首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A flower specific cDNA, tgas118, has been isolated after differential screening of a gib-1 anther cDNA library of Lycopersicon esculentum. The corresponding mRNA was present in all tissues analysed. Northern blot analysis revealed that in wild-type tomato the gene was predominantly expressed throughout flower development, while in the gibberellin (GA)-deficient mutant of tomato (gib-1) the abundance declined. Treatment of the mutant with GA resulted in an accumulation of the tgas118 mRNA within hours in leaf and bud tissues. In the leaf, GA1, GA3 and GA9 were effective in enhancing the expression while GA4 was not. In addition to GA, wounding and dehydration also increased the accumulation of tgas118 mRNA in leaf tissue. In situ hybridization showed that application of 50 ng GA3 bud(-1) induced a similar spatial expression of the tgas118 mRNA in gib-1 buds 24 h post treatment to that found in wild-type flower buds. The deduced TGAS118 protein displays up to 77% similarity with defensins and as its expression is up-regulated by stimuli such as wounding it is proposed that it may play a role in protection against pathogens.  相似文献   

2.
3.
The involvement of gibberellins (GAs) in the regulation of floral stalk elongation and flower development has been studied in tulip. The biological activity of GA4 and GA9, both endogenous in tulip bulb sprouts, and GA1, was tested in vitro on sprouts of cooled and non-cooled tulip bulbs ( Tulipa gesneriana L. cv. Apeldoorn), in the presence or absence of the GA biosynthesis inhibitor paclobutrazol. At early starting dates of incubation, floral stalks from both cooled and non-cooled bulbs hardly showed any elongation in the absence of exogenous GA. Paclobutrazol had no effect on floral stalk elongation, and the response to GAs of sprouts from cooled bulbs was greater than that of sprouts from non-cooled bulbs. At later starts of incubation, considerable floral stalk elongation occurred without GA application. Paclobutrazol inhibited this floral stalk elongation, and the growth of sprouts from both cooled and non-cooled bulbs was stimulated by GA application. The effect of paclobutrazol was reversed by simultaneous application of GA4 or GA9. Application of GA with and without paclobutrazol resulted in the same elongation of the floral stalk, indicating the absence of substantial side effects of the inhibitor. The isolated sprouts did not develop a full-grown flower without the addition of GA. GA4 was more effective than GA9 in stimulating this flower development. The results demonstrate that both sprouts from cooled and non-cooled bulbs are responsive to exogenous GAs in vitro, and may be a site of GA biosynthesis.  相似文献   

4.
The role of gibberellins (GAs) in the induction of parthenocarpic fruit-set and growth by the pat-3/pat-4 genetic system in tomato ( Lycopersicon esculentum Mill.) was investigated using wild type (WT; Cuarenteno) and a near-isogenic line derived from the German line RP75/59 (the source of pat-3/pat-4 parthenocarpy). Unpollinated WT ovaries degenerated but GA3 application induced parthenocarpic fruit growth. On the contrary, parthenocarpic growth of pat-3/pat-4 fruits, which occurs in the absence of pollination and hormone treatment, was not affected by applied GA3. Unpollinated pat-3/pat-4 fruit growth was negated by paclobutrazol, an inhibitor of ent -kaurene oxidase, and this inhibitory effect was negated by GA3. The quantification of the main GAs of the early 13-hydroxylation pathway (GA1, GA8, GA19, GA20, GA29 and GA44) in unpollinated ovaries at 3 developmental stages (flower bud, FB; pre-anthesis, PR; and anthesis, AN), by gas chromatography-selected ion monitoring, showed that the concentration of most of them was higher in pat-3/pat-4 than in WT ovaries at PR and AN stages. The concentration of GA1, suggested previously to be the active GA in tomate, was 2–4 times higher. Unpollinated pat-3/pat-4 ovaries at FB, PR and AN stages also contained relatively high amounts (5–12 ng g−1) of GA3, a GA found at less than 0.5 ng g−1 in WT ovaries. It is concluded that the mutations pat-3/pat-4 may induce natural facultative parthenocarpy capacity in tomato by increasing the concentration of GA1 and GA3 in the ovaries before pollination.  相似文献   

5.
Two flower-specific cDNAs have been isolated after differential screening of an anther cDNA library. This library was constructed 48 h after GA(3) treatment of buds of the GA-deficient gib-1 mutant of tomato. Northern blot analysis during flower development in tomato demonstrated that the expression of both genes is regulated by gibberellins (GAs). Application of GA(3) to developmentally arrested gib-1 flower buds induced new expression of tgas100 mRNA 48 h post-treatment, while an increased accumulation of tgas105 mRNA was found after 8 h. In situ analyses showed the spatial distribution of the expression of both genes within the tomato flower. One of the deduced polypeptides (TGAS105) displays similarities to cysteine-rich extensin-like proteins, while the other (TGAS100) shows significant homology with a stamen-specific gene of Antirrhinum majus. Based on the deduced protein sequences, the possible function of the encoded proteins is discussed.  相似文献   

6.
Endogenous gibberellins (GAs) in corms of Polianthes tuberosa L. (cv. Double) were isolated and identified by high performance liquid chromatography, bioassay and combined capillary gas chromatography-mass spectrometry (GC-MS). Gibberellins A1, A19, A20 and A53 were quantified at the vegetative, early floral initiation and flower development stages. The identification of 13-hydroxylated GAs indicates the presence of the early 13-hydroxylation pathway in P. tuberosa corms. An increase in GA1 and GA20, and a decrease in GA19 levels, coincided with the transition from the vegetative phase to the stages of early floral initiation and flower development. GA53 stayed at constant levels at the 3 different growth stages. The absence of GA1 in vegetative corms and its presence in corms at early floral initiation and flower development stages suggest that GA1 is a causal factor in inducing floral initiation in P. tuberosa . When GA1, GA3, GA4, GA20 and GA32 were applied to corms at the vegetative stage (plants about 5 cm in height), floral initiation was promoted by all of the GAs used, GA32 being the most active. In contrast with the other GAs, GA32 had no effect on stem elongation. Therefore, it is suggested that hydroxylated C-19 GAs play an important role in flower induction in P. tuberosa .  相似文献   

7.
Endogenous gibberellins (GAs) were extracted and purified from apical buds of Eucalyptus nitens (Deane and Maid.) Maid. and the cambial region of E. globulus (Labill.). then analysed by capillary gas chromatography-mass spectrometry. GA1 GA19 GA20 and GA29 were identified by full scan mass spectra. Kovats retention indices and high resolution selected ion monitoring. Using deuterated internal standards. GA1. GA19. GA20 and putative GA29 and GA53 were quantified in the apical buds, while GA4. GA8. GA9 and GA44 were shown to be either absent or present at very low levels. From the cambial region. GA1 and GA20 were quantified at levels of 0.30 ng (g fresh weight)-1 and 8.8 ng (g fresh weight)-1 respectively. These data suggest that the early 13-hydroxylation pathway is the dominant pathway for GA biosynthesis in Eucalyptus .  相似文献   

8.
Plants of Poa pratensis cv. Holt initiate inflorescence primordia when exposed to short days (SD) and low temperature, but require a secondary induction by at least 4 long days (LD) for further inflorescence development and stem elongation. Single or double applications of 10 µg per plant of gibberellins A1, A3, A5 and 16,17‐dihydro A5 (DHGA5) induced inflorescence development in a high proportion of plants in SD, but only if the plants were detillered to a single stem. Exposure to 2 LD cycles did not cause heading and flowering alone but enhanced the effect of exogenous gibberellins (GAs), bringing flowering to 100%. GA5 and DHGA5 were less effective than GA1 and GA3 in SD, especially with double applications, but were more effective than GA1 and GA3 when given together with 2 LD. The GAs had differential effects on vegetative growth and flowering, GA5 and DHGA5 causing much less leaf and stem growth than the other two GAs. Marginal induction, whether by LD or GA application, resulted in a high proportion of spikelets with viviparous proliferation. Thus, whereas GAs are inhibitory to the primary induction by SD, they can replace secondary induction by LD when vegetative growth is limited.  相似文献   

9.
Gibberellins Al (GA1), GA3, GA4, GA9, and after enzymatic hydrolysis of GA-conjugate-like fractions, GA9 and GA15, were identified in shoots of Sitka spruce [ Picea sitchensis (Bong.) Carr.] of different ages by combined gas chromatography-mass spectrometry (GC-MS). The purification and separation of the GAs involved the use of reverse phase and normal phase high performance liquid chromatography (HPLC). The Tan-ginbozu dwarf rice bioassay and binding to antibodies raised against GA1, GA4 and GA9 were used for detection of GA-like substances. The qualitative differences between the three ages of plant material were the presence of GA3 and GA1 in the 48-year-old material and the absence of detectable amounts of GA4 in the same material. This indicates a difference in GA metabolism which may reflect the difference in ability to form reproductive buds.  相似文献   

10.
Short photoperiod induces growth cessation in seedlings of Norway spruce ( Picea abies (L.] Karst.). Application of different gibberellins (GAS) to seedlings growing under a short photoperiod show that GA9 and GA20 can not induce growth. In contrast application of GA, and GA4 induced shoot elongation. The results indicate that 3β-hydroxylation of GA9 to GA4 and of GA20 to GA1 is under photoperiodic control. To confirm that conclusion, both qualitative and quantitative analyses of endogenous GAs were performed. GA1, GA3, GA4, GA7, GA9, GA12, GA15, GA15, GA20, GA29, GA34 and GA51 were identified by combined gas chromatography-mass spectrometry in shoots of Norway spruce seedlings. The effect of photoperiod on GA levels was determined by using deuterated and 14C-labelled GAs as intermal standards. In short days, the amounts of GA9, GA4 and GA1 are less than in plants grown in continuous light. There is no significant difference in the amounts of GA3, GA12, and GA20 between the different photoperiods. The lack of accumulation of GA9 and GA20 under short days is discussed.  相似文献   

11.
Immunomodulation is a means to modulate an organism's function by antibody production to capture either endogenous or exogenous antigens. This method was applied to plants to repress the function of gibberellins (GAs), a class of phytohormones responsible for plant elongation, by anti-bioactive GA antibodies. Two different antibodies were produced in Arabidopsis as single-chain variable fragment (scFv) fused to green fluorescent protein (GFP) with four different subcellular localizations: endoplasmic reticulum (ER), cytosol, apoplastic space or the outer surface of the plasma membrane. When targeting scFv-GFP to ER, plants showed the highest accumulation of scFv-GFP, with binding activity, strong GFP fluorescence in ER-derived compartments and mild but clear GA-deficient phenotypes, including a smaller leaf size, delayed bolting, shorter inflorescence length and decreased germination. Plants expressing scFv-GFP in ER responded to exogenous GA4 and contained 15–40 times greater endogenous GA4 than wild-type plants. They also showed increased gene expression for GA3ox1 , GA20ox1 and GA20ox2 , but decreased expression for GA2ox1 , which are feedback and feedforward regulated by GA signalling, respectively. These results suggest that the level of free functional GA4 decreased when trapped in the ER with scFv to the extent that mild GA-deficient phenotypes were created. A dramatic increase in the total sum of GA4 (free plus scFv-GFP bound) was detected as a result of the up-regulation of GA biosynthesis (feedback regulated), and a decrease in GA4 catabolism as a result of protection by scFv-GFP binding. This study demonstrates that the use of immunomodulation to inhibit the action of bioactive GAs is an effective method of creating GA-deficient plants.  相似文献   

12.
Gibberellins and the floral transition in Sinapis alba   总被引:3,自引:0,他引:3  
The putative role of gibberellins in the transition to flowering was investigated in Sinapis alba , a caulescent long-day (LD) plant. It was observed that: (1) physiological doses of exogenous gibberellins (GA1, GA3, GA9) do not cause the floral shift of the meristem when applied to plants grown in short days but have some positive effect on the flowering response to a suboptimal LD; no inhibition was observed in any case; (2) GA-biosynthesis inhibitors (prohexadione-Ca and paclobutrazol) considerably inhibit stem growth but have some negative effect on flowering only when a suboptimal LD is given; and (3) the floral transition induced by one 22-h LD does not correlate with any detectable change in GA content of the apical bud, of the leaves, and of the phloem exudate reaching the apex. Taken together, these results suggest that GAs do not act as a major signal for photoperiodic flower induction in Sinapis .  相似文献   

13.
Gibberellin levels and cold-induced floral stalk elongation in tulip   总被引:2,自引:0,他引:2  
To investigate the role of gibberellins (GAs) in the cold requirement of tulip ( Tulipa gesneriana L. cv. Apeldoorn), bulbs were dry-stored at 5°C or at 17°C for 12 weeks prior to planting at 20°C. Only precooled bulbs showed rapid sprout growth and developed a full-grown flower. Endogenous GA levels were measured in sprouts and basal plates at the time of planting and in the second week after planting, by combined gas chromatography-mass spectrometry using deuterated internal standards. GA4 was the major gibberellin. while GA1, GA9 and GA34 were present in lower amounts. At the time of planting, sprouts from non-cooled bulbs contained significantly more GA4 and GA1, per sprout than those from precooled bulbs. Hence, there is no direct correlation between rapid sprout growth after planting and high GA levels at planting. In the second week after planting, floral stalks of precooled bulbs contained 2 to 3 times more GA4 and its metabolite GA34 per floral stalk and per g fresh weight than those of non-cooled bulbs. The results are discussed with regard to the role of gibberellins in the cold-induced floral stalk elongation of tulip.  相似文献   

14.
We describe a new mutation, lrs , which reduces internode length in Pisum sativum L. The mutation appears to act by reducing both GA synthesis and the response to GA1. The levels of the 13‐hydroxylated GAs, GA53, GA44, GA19, GA20, GA1, and GA8 in the lrs mutant were greatly reduced compared with the wild‐type. The extent of the reduction in GA1 content in the apical tissues would, at least in part, account for the dwarf phenotype of the mutant. The reduced GA responsiveness of the new mutant was indicated by the inability of applied GA1 to remove the difference in elongation between lrs and LRS plants. The lrs mutant appears to be unique amongst internode length genotypes, possessing characteristics of both GA synthesis and GA response mutants.  相似文献   

15.
16.
GA1, GA8, GA17, GA19, GA20 and GA29 were identified by combined gas chromatography-mass spectrometgry (GC-MS) in immature seeds and pericarp of Lycopersicon esculentum Mill. (tomato). Higher levels of these GAs were present in the seeds than in the pericarp; seeds in addition contained GA15, GA24, GA25, and GA44. Fruits of the Lycopersicon pimpinellifolium Mill. mutant I were smaller and contained lower GA1 concentrations, but higher GA20 concentrations, than those of mutants III and IV. In contrast, differences in fruit size in L. esculentum due to position on the truss did not correlate with GA1 concentration in either the pericarp or seeds.  相似文献   

17.
It has been shown previously that gibberellins (GAs) mediate the phytochrome (Phy) control of cowpea ( Vigna sinensis L.) epicotyl elongation induced by end-of-day (EOD)-far-red light (FR). In the present work, the EOD-FR effect on GA metabolism and GA levels in cowpea has been investigated. GA1, GA8, GA19 and GA20 were identified in epicotyls, and GA1, GA19, GA20 and GA29-catabolite in leaves of 6-day-old cowpea seedlings. The content of GA1 in the epicotyl paralleled the decrease of its growth rate, supporting the hypothesis that this is the GA bioactive in controlling cowpea epicotyl elongation. FR enhanced both the amount of [3H]GA1 in the epicotyl produced from applied [3H]GA20, and that of applied [3H]GA1 that remained unmetabolized in epicotyl explants, suggesting that Phy may regulate the inactivation of GA1. In agreement with this effect of light on GA1 metabolism, the contents of GA1 in the epicotyl remained higher in FR-treated than in R-treated explants. Moreover, in intact seedlings EOD-FR treatment increased both epicotyl elongation and GA1 content in the responsive epicotyl, whereas it was not altered in the leaves. These results show, for the first time, that photostable Phys modulate the stem elongation in light-grown plants by locally controlling the GA1 levels through regulation of its inactivation.  相似文献   

18.
The physiological response of cowpea ( Vigna sinensis L.) epicotyl explants to far‐red light (FR) and its interaction with gibberellins (GAs) have been investigated. The effect of FR and GA1 varied with the age of the seedlings from which the explants were made: for FR, it decreased progressively with age (though the sensitivity of the epicotyls to FR did not change significantly until at least day 11), whereas it remained essentially constant for applied GA1 between days 5 and 9 after sowing. This indicates that the loss of response to FR may be due to a decrease in endogenous GA levels in the epicotyl. For a range of GA1 and GA20 (0.01–1 µg explant−1), both hormones were more active in FR than in R irradiated epicotyls, suggesting that phytochrome may affect GA sensitivity besides GA metabolism. The location of the epicotyl region most sensitive to FR (between 5 and 20 mm below the apex) was different from that to GAs (the upper 10 mm). Nevertheless, FR extended the region responsive to applied GAs, even in paclobutrazol‐treated epicotyls where elongation was due entirely to exogenous GAs. This means that modulation of epicotyl elongation by phytochrome, that occurs in a zone different from though overlapping with the GA‐sensitive subapical zone, is also mediated by GAs. Growth in the most FR‐sensitive region of the epicotyl stimulated by FR or GA1 was due to cell elongation, and in the most GA‐sensitive region to both cell division and elongation. The effect of FR and GA1 was negated by colchicine, indicating that microtubules may be involved in the response to both factors.  相似文献   

19.
The inhibitory effect of gibberellic acid on flowering in Citrus   总被引:3,自引:1,他引:2  
The application of gibberellic acid (GA3) at any time from early November until bud sprouting, resulted in a significant inhibition of flowering in the sweet orange [ C. sinensis (L.) Osbeck] and the Satsuma ( C. unshiu Marc.) and Clementine ( C. reticulata Blanco) mandarins. Two response peaks were evident: the first occurred when the application was timed to the translocation of an unknown flowering signal from the leaves to the buds. The second occurred during bud sprouting, at the time the flower primordia were differentiating. From the pattern of flowering, it appears that the mechanism of inhibition was similar irrespective of the timing of GA3 application. There was an initial reduction in bud sprouting affecting selectively those buds originating leafless inflorescences. An additional inhibition resulted in a reduction in the number of leafy inflorescences with an increase in the number of vegetative shoots, suggesting the reversion of a floral to a vegetative apex. The inhibited buds sprouted readily in vitro but invariably vegetative shoots were formed. A continuous influence of the sustaining branch is necessary to keep the flowering commitment of the buds; irreversible commitment occurs when the petal primordia are well differentiated.  相似文献   

20.
The auxin indole-3-acetic acid (IAA) is known to promote the biosynthesis of active gibberellins (GAs) in barley ( Hordeum vulgare ). We therefore investigated the possibility that this interaction might contribute to the gravitropic response of barley leaf sheath pulvini. Barley plants at the inflorescence stage were gravistimulated for varying times, and the pulvini were then separated into upper and lower halves for quantification of IAA and GAs by GC-MS. Consistent with the Cholodny–Went theory, the lower portion contained more IAA than did the upper portion. This difference was detected as early as 2.5 h after the start of gravistimulation, and bending was also observed at this stage. At later time points tested (6 h and 24 h), but not at 2.5 h or 3 h, the higher auxin content of the lower half was associated with a higher level of GA1, the main bioactive GA in barley. Consistent with that result, the expression of Hv3ox2 , which encodes a key enzyme for the conversion of GA20 to GA1, was higher in the lower side than in the upper, after 6 h. It is suggested that in gravistimulated leaf sheath pulvini, auxin accumulates in the lower side, leading to a higher level of GA1, which contributes to the bending response. Further evidence that GAs play a role in the gravitropic response was obtained from GA-related mutants, including the elongated sln1c mutant, in which GA signalling is constitutive. Pulvinar bending in the sln1c mutant was greater than in the wild-type. This result indicates that in the lower side of the gravistimulated pulvinus, the relatively high level of bioactive GA facilitates, but does not mediate, the bending response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号