首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
High concentrations of certain amino acids are known to affect hormonal secretion, immune function, electrolyte balance or metabolic functions. However, there is a lack of knowledge regarding the molecular mechanisms responsible for these effects. We showed that, as well as spermidine transport, the activity of ornithine decarboxylase (ODC), the first and rate-limiting enzyme in polyamine biosynthesis, is decreased in human colon adenocarcinoma cells, Caco-2, following a 4-h supplementation with one of the two polyamine precursor amino acids, L-arginine or L-methionine. Dose-response assays indicated that the inhibitory effect of supplemental L-methionine was stronger than that of supplemental L-arginine. However, it was transient, being even replaced by ODC induction after 8 h, whereas the inhibitory effect of L-arginine lasted for at least 8 h. Unlike L-cysteine, neither L-methionine nor L-arginine could inhibit ODC activity in a crude acellular preparation of the enzyme. The inhibition of ODC activity in cells exposed to L-methionine or L-arginine was due to a decreased abundance of ODC protein without change at the mRNA level and each of these amino acids could counteract ODC induction by a glycine supplement. Contrary to the latter, supplemental L-methionine or L-arginine induced a marked decrease in ODC half-life, concomitantly with an increase in the activity of antizyme, an ODC inhibitory protein. Thus, depending on their nature, amino acids can up- or downregulate ODC activity at the protein stability level.  相似文献   

3.
The xylose isomerase gene from the thermophile Thermus thermophilus was cloned by using a fragment of the Streptomyces griseofuscus gene as a probe. The complete nucleotide sequence of the gene was determined. T. thermophilus is the most thermophilic organism from which a xylose isomerase gene has been cloned and characterized. The gene codes for a polypeptide of 387 amino acids with a molecular weight of 44,000. The Thermus xylose isomerase is considerably more thermostable than other described xylose isomerases. Production of the enzyme in Escherichia coli, by using the tac promoter, increases the xylose isomerase yield 45-fold compared with production in T. thermophilus. Moreover, the enzyme from E. coli can be purified 20-fold by simply heating the cell extract at 85 degrees C for 10 min. The characteristics of the enzyme made in E. coli are the same as those of enzyme made in T. thermophilus. Comparison of the Thermus xylose isomerase amino acid sequence with xylose isomerase sequences from other organisms showed that amino acids involved in substrate binding and isomerization are well conserved. Analysis of amino acid substitutions that distinguish the Thermus xylose isomerase from other thermostable xylose isomerases suggests that the further increase in thermostability in T. thermophilus is due to substitution of amino acids which react during irreversible inactivation and results also from increased hydrophobicity.  相似文献   

4.
Exogenous diamines and polyamines added to rat hepatoma (HTC) cells in culture rapidly decrease ornithine decarboxylase (ODC) activity. Previous evidence has suggested that these amines set either at the level of blocking new enzyme synthesis or by the induction of a non-competitive protein inhibitor, termed antizyme, which complexes with ODC to form an inactive complex. Wth the use of HMOA cells, a recently cloned rat hepatoma cell line that has a greatly stabilized ODC, it has been possible to demonstrate that 10(-5) M of exogenous putrescine blocks the increase in ODC activity, but unlike in the parent HTC cell line, without induction of the antizyme or formation of any inactive ODC-antizyme complex. However, complete blockade of ODC at 10(-2) M putrescine is effected by induction of antizyme and formation of the ODC-antizyme complex, as now evidenced by the isolation of the active enzyme and antizyme components after Sephadex column chromatography in the presence of 250 mM NaCl. These findings indicate clearly that two polyamine-regulatory mechanisms for ODC exist and are separable in this cell line.  相似文献   

5.
This review considers the role of antizyme, of amino acids and of protein synthesis in the regulation of polyamine biosynthesis.The ornithine decarboxylase of eukaryotic ceils and ofEscherichia coli coli can be non-competitively inhibited by proteins, termed antizymes, which are induced by di-and poly- amines. Some antizymes have been purified to homogeneity and have been shown to be structurally unique to the cell of origin. Yet, the E. c o l i antizyme and the rat liver antizyme cross react and inhibit each other's biosynthetic decarboxylases. These results indicate that aspects of the control of polyamine biosynthesis have been highly conserved throughout evolution.Evidence for the physiological role of the antizyme in mammalian cells rests upon its identification in normal uninduced cells, upon the inverse relationship that exists between antizyme and ornithine decarboxylase as well as upon the existence of the complex of ornithine decarboxylase and antizyme in vivo. Furthermore, the antizyme has been shown to be highly specific; its Keq for ornithine decarboxylase is 1.4 x 1011 M-1. In addition, mammalian ceils contain an anti-antizyme, a protein that specifically binds to the antizyme of an ornithine decarboxylase-antizyme complex and liberates free ornithine decarboxylase from the complex. In B. coli , in which polyamine biosynthesis is mediated both by ornithine decarboxylase and by arginine decarboxylase, three proteins (one acidic and two basic) have been purified, each of which inhibits both these enzymes. They do not inhibit the biodegradative ornithine and arginine decarboxylases nor lysine decarboxylase. The two basic inhibitors have been shown to correspond to the ribosomal proteins S20/L26 and L34, respectively. The relationship of the acidic antizyme to other known B. coli proteins remains to be determined.  相似文献   

6.
The antizymes constitute a conserved gene family with at least three mammalian orthologs. As described previously, in a degradation system utilizing rabbit reticulocyte lysate, antizyme 1 (AZ1) accelerates proteasomal ornithine decarboxylase (ODC) degradation, but antizyme 2 (AZ2) does not. To examine the relationship between antizyme structure and function, we further characterized the properties of AZ1 and AZ2 and protein chimeras composed of elements of the two. AZ1 binds to ODC with about a 3-fold higher potency than AZ2, but this cannot account for their distinct degradative activities. The dissimilar degradative capacity of AZ1 and AZ2 is also observed using purified proteasomes. A series of reciprocal AZ1/AZ2 chimeras was used to determine the sequence elements needed to direct ODC degradation. An element contained within amino acids 130-145 of AZ1 is essential for this function. Constructs in which amino acids 130-145 were exchanged between the antizymes confirmed the critical nature of this region. Within this region, amino acids 131 and 145 proved responsible for the functional difference between the two forms of AZ.  相似文献   

7.
The alaS gene encoding the alanyl-tRNA synthetase (AlaRS) from Thermus thermophilus HB8 was cloned and sequenced. The gene comprises 2646 bp, corresponding to 882 amino acids, 45% of which are identical to the enzyme from Escherichia coli . The T. thermophilus AlaRS was overproduced in E.coli , purified and characterized. It has high thermal stability up to approximately 65 degrees C, with a temperature optimum of aminoacylation activity at approximately 60 degrees C, and will be valuable for crystallization. The purified enzyme appears as a dimer with a specific activity of 220 U/mg and k cat/ K M values of 118 000/s/M for alanine and 114 000/s/M for ATP. By genetic engineering a 53 kDa fragment of AlaRS comprising the N-terminal 470 amino acids (AlaN470) was also overproduced and purified. It is as stable as entire AlaRS and sufficient for specific aminoacylation of intact tRNAAla, as well as acceptor stem microhelices with a G3-U70, but not U3-A70, I3-U70 or C3-U70, base pair. The reduced binding strength of such microhelices to AlaN470 enabled, due to the resulting fast exchange of the microhelices between free and complexed states, preliminary NMR analyses of the binding mode and intermolecular recognition.  相似文献   

8.
The biosynthetic pathways for putrescine (Put) in Vibrio parahaemolyticus were delineated by measuring activities of the enzymes which would be involved in its biosynthesis. Experiments with labeled arginine and ornithine revealed that both of these amino acids were converted into Put by intact cells. The activities of three enzymes, arginine decarboxylase (ADC), ornithine decarboxylase (ODC), and agmatine ureohydrolase (AUH), were detected in cell extracts. ADC and ODC of V. parahaemolyticus were similar in the following properties to the corresponding enzymes of Escherichia coli: 1) both decarboxylases showed a pH optimum at 8.25 and required pyridoxal phosphate and dithiothreitol for full activity; 2) while ODC was considerably activated by GTP, ADC was only slightly; 3) both decarboxylases were inhibited by polyamines; 4) ADC was inhibited by difluoromethylarginine, a potent inhibitor of bacterial ADC. However, in contrast to the corresponding enzymes of E. coli, the V. parahaemolyticus ADC showed no requirement for Mg2+, and the AUH was active over a wide pH range of 8.5-9.5 with a maximum at pH 9.0. Furthermore, in all 6 strains tested, the activity of ADC was obviously high compared with that of ODC, and AUH was present with a relatively high activity. Cultivation of these strains at a suboptimal NaCl concentration (0.5%) resulted in a pronounced increase in both ADC and AUH activities. These observations suggest that the important pathway for Put biosynthesis in V. parahaemolyticus is the decarboxylation of arginine by ADC and the subsequent hydrolysis of its product, agmatine, by AUH.  相似文献   

9.
A macromolecular factor that inhibits the activity of the antizyme to ornithine decarboxylase (ODC) was found in rat liver extracts. The factor, 'antizyme inhibitor', was heat-labile, non diffusable and of similar molecular size to ODC. The antizyme inhibitor re-activated ODC that had been inactivated by antizyme, apparently by replacing ODC in a complex with antizyme. Therefore the antizyme inhibitor can be used to assay the amount of inactive ODC-antizyme complex formed in vitro. When assayed by this method, the complex was shown to be eluted before ODC from a Sephadex G-100 column. Significant increase in ODC activity was observed when the antizyme inhibitor was added to crude liver extracts from rats that had been injected with 1,3-diaminopropane to cause decay of ODC activity, suggesting the presence of inactive ODC-antizyme complex in the extracts.  相似文献   

10.
1. In the liver of the frog, Rana negromaculata, the activity of ornithine decarboxylase (ODC) was induced by dietary stimuli and was rapidly lost upon intraperitoneal injection of cycloheximide or putrescine. 2. Frog liver ODC, purified by DEAE-Cellulofine and immunoaffinity column chromatographies, was used in a comparative study with mouse kidney ODC, also purified by the same method. 3. The purified frog ODC showed three bands on SDS-polyacrylamide gel electrophoretic analysis, as confirmed by [3H]alpha-difluoromethylornithine binding. 4. Frog ODC was found to be similar to mouse enzyme in some properties, for example molecular weight, immunoreactivity and inhibition by rat antizyme, except for a slightly higher Km value for ornithine.  相似文献   

11.
DL-Allylglycine causes a marked increase in mouse brain ornithine decarboxylase (ODC) activity. The amount of immunoreactive enzyme protein increases concomitantly with the activity, but the enzyme protein decreases more slowly than that of the activity. The amount of immunoreactive ODC in brain is many hundred times that of the catalytically active enzyme. The fact that mouse brain cytosol contains high amounts of dissociable antizyme (an inactivating protein) indicates the existence of an inactive, immunoreactive ODC-antizyme pool. The total antizyme content does not change markedly, but instead there are significant changes in different antizyme pools. Putrescine concentrations start to increase 8 h after treatment with allylglycine and concomitantly with this increase, antizyme is released to inhibit enzyme activity. These results indicate the involvement of antizyme in the inactivation process of ODC.  相似文献   

12.
13.
L-Cysteine is an important amino acid in terms of its industrial applications. The biosynthesis of L-cysteine in enteric bacteria is regulated through the feedback inhibition by L-cysteine of L-serine O-acetyltransferase (SAT), a key enzyme in L-cysteine biosynthesis. We recently found that L-cysteine is overproduced in Escherichia coli strains expressing a gene encoding feedback inhibition-insensitive SAT. Further improvements in L-cysteine production are expected by the use of SAT with high stability. We report here the sat1 gene encoding SAT of an extreme thermophile, Thermus thermophilus HB8. The sat1 gene was cloned and overexpressed in E. coli cells based on the genome sequence in T. thermophilus HB8. The predicted amino acid sequence consists of 295 amino acids and is homologous to other O-acetyltransferase members. In particular, the carboxyl-terminal region shares approximately 30% identities with SATs found in bacteria and plants, despite showing only about 15% identity in the overall sequence. Enzymatic analysis and an atomic absorption study of the purified recombinant proteins revealed that the enzyme is highly activated by Co(2+) or Ni(2+), and contains Zn(2+) and Fe(2+). These results indicate that the T. thermophilus SAT is a novel type of enzyme different from other members of this protein family.  相似文献   

14.
Ornithine decarboxylase (ODC) catalyzes the decarboxylation of ornithine to putrescine and is the rate-limiting enzyme in the polyamine biosynthesis pathway. ODC is a dimeric enzyme, and the active sites of this enzyme reside at the dimer interface. Once the enzyme dissociates, the enzyme activity is lost. In this paper, we investigated the roles of amino acid residues at the dimer interface regarding the dimerization, protein stability and/or enzyme activity of ODC. A multiple sequence alignment of ODC and its homologous protein antizyme inhibitor revealed that 5 of 9 residues (residues 165, 277, 331, 332 and 389) are divergent, whereas 4 (134, 169, 294 and 322) are conserved. Analytical ultracentrifugation analysis suggested that some dimer-interface amino acid residues contribute to formation of the dimer of ODC and that this dimerization results from the cooperativity of these interface residues. The quaternary structure of the sextuple mutant Y331S/Y389D/R277S/D332E/V322D/D134A was changed to a monomer rather than a dimer, and the K d value of the mutant was 52.8 µM, which is over 500-fold greater than that of the wild-type ODC (ODC_WT). In addition, most interface mutants showed low but detectable or negligible enzyme activity. Therefore, the protein stability of these interface mutants was measured by differential scanning calorimetry. These results indicate that these dimer-interface residues are important for dimer formation and, as a consequence, are critical for enzyme catalysis.  相似文献   

15.
Ornithine decarboxylase (ODC) is regulated by its metabolic products through a feedback loop that employs a second protein, antizyme 1 (AZ1). AZ1 accelerates the degradation of ODC by the proteasome. We used purified components to study the structural elements required for proteasomal recognition of this ubiquitin-independent substrate. Our results demonstrate that AZ1 acts on ODC to enhance the association of ODC with the proteasome, not the rate of its processing. Substrate-linked or free polyubiquitin chains compete for AZ1-stimulated degradation of ODC. ODC-AZ1 is therefore recognized by the same element(s) in the proteasome that mediate recognition of polyubiquitin chains. The 37 C-terminal amino acids of ODC harbor an AZ1-modulated recognition determinant. Within the ODC C terminus, three subsites are functionally distinguishable. The five terminal amino acids (ARINV, residues 457-461) collaborate with residue C441 to constitute one recognition element, and AZ1 collaborates with additional constituents of the ODC C terminus to generate a second recognition element.  相似文献   

16.
Antizyme inhibitor was highly purified from rat liver by using affinity chromatography. It has some structural resemblance to ornithine decarboxylase (ODC), as judged from Mr, immunoreactivity and reversible binding with antizyme. However, unlike hepatic amounts of ODC and ODC-antizyme complex, that of antizyme inhibitor did not show much fluctuation upon putrescine treatment, whereas it decreased as rapidly as ODC decay in the presence of cycloheximide. These results suggested that antizyme inhibitor is an independent regulatory protein rather than a derivative of ODC. Changes in hepatic amounts of antizyme inhibitor, antizyme and ODC upon feeding suggested that antizyme inhibitor may play a role in ODC regulation by trapping antizyme and thereby suppressing ODC degradation. A monoclonal antibody to rat liver antizyme inhibitor was obtained. This antibody was shown to be utilizable for a simple assay of antizyme-inhibitor activity in tissue extracts.  相似文献   

17.
Ornithine decarboxylase (ornithine carboxy lyase; EC 4.1.1.17) (ODC) from Tetrahymena thermophila was purified 6,300 fold employing fractionated ammonium sulfate precipitation, gel permeation chromatography on Sephadex G-150, ion exchange chromatography on DEAE-Sepharose CL-6B, and preparative isoelectric focussing. The product obtained in 24% yield was a preparation of the specific activity of 10,200 nmol CO2.h-1.mg-1. The purified enzyme was rather stable at 37 degrees C (14% loss of activity within 1 h). The molecular and catalytic properties of this enzyme were investigated. The isoelectric point was 5.7 and the molecular weight (MW) was estimated to be 68,000 under nondenaturing conditions. The pH optimum was between 6.0 and 7.0, the Km for the substrate L-ornithine was 0.11 mM, and the Km for the cofactor pyridoxal 5-phosphate was 0.12 microM; the product of ODC catalysis, putrescine, was a poor inhibitor with an estimated Ki of about 10 mM. The enzyme was inhibited competitively by D-ornithine with a Ki of 1.6 mM and by alpha-difluoromethylornithine with a Ki of 0.15 mM. The latter one, an enzyme activated irreversible inhibitor of mammalian ODC, inactivated the enzyme from T. thermophila at high concentrations with a half life time of 14 min. Other basic amino acids, e.g. L-lysine, L-arginine, and L-histidine, were neither substrates nor inhibitors of the enzyme, as were the diamines 1,3-diaminopropanol and cadaverine, the polyamines spermidine and spermine and the cosubstrate analogues pyridoxal and pyridoxamine-5-phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Ornithine decarboxylase (ODC) is a key enzyme in the biosynthesis of polyamines. ODC-antizyme inhibitors (AZINs) are homologous proteins of ODC, devoid of enzymatic activity but acting as regulators of polyamine levels. The last paralogue gene recently incorporated into the ODC/AZINs family is the murine Gm853, which is located in the same chromosome as AZIN2, and whose biochemical function is still unknown. By means of transfection assays of HEK293T cells with a plasmid containing the coding region of Gm853, we show here that unlike ODC, GM853 was a stable protein that was not able to decarboxylate l-ornithine or l-lysine and that did not act as an antizyme inhibitor. However, GM853 showed leucine decarboxylase activity, an enzymatic activity never described in animal cells, and by acting on l-leucine (Km = 7.03 × 10? 3 M) it produced isopentylamine, an aliphatic monoamine with unknown function. The other physiological branched-chain amino acids, l-valine and l-isoleucine were poor substrates of the enzyme. Gm853 expression was mainly detected in the kidney, and as Odc, it was stimulated by testosterone. The conservation of Gm853 orthologues in different mammalian species, including primates, underlines the possible biological significance of this new enzyme. In this study, we describe for the first time a mammalian enzyme with leucine decarboxylase activity, therefore proposing that the gene Gm853 and its protein product should be named as leucine decarboxylase (Ldc, LDC).  相似文献   

19.
Antizyme is a polyamine-induced cellular protein that binds to ornithine decarboxylase (ODC), and targets it to rapid ubiquitin-independent degradation by the 26S proteasome. However, the metabolic fate of antizyme is not clear. We have tested the stability of antizyme in mammalian cells. In contrast with previous studies demonstrating stability in vitro in a reticulocyte lysate-based degradation system, in cells antizyme is rapidly degraded and this degradation is inhibited by specific proteasome inhibitors. While the degradation of ODC is stimulated by the presence of cotransfected antizyme, degradation of antizyme seems to be independent of ODC, suggesting that antizyme degradation does not occur while presenting ODC to the 26S proteasome. Interestingly, both species of antizyme, which represent initiation at two in-frame initiation codons, are rapidly degraded. The degradation of both antizyme proteins is inhibited in ts20 cells containing a thermosensitive ubiquitin-activating enzyme, E1. Therefore we conclude that in contrast with ubiquitin-independent degradation of ODC, degradation of antizyme requires a functional ubiquitin system.  相似文献   

20.
A protein inhibiting a protein inhibitor (antizyme) to ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) (ODC), antizyme inhibitor, was purified from the liver cytosol of thioacetamide-treated rats by procedures including antizyme affinity chromatography. Overall purification was roughly estimated to be about 17,000,000-fold and recovery was about 2.4%. The purified preparation showed one major protein band and a faint band corresponding in mobility to molecular weights of 51,000 and 53,500, respectively, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Judging from the ornithine decarboxylase activity of the final preparation, the faint band may be ornithine decarboxylase. The apparent molecular weight of antizyme inhibitor estimated by gel filtration on Sephacryl S-200 was approx. 62,000, indicating that antizyme inhibitor may be composed of a single polypeptide chain. In order to examine the question of whether antizyme inhibitor is a protein derived from ornithine decarboxylase, an inactive ornithine decarboxylase, in an immunotitration study and analysis of the binding to antizyme were investigated. The results indicate that antizyme inhibitor may be a protein distinct from ornithine decarboxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号