solids density, in the studied range, and presented a maximum for solids loading of approximately 20% (v/v).  相似文献   

3.
The hydrodynamics and mass transfer, specifically the effects of gas velocity and the presence and type of solids on the gas hold-up and volumetric mass transfer coefficient, were studied on a lab-scale airlift reactor with internal draft tube. Basalt particles and biofilm-coated particles were used as solid phase. Three distinct flow regimes were observed with increasing gas flow rate. The influence of the solid phase on the hydrodynamics was a peculiar characteristic of the regimes. The volumetric mass transfer coefficient was found to decrease with increasing solid loading and particle size. This could be predominantly related to the influence that the solid has on gas hold-up. The ratio between gas hold-up and volumetric mass transfer coefficient was found to be independent of solid loading, size, or density, and it was proven that the presence of solids in airlift reactors lowers the number of gas bubbles without changing their size. To evaluate scale effects, experimental results were compared with theoretical and empirical models proposed for similar systems.  相似文献   

4.
Of the various types of industry-generated effluents, those containing organic pollutants such as phenols are generally difficult to remediate. There is a need to develop new technologies that emphasize the destruction of these pollutants rather than their disposal. In this work the white rot fungus, Trametes pubescens, was demonstrated to be an effective bioremediation agent for the treatment of phenolic wastewaters. An airlift loop reactor was optimized, in terms of volumetric oxygen transfer rate (K(L)a = 0.45 s(-1)), to provide an environment suited to rapid growth of T.pubescens (mu = 0.25 day(-1)) and a particularly efficient growth yield on glucose of 0.87 g biomass.g glucose(-1). The phenolic effluent was shown to be a paramorphogen, influencing fungal pellet morphology in the reactor, as well as increasing laccase enzyme activity by a factor of 5 over the control, to a maximum of 11.8 U.mL(-1). This increased activity was aided by the feeding of nonrepressing amounts (0.5 g.L(-1)) of glucose to the reactor culture. To our knowledge the degradation results represent the highest rate of removal (0.033 g phenol.g biomass(-1).day(-1)) of phenolic compounds from water reported for white rot fungi.  相似文献   

5.
The distribution of the solid-phase in an airlift reactor of the concentric draught tube type, with an enlarged degassing zone, has been determined. Samples were taken at eight points of the reactor for various airflow rates, solids loading and density. Hold-up of solids varied considerably within the reactor. The highest value, for all tested experimental conditions, was obtained immediately above the top of the riser and the lowest value near the wall of the degassing zone. © Rapid Science Ltd, 1998  相似文献   

6.
Vertical tubular reactor for microalgae cultivation   总被引:5,自引:0,他引:5  
Summary Vertical glass tubular reactors, 5 cm in diameter and 2.35 m high, were used to grow several species of cyanobacteria, green algae, and diatoms. The reactors were gassed with an air/CO2 mixture, to supply CO2, remove O2, and provide mixing. Most of the 10 strains tested had productivities similar to those observed with mechanically mixed reactors. The advantages of the vertical tubular reactors are their high surface to volume ratios, low shear forces, low cost, absence of wall growth, high CO2 use efficiency, and the ability to use sunlight.  相似文献   

7.
The hydrodynamics of biotechnological processes is complex. So far, few studies were made with bioreactors of the airlift type with an enlarged degassing zone.In this work, the influence of solids loading, solids specific gravity and draught tube dimensions on mixing and circulation times and critical air flow rate for an internal loop airlift bioreactor with an enlarged sedimentation/degassing zone is studied.The results indicate that the critical air flow rate as well as the mixing time increase with an increase in solids loading in the bioreactor. Circulation time presents a maximum for a solids load between 5 and 10% (v/v). It is also shown that small variations in solids specific gravity, for values close to that of the liquid, have a significant influence on the critical air flow rate and on the mixing time.An optimal (minimal) value for the circulation time and for the critical air flow rate was obtained for a riser to down comer diameter ratio of 0.46. The minimum mixing time was obtained for a riser to down comer height ratio of 0.80.This work was supported by J.N.I.C.T. (Junta Nacional de Investigação Cientifica e Tecnológica).  相似文献   

8.
A new airlift reactor was used to culture Catharanthus roseus cells, in which the draft tube was made up of polyurethane foam and acted as the immobilizing matrix. The reactor was connected in series to an adsorbent column with a neutral polymeric resin which absorbs these alkaloids. The synthesis of alkaloid was stimulated by adding the resin column and the total content of alkaloid secreted by cells reached 380 mg/L, which was 4.5 times of that in the control experiment. Meanwhile, most of the intracellular alkaloid produced by Catharanthus roseus was secreted into the medium.  相似文献   

9.
A pilot scale airlift reactor with multiple net draft tubes was developed to improve oxygen transfer in the reactor. The reactor was 0.29 m in diameter and 2 m height. A steadystate sulfite oxidation method was applied to determine an overall volumetric mass transfer coefficient. Oxygen transfer of the proposed airlift reactor can be 60–100% higher than that of bubble columns under the same operating conditions.List of Symbols C * mol·dm–3 saturated concentration of dissolved oxygen - C L mol·dm–3 bulk concentration of dissolved oxygen - G mol/min nitrogen flow rate - k L a hr–1 the volumetric gas-liquid mass transfer coefficient - Mo 2 g/mol molecular weight of oxygen - OTR g/min the oxygen transfer rate - U g cm/s superficial air velocity - V L dm3 volume of the liquid phase - in oxygen mole ratio in the inlet gas - out oxygen mole ratio in the outlet gas  相似文献   

10.
11.
Gas-liquid mass transfer in an airlift reactor with net draft tube is investigated. The effects of both the ratio of draft tube to reactor diameter and the reactor pressure on oxygen transfer are considered. The value of the volumetric mass transfer coefficient, kLa, increases with a decreasing diameter ratio at higher air flow rates. The correlation of volumetric mass transfer coefficient with respect to the true superficial air velocity under different reactor pressures is determined. The kLa value decreases with increasing reactor pressure.  相似文献   

12.
Based on the experimental investigations with H. polymorpha and Methylomonas M 15 in bench-scale airlift tower-loop reactors, a general distributed parameter model was developed and used to simulate to cultivation process in a 40-m-high production reactor. This general model was simplified with regard to the gas phase and loop balances and was employed to optimize cell productivity and/or profit in a 20-m-high pilot-plant airlift tower-loop reactor. Maximum cell productivity always occurs in the oxygen-transfer-limited growth range. In case of a high "penalty factor" for nonconsumed substrate, maximum profit is attained at the boundary between substrate and oxygen-transfer-limited growth. Oxygen-transfer limitation exists in the lower half of the tower, whereas in the upper half, substrate limitation prevails. The longitudinal dissolved oxygen concentration passes a minimum in this case as has been determined experimentally in the bench-scale column. The simulation results agree fairly well with the data measured in the pilot plant.  相似文献   

13.
Measurements of local gas phase characteristics are obtained in an external-loop airlift reactor filled with newtonian or viscous non-newtonian liquids. A double-optical fiber probe technique is used. It allows the determination of the axial and radial profiles of gas hold-up, bubbling frequency, bubble size and velocity. In the case of air-water system, the results show a strong effect of radial liquid velocity variation on the gas flow characteristics at the bottom of the riser. In the case of highly viscous non-newtonian solution, the gas flow is strongly affected by the gas distribution just above the gas sparger. This study also points out the bubble coalescence and the break-up phenomena in different liquids and levels in the reactor. Furthermore, the local measurements of bubble size and velocity allows to gain more detailed information on the dynamics of the bubble-flow and shows a tendency of large bubbles to circulate in the column center.  相似文献   

14.
Sucrose from sugarcane is produced in abundance in Brazil, which provides an opportunity to manufacture other high-value products. Gluconic acid (GA) can be produced by multi-enzyme conversion of sucrose using the enzymes invertase, glucose oxidase, and catalase. In this process, one of the byproducts is fructose, which has many commercial applications. This work concerns the batch mode production of GA in an airlift reactor fed with sucrose as substrate. Evaluation was made of the influence of temperature and pH, as well as the thermal stability of the enzymes. Operational conditions of 40 °C and pH 6.0 were selected, based on the enzymatic activity profiles and the thermal stabilities. Under these conditions, the experimental data could be accurately described by kinetic models. The maximum yield of GA was achieved within 3.8 h, with total conversion of sucrose and glucose and a volumetric productivity of around 7.0 g L?1 h?1.  相似文献   

15.
Gas holdups and volumetric mass transfer coefficients were measured in a concentric tube airlift reactor designed for the microbial desulfurization of coal. The solutions studied were comprised of an acidified basal salts solution containing thirteen different weight percentages (0 to 40) of coal (74 mum Ohio #1) at three different temperatures (30, 50, and 72 degrees C). Gas holdup epsilon(G) decreased with solids loading for the entire range studied. An enhancement in the volumetric mass transfer coefficient K(L)a with respect to that in pure solution was observed from zero to approximately 5 wt % (solids volume fraction epsilon(s) = 0.035), the maximum enhancement occurring at approximately 2 wt % (epsilon(s) = 0.014). At higher solids fractions, the mass transfer coefficient decreased with further solids additions. Gas holdups and the mass transfer coefficients increased with temperature over the studied range. The K(L)a and epsilon(G) were correlated to three process variables separately and the separate correlations combined to yield generalized correlations for the mass transfer coefficient and gas holdup for this system. The correlations may be used for design, operation, and ost estimation of such systems.  相似文献   

16.
The phenomenon of autolysis in Blakeslea trispora during carotene production from deproteinized hydrolyzed whey in an airlift reactor was investigated. The process of cellular autolysis was studied by measuring the changes in carotene concentration, dry biomass, residual sugars, pH, intracellular protein, specific activity of the hydrolytic enzymes (proteases, chitinase), and micromorphology of the fungus using a computerized image analysis system. All these parameters were useful indicators of autolysis, but image analysis was found to be the most useful indicator of the onset and progress of autolysis in the culture. Autolysis of B. trispora began early in the growth phase, continued during the stationary phase, and increased significantly in the decline phase. The morphological differentiation of the fungus was a result of the degradation of the cell membrane by hydrolytic enzymes. The biosynthesis of carotenes was carried out in the exponential phase, where the phenomenon of autolysis was not intense.  相似文献   

17.
A new tubular reactor for mass production of microalgae outdoors   总被引:5,自引:0,他引:5  
A novel reactor for outdoor production of microalgae is described. Air-lift is used for circulation of the culture in transparent tubes lying on the ground and interconnected by a manifold. Dissolved O2 is removed through a gas-separator placed 2.0 m above the tubes and water-spray is used for cooling. The manifold permits short-run durations between leaving the gas separator and re-entering it, preventing thereby damaging accumulation of dissolved oxygen. Day temperature control in summer is attained using water-spray. In winter, temperature in the tubes rises rapidly in the morning, as compared to an open raceway even if placed in a greenhouse. The number of hours along which optimal temperature prevails in the culture throughout the year increased significantly. Very high daily productivity computed on a volumetric basis (e.g. 550 mg dry wt l–1 culture) was obtained and preliminary observations indicate that a significantly higher output, e.g. 1500 mg dry wt l–1 d–1 is attainable. Much more research is required to assess the year-round, sustained productivity attainable in this reactor.  相似文献   

18.
Summary The flow behaviour of calcium alginate beads in an airlift reactor (ALR) with external loop was dependent on the airflow rate into and the amount of beads in the reactor. The performance of immobilizedArthrobacter simplex for the 1-dehydrogenation of hydrocortisone in the ALR compared favourably to that in a stirred tank reactor. The physical stability of the calcium alginate beads was significantly greater in the ALR.  相似文献   

19.
Mass transfer and liquid mixing in an airlift reactor with a net draft tube were experimentally investigated. Four different column diameters were considered. The mass transfer was measured using the volumetric gas-liquid mass transfer coefficient which was determined by the dynamic method. The mass transfer coefficients in the airlift reactors with different column diameters were not always higher than those in the bubble columns. The liquid mixing was measured using mixing time which was determined by a pulse technique. Under the same superficial gas velocity, the mixing times of the airlift reactors with a net draft tube were always less than those of the bubble columns.List of Symbols C mol·dm–3 bulk concentration of dissolved oxygen - C0 mol·dm–3 initial concentration of dissolved oxygen - Ce mol·dm–3 saturated concentration of dissolved oxygen - ¯C dimensionless dissolved oxygen concentration - Dc cm diameter of column - DN cm diameter of the nozzle hole - DT cm diameter of the net draft tube - HL cm static liquid height - HT cm height of the net draft tube - kLa hr–1 volumetric mass transfer coefficient - LT cm length of the net draft tube - tM sec mixing time of the liquid phase - t0 sec mixing time of the liquid phase in a bubble column - VL dm3 volume of the liquid phase - Ug cm/s superficial air velocity  相似文献   

20.
Hydrodynamic characteristics of suspensions of microcarriers used for culturing anchorage dependent animal cells are reported in split-cylinder internal-loop airlift bioreactors. Cell culture media are simulated using salt solutions that duplicate the ionic strengths of typical media. Effects of solids loading (0–30 kg·m–3), microcarrier particle size (150–300×10–6 m diameter) and density (1030–1050 kg·m–3) on gas induced circulation of the slurry, mixing time, gas holdup and gas velocity requirements to attain complete suspension of solids are discussed for two reactors with aspect ratios of 7.6 and 14.5, but equal riser-to-downcomer cross-sectional area ratios of 1.0, aerated at low air flow rates (0–8×10–6 m3·s–1) through a sintered glass sparger with 110×10–6 m diameter pores. The study covers the ranges of solids concentrations, types, densities, particle sizes and aeration rates that are of relevance in animal cell culture applications.Airlift bioreactors displayed suitable hydrodynamic characteristics for potentially supporting anchorage dependent cell cultures on microcarriers at carrier loadings similar to those that are currently used in stirred tank bioreactors. The minimum gas flow rates and the induced liquid circulation rates necessary to achieve and maintain suspension of the heaviest and the largest microcarriers were well within practicable limits, limits which have been shown to be withstood by animal cells in non-anchorage dependent suspension culture in airlift bioreactors. No floatation problems were encountered with the carriers, nor was sedimentation a problem so long as the identified minimum suspension criteria were met. Chisti's liquid circulation equation, originally intended for two-phase flow, applied to the three-phase gas-liquid-microcarrier systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号