首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plants can adapt to grazing environments by developing defensive traits, such as spines and toxins, or having a small phenotype, such as short and prostrate growth forms. This study examined facilitative and competitive interactions between species with different types of grazing adaptation. We predicted that large species with defensive traits sometimes protect grazing-adapted species without defensive traits from herbivores, but competitively suppress them overall. We conducted an experiment using fences and removals of an unpalatable plant in the long-term deer grazing habitat of Nara Park in Nara, Japan. We evaluated the seasonal variations in the facilitative and competitive effects of a defensive perennial, Urtica thunbergiana, on the growth, survival, reproduction, and final fitness of a small palatable annual species, Persicaria longiseta, during a growing season. The populations of the two species in the park have adapted to the grazed habitat by increasing the density of stinging hairs (Urtica) and developing inherently short shoots and small leaves (Persicaria). We found that Urtica individuals had facilitative effects on the growth of Persicaria individuals under grazing during a few periods of the growing season, but had neutral effects on survival and plant fitness throughout the season. In the fenced plots, Urtica had negative effects on the growth, survival, and reproduction of Persicaria. These results suggest that the relative importance of the facilitative and competitive effects of Urtica on Persicaria fluctuated due to seasonal variations in grazing pressure and vegetative productivity. Although well-defended plants often facilitate less-defended species, we conclude that the facilitative effects of Urtica on Persicaria are limited in a plant community with a long history of intensive grazing.  相似文献   

2.
Moretto  A. S.  Distel  R. A. 《Plant Ecology》1997,130(2):155-161
The argument that selective grazing leads to competitive replacement of palatable grasses by unpalatable grasses is based upon the assumption that the competitive ability of the palatable species is higher than the one of unpalatable species in the absence of grazing. In order to test this hypothesis we have compared the competitive ability of Stipa clarazii (palatable) and S. trichotoma (unpalatable) under field conditions, and S. clarazii and S. gynerioides (unpalatable) under greenhouse conditions. The three species are native to a temperate semi-arid grassland of central Argentina. In the field experiment, plants of both species were grown either independently or in pairs (palatable + unpalatable), protected from grazing. Shoot and seed production were measured at the end of the growing seasons of 1993, 1994 and 1995. In the greenhouse experiment, plants of both species were grown in pots, either in monoculture or in mixture, under conditions of high and low water and mineral nutrient availability. Total biomass and seed production were measured at the end of the experimental period. In both experiments the presence of the unpalatable species did not affect (P < 0.05) the productive responses of the palatable species. On the contrary, the presence of the palatable species significantly reduced (P < 0.05) the productive responses of the unpalatable species. Our results support the assumption, on which most interpretations of floristic changes induced by grazing are based, that the competitive ability of palatable grasses is higher than the one of unpalatable grasses in the absence of grazing.  相似文献   

3.
Consumer-facilitated invasions have been proposed as an alternative mechanism to direct competitive exclusion to explain the replacement of native plants by exotics. In a factorial field experiment manipulating competition from the exotic plant Alliaria petiolata and herbivory by exotic mollusks, we documented that mollusk herbivory significantly reduced the survival of two species of native palatable plants, but found minimal direct herbivore effects on less palatable species, including the invasive A. petiolata. These effects were evident after one growing season on younger juvenile plants of Aster cordifolius, but only after two growing seasons on older transplants of the same species, suggesting a greater vulnerability of young plants. In contrast to our expectations, A. petiolata competition alone had no effect on any of the six native species we tested. However, competition from A. petiolata did affect the survival of the most palatable native plant when mollusks were also present. While not significant for any other single species, this same pattern was observed for three of the five remaining native species tested. The selective grazing on palatable plants that we document provides novel evidence contributing to our understanding of observed shifts in the forest herbaceous layer towards the dominance of exotic plants and unpalatable species. More broadly, our results highlight the importance of the interactive effect of consumers and inter-specific competition in forest understories via its contribution to differential survival among regenerating species.  相似文献   

4.
In this study, we made an attempt to reveal how competition intensity from established plants impacts on palatable and unpalatable grass seedlings recruitment, in a natural mesic grassland of central Argentina. Our objective was to assess the seedling recruitment of a palatable species (Chascolytrum subaristatum) and an unpalatable species (Nassella trichotoma) in microsites differing in competition intensity from established plants. Identity (C. subaristatum and N. trichotoma) and defoliation severity were used as surrogate for competition intensity. In March 2017, we permanently marked established individuals of N. trichotoma and C. subaristatum and placed two circular plots adjacent to each individual. In one plot we added seeds of N. trichotoma and in the other seeds of C. subaristatum. After seeding, established plants were randomly assigned to one of three level of defoliation: without defoliation, low defoliation severity and high defoliation severity. From April to November 2017 (i.e. over a complete annual growing cycle), we measured seedling density, recruitment and growth. Our results supported the hypothesis that seedlings of palatable grasses are more competitive than seedlings of unpalatable grasses. Seedling of the palatable grass C. subaristatum recruited successfully regardless the intensity of competition from established plants, whereas seedlings of the unpalatable grass N. trichotoma recruited better under low competitive pressure from established plants. Our results suggest that the availability of microsites with low competitive pressure from the established vegetation, created by selective grazing of palatable grasses, promotes the recruitment of unpalatable grass seedlings. This mechanism may contribute to the species replacement process commonly observed in heavy grazed grasslands.  相似文献   

5.
The role of unpalatable plant species as biological antiherbivore refuges for palatable species is well-documented at community level particularly in harsh environments. In productive sub-humid temperate grassland subjected to domestic grazing, we examined the protective effect of Eryngium horridum on plant community structure and floristic composition, and evaluated whether these changes impacted on a number of morphological traits of grasses, related to grazing resistance. We also investigated, for a palatable grass species (Stipa neesiana) the existence of morphological differences between protected and unprotected plants and if this eventual variation was either plastic or genetic. The study consisted of a field survey where we compared paired patches, with and without E. horridum, and a greenhouse experiment where we evaluated individuals of S. neesiana coming from both patch types over a 11 months period. Patches dominated by E. horridum had lower richness and cover of forbs than patches without the forb, and similar richness but greater cover of cool-season tussock palatable grasses, which suggests a protective role on the latter. Grasses in these patches also had longer blades and sheaths and lower specific leaf area. The morphological differences of S. neesiana individuals collected from both patch types disappeared after 11 months growth in a common environment which revealed significant phenotypic plasticity in this species. These results suggest the existence of plant-to-plant facilitation in a productive ecosystem not only at community level, through changes in species richness and the promotion of palatable grasses, but also at population level, through plastic changes in aboveground morphological traits. Both facilitation and plasticity, would contribute to the persistence of threatened palatable grasses in the heavy grazed productive ecosystems.  相似文献   

6.
Rousset  Olivier  Lepart  Jacques 《Plant Ecology》2003,165(2):197-206
Most studies on the importance of the neighbourhood on a plant's risk ofherbivory have focused on palatable plants and how they are protected byunpalatable neighbours. This study examined the grazing intensity of arelatively unpalatable shrub, Buxus sempervirens, indifferent neighbours. Exactly 2683 plants of Buxussempervirens (including 172 controls) were sampled in 12 enclosedpastures belonging to 4 sheep farms. The enclosures were grazed at 3 differentseasons (spring, summer and autumn). Plants were divided in 4 age/hight classes(first year, < 4 cm, 4–10 cm, 10–40cm) and into 8 neighbourhoods. The first of these wascharacterisedby the absence of any plants within a radius of 5 cm around theBuxus individual and the 7 others by the identity of thedominant species in contact with the Buxus plant. Theintensity of grazing on the neighbouring plants were also recorded. At the endof one year's monitoring, 26.2% of Buxus sempervirensplants had been grazed. The proportion of plants grazed was significantlyhigherin spring than in the other two seasons. It decreased with increasing plantage.It was higher in neighbourhoods that were intensively grazed than in those withlight grazing. The proportion grazed in the absence of a neighbour plant wasintermediate between the previous two. The probability of a plant of aninvadingspecies being grazed is influenced by factors other than its life-historytraits. Some neighbourhoods consisting of unpalatable plants facilitate theestablishment of Buxus sempervirens by protecting theyoungplants from grazing, whereas other highly palatable neighbourhoods are readilygrazed by sheep, thus indirectly increasing the proportion of Buxussempervirens that are grazed. The young and short (< 4cm in height) Buxus plants, which are lessrecognisable by sheep, are most sensitive to the impact of grazing.  相似文献   

7.
Selective herbivory of palatable plant species provides a competitive advantage for unpalatable plant species, which often have slow growth rates and produce slowly decomposable litter. We hypothesized that through a shift in the vegetation community from palatable, deciduous dwarf shrubs to unpalatable, evergreen dwarf shrubs, selective herbivory may counteract the increased shrub abundance that is otherwise found in tundra ecosystems, in turn interacting with the responses of ecosystem carbon (C) stocks and CO2 balance to climatic warming. We tested this hypothesis in a 19‐year field experiment with factorial treatments of warming and simulated herbivory on the dominant deciduous dwarf shrub Vaccinium myrtillus. Warming was associated with a significantly increased vegetation abundance, with the strongest effect on deciduous dwarf shrubs, resulting in greater rates of both gross ecosystem production (GEP) and ecosystem respiration (ER) as well as increased C stocks. Simulated herbivory increased the abundance of evergreen dwarf shrubs, most importantly Empetrum nigrum ssp. hermaphroditum, which led to a recent shift in the dominant vegetation from deciduous to evergreen dwarf shrubs. Simulated herbivory caused no effect on GEP and ER or the total ecosystem C stocks, indicating that the vegetation shift counteracted the herbivore‐induced C loss from the system. A larger proportion of the total ecosystem C stock was found aboveground, rather than belowground, in plots treated with simulated herbivory. We conclude that by providing a competitive advantage to unpalatable plant species with slow growth rates and long life spans, selective herbivory may promote aboveground C stocks in a warming tundra ecosystem and, through this mechanism, counteract C losses that result from plant biomass consumption.  相似文献   

8.
Current conceptual models predict that an increase in stress shifts interactions between plants from competitive to facilitative; hence, facilitation is expected to gain in ecological importance with increasing stress. Little is known about how facilitative interactions between plants change with increasing biotic stress, such as that incurred by consumer pressure or herbivory (i.e. disturbance sensu Grime). In grazed ecosystems, the presence of unpalatable plants is reported to protect tree saplings against cattle grazing and enhance tree establishment. In accordance with current conceptual facilitation-stress models, we hypothesised a positive relationship between facilitation and grazing pressure. We tested this hypothesis in a field experiment in which tree saplings of four different species (deciduous Fagus sylvatica, Acer pseudoplatanus and coniferous Abies alba, Picea abies) were planted either inside or outside of the canopy of the spiny nurse shrub Rosa rubiginosa in enclosures differing in grazing pressure (low and high) and in exclosures. During one grazing season we followed the survival of the different tree saplings and the level of browsing on these; we also estimated browsing damage to the nurse shrubs. Shrub damage was highest at the higher grazing pressure. Correspondingly, browsing increased and survival decreased in saplings located inside the canopy of the shrubs at the high grazing pressure compared to the low grazing pressure. Saplings of both deciduous species showed a higher survival than the evergreens, while sapling browsing did not differ between species. The relative facilitation of sapling browsing and sapling survival – i.e. the difference between saplings inside and outside the shrub canopy – decreased at high grazing pressure as the facilitative species became less protective. Interestingly, these findings do not agree with current conceptual facilitation-stress models predicting increasing facilitation with abiotic stress. We used our results to design a conceptual model of facilitation along a biotic environmental gradient. Empirical studies are needed to test the applicability of this model. In conclusion, we suggest that current conceptual facilitation models should at least consider the possibility of decreasing facilitation at high levels of stress.  相似文献   

9.
We report evidence of hierarchical resource selection by large herbivores and plant neighbouring effects in a Mediterranean ecosystem. Plant palatability was assessed according to herbivore foraging decisions. We hypothesize that under natural conditions large herbivores follow a hierarchical foraging pattern, starting at the landscape scale, and then selecting patches and individual plants. A between- and within-patch selection study was carried out in an area formed by scrubland and pasture patches, connected by habitat edges. With regard to between-patch selection, quality-dependent resource selection is reported: herbivores mainly consume pasture in spring and woody plants in winter. Within-patch selection was also observed in scrub habitats, influenced by season, relative patch palatability and edge effect. We defined a Proximity Index (PI) between palatable and unpalatable plants, which allowed verification of neighbouring effects. In spring, when the preferred food resource (i.e. herbs) is abundant, we observed that in habitat edges large herbivores basically select the relatively scarce palatable shrubs, whereas inside scrubland, unpalatable shrub consumption was related to increasing PI. In winter, a very different picture was observed; there was low consumption of palatable species surrounded by unpalatable species in habitat edges, where the latter were more abundant. These outcomes could be explained though different plant associations described in the literature. We conclude that optimal foraging theory provides a conceptual framework behind the observed interactions between plants and large herbivores in Mediterranean ecosystems.  相似文献   

10.
The Wiegand and Milton (1996) simulation model predicts that vegetation dynamics in arid shrublands are characterized by event‐driven stochasticity (weather events), and demographic inertia (persistence of a species in a community) that lead to a lagged response in vegetation compositional change. Slow plant growth is one of the mechanisms driving slow vegetation change. We test this model at the same location (Tierberg Long‐term Ecological Research site) on which the model was based. Three dwarf shrub species, differing in palatability, were tracked over 25 years (1988–2014) at two levels of the past herbivory (pre‐1960) and three levels of the present herbivory (post‐1988). In the period between 1960 and 1988, all sites were grazed at the recommended agricultural stocking rate. For each species, plant density and a number of size attributes (basal diameter, height, canopy area) were surveyed. Analyses using a two‐way Analysis of Covariance (ANCOVA) took initial starting size into consideration. As the model predicted, event‐driven stochasticity (rainfall) resulted in an increase in density of the smaller size classes following a single large recruitment event across all grazing regimes for the palatable and unpalatable species. Size‐class distribution curve types remained unchanged illustrating that population demography remains unaffected for long periods and responses are slow (lagged response). Slow plant growth was evident in that there were no changes in height, canopy area, or density under present grazing regimes over the 25‐year period. Palatable species had a reduced canopy area and density compared to unpalatable species. Our findings provide empirical evidence supporting the predictions of the Wiegand and Milton (1996) model, notably event‐driven stochasticity, demographic inertia, and a lagged response in vegetation change in arid shrublands. In addition, our results support the model assumption of the significance of slow growth in long‐lived plant species and the influence of grazing regime.  相似文献   

11.
Native populations of perennial grasses subjected to heavy grazing are typically shorter and more prostrate than ungrazed or lightly defoliated ones. However, it is often difficult to find out whether the morphological modifications are the result of genetic differentiation or phenotypic plasticity. Piptochaetium napostaense (Speg.) Hack. is a native perennial cool-season palatable grass with a dwarf form abundant in the areas subjected to heavy grazing. In this study, we tried to determine whether the populations with different grazing histories are genetically differentiated. We considered three different grazing conditions: enclosure (prevented from grazing during 20 years), livestock grazing, and burrow (heavily grazed by cattle and a wild rodent herbivore, the vizcacha). Isozyme analyses were carried out in order to assess the genetic variability of the populations under study. We further studied the progeny of plants with different grazing histories to determine whether the morphological differences are transmitted to the next generation. Seedlings obtained from seeds belonging to enclosure and burrow were grown in the greenhouse and their vegetative and reproductive response under different water and nutrient availability levels were recorded. From the isozymes analyses we found low levels of genetic variation in the populations studied, with an average of 20.5% polymorphic loci, 1.2 alleles per locus and 0.015 mean expected heterozygosity. From the total genetic diversity, only 1.4% was due to differences among population. In addition, either enclosure or burrow populations had the same growth and reproductive response over treatments differing in water and nutrient levels. The morphological differentiation among plants with different grazing histories appears to be the outcome of a phenotypically plastic response of adapted genotypes.  相似文献   

12.
Question: We studied the interactive effects of grazing and dwarf shrub cover on the structure of a highly diverse annual plant community. Location: Mediterranean, semi‐arid shrubland in the Northern Negev desert, Israel. Methods: Variation in the biomass and plant density of annual species in the shrub and open patches was monitored during four years, inside and outside exclosures protected from sheep grazing, in two contrasting topographic sites: north and south‐facing slopes that differed in their dominant dwarf shrubs species: Sarcopoterium spinosus and Corydothymus capitatus, respectively. Results: Above‐ground biomass, density and richness of annual species were lower under the canopy of both shrub species compared to the adjacent open patches in the absence of grazing. Grazing reduced the biomass of annuals in open patches of both topographic sites, but not in the shrub patches. On the north‐facing slope, grazing also reduced plant density and richness in the open patches, but increased plant density in the shrub patches. At the species level, various response patterns to the combined effects of grazing and patch type were exhibited by different annuals. Protection against the direct impacts of grazing by shrub cover as well as species‐specific interactions between shrubs and annuals were observed. A conceptual mechanistic model explaining these interactions is proposed. Conclusion: In semi‐arid Mediterranean shrublands grazing and dwarf shrub cover interact in shaping the structure of the annual plant community through (1) direct impacts of grazing restricted to the open patches, (2) species‐specific facilitation/ interference occurring in the shrub patches and (3) subsequent further processes occurring among the interconnected shrub and open patches mediated through variation in seed flows between patches.  相似文献   

13.
Plants of low palatability often serve as biotic refuges from grazing to palatable plants. Evidence for this facilitation comes from cases where the interacting species have different life form, which may minimize competition. Protected plants act as remnant seed sources that may maintain the palatable populations locally viable through mass effects. Here, we assess (1) the spatial association between a highly palatable Patagonian grass (Bromus pictus) and less preferred tussock grasses, (2) the role played by seed sources in maintaining the population in the face of heavy grazing by sheep, and (3) the facilitative and competitive components of the interaction. We quantified B. pictus density and its distance to nearest tussocks inside and outside a grazing exclosure. We also considered different distances from the exclosure, both leeward and windward, because strong westerly winds may be critical for dispersal. Additionally, we quantified several attributes of protected and unprotected B. pictus plants with and without grazing. Density of B. pictus was about 20 times greater inside the exclosure than outside. However, this difference was less pronounced in the leeward vicinity of the exclosure than in the windward one, which suggests a mass effect. B. pictus was significantly associated to less palatable tussocks, and the association became stronger under grazing and as distance from the exclosure edge increased. Protection under grazing was associated with a significant increase in plant biomass, height, tiller number, and panicle number, whereas protection in the absence of grazing, which could evidence competition, resulted in reductions of tiller number and panicle number, and an increase of height. These results suggest that in areas under grazing pressure on palatable grasses, other less palatable grasses may provide a protection from grazing that outweighs competitive effects. Such protection may generate small-scale mass effects that maintain the population at relatively high density.  相似文献   

14.
Summary Interactions among environmental stresses, plant defensive characteristics, and plant nutrient status may significantly affect an alga's susceptibility to herbivores. Following desiccation, the palatable seaweed Gracilaria tikvahiae was less susceptible to grazing by the sea urchin Arbacia punctulata while the unpalatable alga Padina gymnospora became more susceptible. Increased grazing on desiccated Padina appeared to result from a loss of chemical defenses following desiccation. Palatable plants treated with organic extracts from desiccated Padina plants were consumed at more than twice the rate of plants treated with extracts from undesiccated plants. Increased susceptibility of Padina did not correlate with changes in protein content of the alga; reduced grazing on desiccated Gracilaria was associated with a decrease in protein content. When Padina was grazed by Arbacia or mechanically damaged to mimic urchin grazing, its susceptibility to Arbacia decreased within 1 to 5 days. These results demonstrate that history of physical or biological stress may affect a plant's susceptibility to herbivory. We hypothesize that urchins cue primarily on attractiveness features (e.g. nutrient content) of highpreference algae and deterrent features (e.g. chemical defenses) of low-preference algae. Stresses may therefore increase, decrease, or not affect a plant's susceptibility to herbivory depending upon the primary feeding cues used by the herbivore, the defensive mechanisms used by the plant, and the way these are altered by various environmental stresses.  相似文献   

15.
Water points provide excellent sites for studying overgrazing effects on plant communities in dry areas. Distance from water can be considered like a surrogate of grazing pressure being high near the water and low away from it. The main aim of this study is to investigate overgrazing effects on acceptability of fodder plants along a grazing gradient around three natural watering points. To achieve this goal, we classified spontaneous plants according to their acceptability degree and we followed their cover, richness and density as well as the grazing value along a grazing gradient around these wells, using phyto-ecological studies during the spring 2004 and 2006. Main results show that very palatable plants (mainly constituted by annuals) are more dominant in both the closed and the more disturbed transect areas around wells. The unpalatable plants dominate sites with moderate disturbance around wells. Ligneous palatable species obviously have a lower degree of disturbance. During the studied seasons the grazing gradient around wells 1 and 2, the oldest ones, seemed to exert a feedback upon the grazing intensity.  相似文献   

16.
Todd  S.W.  Hoffman  M.T. 《Plant Ecology》1999,142(1-2):169-178
Changes in plant species richness and community composition were investigated across a fence separating heavily grazed communal and lightly grazed commercial farming systems in Namaqualand, South Africa. No significant differences in plant species richness between communal and commercial farming systems were detected either locally within individual plots or overall across all plots. Within-plot, richness of species tolerant of grazing, such as annuals and geophytes, has increased, while the richness of large palatable shrub species has decreased on the communal rangeland. In terms of plant cover, species' responses to grazing were strongly associated with growth form. Annuals and geophytes formed the majority of grazing increasers, while large, presumably palatable, shrubs and leaf succulents were characteristic grazing decreasers. An investigation into population processes of five shrub species revealed that heavy grazing on the communal rangeland has resulted in: reduced size of palatable shrub species; reduced flower production and seedling recruitment of palatable species; increased density and recruitment of the unpalatable shrub, Galenia africana. Reductions in shrub volume, reproductive output and seedling recruitment were most marked in the palatable shrub Osteospermum sinuatum and were in the order of 90%. The results are further discussed in terms of their relevance to rangeland dynamics and the current land use practices of the region.  相似文献   

17.
Associational resistance and shared doom: effects of epibiosis on herbivory   总被引:7,自引:0,他引:7  
Martin Wahl  Mark E. Hay 《Oecologia》1995,102(3):329-340
The potential for spatial associations between palatable and unpalatable plant species to reduce herbivore pressure on the palatable species has been described as associational resistance, associational refuge or associational defense for numerous terrestrial and marine communities. One of the closest associations between species-epibiosis-has not been thoroughly investigated in this regard. In this study we evaluated how different associations between host seaweeds and epibiotic plants and animals influenced the movement of an omnivorous sea urchin (Arbacia punctulata) to the host and subsequent feeding on the host. A. punctulata showed clear preferences when given pairwise choices between 12 prey species (3 animals, 9 algae). These preferences were consistent and allowed us to rank the six epibiont species and six host species linearly from least to most preferred by A. punculata. Most host-epibiont associations dramatically changed urchin preference, increasing or decreasing urchin grazing on fouled hosts as compared to clean conspecifics. Herbivory on the host increased when the epibiont was more preferred, and decreased when it was less preferred than the unfouled host alga. Taking the host species as a point of reference, we classified epibiosis-caused decrease in herbivory as associational resistance, while epibiont-caused increases in herbivory were defined as shared doom. These epibiont-host-herbivore interactions could select for hosts that facilitate the growth of certain low preference epibionts on their surfaces in situations where the resulting decreases in herbivory would offset the various negative effects of being fouled. In contrast, in situations where herbivores are common, the negative effects of being fouled by palatable epibionts may be much greater than is generally assumed. In our assays, unpalatable hosts fouled by palatable epibionts became much more attractive to urchins and rose several ranks on the urchins' preference hierarchy.  相似文献   

18.
Alpine plants of the eastern Qinghai-Tibetan plateau (Sichuan, China) are developed under long-lasting grazing by wild and domestic yaks. Among morphological features of plants, life forms may reflect their adaptation to grazing. We studied life-form composition of four typical communities within the alpine belt (3930–3960 m a.s.l.) subjected to grazing of various intensity: alpine fen (heavily grazed), alpine shrub meadow (heavily grazed), Spiraea alpina thicket (grazed), and Rhododendron thicket (practically not grazed). The following morphological traits were studied: (1) life form according to Raunkiaer, (2) life form according to Serebryakov, (3) canopy structure, and (4) rate of lateral spreading. We derived life-form spectra based on (1) the number of species per life form and (2) the cumulative abundance of species which have the same life form. One-way ANOVA and nonparametric ANOVA were run to test for significance of differences between spectra. The studied communities differed significantly by the proportion of different life forms. The main life forms are caudex and short rhizome hemicryptophytes, nonclonal species, or species with a low rate of lateral spreading. Therophytes made up 10–11% of the communities except in Rhododendron thickets, where such were absent. These life forms can indicate grazing in the study area.  相似文献   

19.
Natural disturbances such as fires, windstorms, floods, and herbivory often act on plant communities, affecting their structure and the abundance and composition of their species. Most research has focused on the effects of single disturbances on plant communities whereas the synergistic effects of several disturbances have received less attention. In this study, we evaluated how timing and severity of tree mortality modified plant use by introduced deer and early post-mortality successional trajectories in northern Patagonian conifer forests. We sampled understory composition and deer use in Austrocedrus chilensis (ciprés de la cordillera) forest stands undergoing varying timing and severity of forest mortality as reconstructed using dendroecological techniques. In addition, we evaluated the effect of fallen logs on plant composition and deer use of plants by monitoring areas of massive dieback where fallen logs had been removed for fire hazard reduction, and nearby control areas not subjected to such removal. Stepwise regression analyses showed that history and severity of tree mortality strongly influence plant composition and deer use of plants. For deer use (with pellet counts and browsing index as response variables), results showed a positive relationship with degree of stand mortality and a negative relationship with cover of fallen logs. Similarly, cover of unpalatable shrub species was explained by canopy mortality history, whereas cover of palatable shrub species was positively associated with severity of canopy mortality. In areas where fallen logs had been removed, pellet counts were six times higher than those in control areas. Though total shrub species cover was similar between log removal and control areas, proportion of unpalatable shrubs increased in areas where fallen logs had been removed. In conclusion, deer use of plants was strongly limited by tall fallen logs, allowing palatable species to establish and grow. Fallen log removal accelerated deer entrance and changed understory composition toward more browse-resistant and unpalatable species. These results underscore the importance of considering the dynamics (timing, severity, and extent) of fallen woody debris influencing understory herbivory and post-disturbance succession. In addition, experimental results underpin the importance of maintaining snags and large woody debris in disturbed landscapes where salvage logging is a routine procedure.  相似文献   

20.
In contrast to terrestrial systems, few positive plant-plant associations have been recorded in tropical reef environments. This study, conducted at Carrie Bow Cay, Belize during 28 March–10 April 1984, provides the first documentation of herbivore escapes for natural combinations of palatable and unpalatable marine plants. For example, there was a highly significant association of several macrophyte taxa (Laurencia poitei, Dictyota spp., Amphiroa fragilissima, Cladophoropsis macromeres, Galaxaura cylindrica, rhodophycean turf) within a 2.0-cm radius of the herbivore-resistant brown alga Stypopodium zonale. Almost twice as many taxa occurred within 10 cm of S. zonale as within 10 cm of an equal number of random Stypopodium-free points, and there were no algal species negatively associated with S. zonale. The association of A. tribulus, L. poitei, Digenia simplex, rhodophycean turf, and Jania adherens with S. zonale provided them a fourfold greater survivorship per 48 h in the presence of grazing activity by fishes (mainly Acanthuridae and Scaridae). Reduced herbivory by fishes on macroalgae associated with S. zonale was not solely a consequence of its structural aspect. Losses of the palatable alga Acanthophora spicifera were significantly greater for thalli spatially remote (30 and 60 cm) from either a real or simulated Stypopodium; however, losses of A. spicifera adjacent to actual Stypopodium plants were significantly less than the losses next to models. The inter-relationships studied here, where an abundant and well-defended plant provides a significant refuge habitat for at least five relatively edible macroalgae, clearly facilitates the survival of certain taxa in the reef system and concomitantly enhances the within habitat diversity. Our findings also suggest an interaction counter to the process of competitive exclusion, since the single predominant plant has a positive rather than negative net effect on the abundances of other species that utilize the same general resources (e.g., light, space, nutrients).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号