首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: In mouse models of retinopathy of prematurity (ROP) inhibitors of vascular endothelial growth factor (VEGF) functions administered systemically completely block retinal neovascularization. In contrast, selective ocular VEGF depletion has achieved an approx. 50% inhibition of retinal neovascular growth. It is unclear whether a more complete inhibition of new blood vessel development can be obtained with an anti-VEGF therapy localized to the eye. Therefore, the objective of the present study was to determine the effect of local anti-VEGF therapy in a different animal model which closely mimics human ROP. METHODS: Rats were exposed to alternating cycles of high and low levels of oxygen for 14 days immediately after birth; thereafter, they were intravitreally injected with an adenoviral vector expressing a secreted form of the VEGF receptor flt-1 (Ad.sflt), which acts by sequestering VEGF. Contralateral eyes were injected with the control vector carrying the reporter gene expressing beta-galactosidase (Ad.betaGal). RESULTS: At the peak of retinal neovascular growth, i.e. post-natal day 21 (P21), we observed up to 97.5% decrease in retinal neovascularization in animals injected with Ad.sflt. At the end of observation (P28), no significant difference in retinal vessel number was detected in both oxygen-injured and normoxic Ad.sflt-treated retinas compared with untreated or Ad.betaGal-treated retinas. CONCLUSION: Adenoviral-mediated sflt-1 gene transfer induces a near-complete inhibition of ischemia-induced retinal neovascularization in rats without affecting pre-existing retinal vessels.  相似文献   

2.
1. The dopaminergic neurotoxin, 6-hydroxydopamine (6-OHDA), was injected intravitreally into the eyes of juvenile (5- to 6-cm) goldfish. 2. Proliferation of rod neuroblasts caused by 6-OHDA (2 micrograms in 2 microliters saline) was detected in retinal wholemounts by immunofluorescence for proliferating cell nuclear antigen (PCNA) 3, 7, 14, 20, or 30 days after injection. 3. The injected dose of 6-OHDA was sufficient to cause permanent loss of dopaminergic interplexiform and serotonergic amacrine cells in the injected eye but not in the contralateral control eye. 4. 6-OHDA increased the density (mm-2) of PCNA-ir cells in the outer nuclear layer (ONL) of the injected eye to 2.65 times the initial density 20-30 days after injection, and it increased the density of PCNA-ir cells in the ONL of the contralateral, untreated eye, equally but after a delay of less than or equal to 7 days with respect to the injected eye. 5. 6-OHDA also increased the density of PCNA-ir cells in the inner nuclear layer (INL) to greater than 20 times the initial density 7 days after injection, followed by a rapid decline almost to control levels by 14 days after injection. 6. The sequence of responses to 6-OHDA, with PCNA-ir cells first scattered in the ONL and then clustered in the INL, suggests that neuroblasts from the ONL migrate to the INL to compensate for toxin-induced cell loss. 7. Double staining for 5-bromodeoxyuridine (BrUdR; a thymidine analogue) and PCNA, carried out on 7 days after intravitreal injection with 6-OHDA, showed that 77% of all PCNA-ir cells in the outer nuclear layer had been in S phase during the previous 24 hr. 8. Immunoreactivity for PCNA was found to be a valid marker for rod neuroblasts which have entered S phase within 1-2 days before sampling and was shown to be especially convenient for investigating the distribution of proliferating cells in whole mounts. 9. In controls injected unilaterally with saline or saline plus 1% dimethyl sulfoxide (DMSO), the differences in densities of PCNA-ir rod precursor nuclei 2-30 days after injection vs. day 0 (uninjected) were statistically insignificant in both injected and uninjected eyes (Negishi et al., 1991). Therefore the local effect of injecting 6-OHDA was due to 6-OHDA itself, not to mechanical damage or nonspecific actions of foreign substances.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
4.
Recent studies have indicated that cytokines can enhance immunogenicity and promote tumor regression. However, the means for modulating cytokine production are not yet fully investigated. In this study we report the effects of a herbal melanin, extracted from Nigella sativa L., on the production of three cytokines [tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF)], by human monocytes, total peripheral blood mononuclear cells (PBMC) and THP-1 cell line. Cells were treated with variable concentrations of melanin and the expression of TNF-alpha, IL-6 and VEGF mRNA in cell lysates and secretion of proteins in the supernatants were detected by RT-PCR and ELISA. Melanin induced TNF-alpha, IL-6 and VEGF mRNA expression by the monocytes, PBMC and THP-1 cell line. On the protein level, melanin significantly induced TNF-alpha and IL-6 protein production and inhibited VEGF production by monocytes and PBMC. In the THP-1 cell line melanin induced production of all three cytokine proteins. These observations raise the prospects of using N. sativa L. melanin for treatment of diseases associated with imbalanced cytokine production and for enhancing cancer and other immunotherapies.  相似文献   

5.
Summary The expression pattern of VEGF, p53 and ICAM-1 was studied in conjunctiva of diabetic patients with and without retinopathy. All patients underwent a complete ophthalmic examination, including retinal fluorescein angiography. Indirect immunoperoxidase method was performed on 20 eyes of 20 patients with type II diabetes without DR and on 5 eyes of 5 patients with PDR. A control study was performed on 6 normal conjunctiva undertaken during cataract surgery. Immunoreactivity of VEGF, p53 and ICAM-1 was found in epithelial, fibroblast and vascular endothelial cells. For the same duration of diabetes, a strong to moderate or weak immunoreactivity was observed in the conjunctiva of patients without retinopathy. In patients with PDR, the expression was strong for all these proteins. The immunoreactivity was correlated between VEGF, p53 and ICAM-1. In the normal conjunctiva, a weak to negative immunostaining was observed. The presence of these proteins in the conjunctiva of diabetic patients without retinopathy may add new data in the pathogenesis of diabetic retinopathy. Further studies are needed to confirm this hypothesis.  相似文献   

6.
Q Zheng  Y Ren  R Tzekov  Y Zhang  B Chen  J Hou  C Zhao  J Zhu  Y Zhang  X Dai  S Ma  J Li  J Pang  J Qu  W Li 《PloS one》2012,7(8):e44855
Leber congenital amaurosis (LCA) is one of the most severe forms of inherited retinal degeneration and can be caused by mutations in at least 15 different genes. To clarify the proteomic differences in LCA eyes, a cohort of retinal degeneration 12 (rd12) mice, an LCA2 model caused by a mutation in the RPE65 gene, were injected subretinally with an AAV vector (scAAV5-smCBA-hRPE65) in one eye, while the contralateral eye served as a control. Proteomics were compared between untreated rd12 and normal control retinas on P14 and P21, and among treated and untreated rd12 retinas and control retinas on P42. Gene therapy in rd12 mice restored retinal function in treated eyes, which was demonstrated by electroretinography (ERG). Proteomic analysis successfully identified 39 proteins expressed differently among the 3 groups. The expression of 3 proteins involved in regulation of apoptosis and neuroptotection (alpha A crystallin, heat shock protein 70 and peroxiredoxin 6) were investigated further. Immunofluorescence, Western blot and real-time PCR confirmed the quantitative changes in their expression. Furthermore, cell culture studies suggested that peroxiredoxin 6 could act in an antioxidant role in rd12 mice. Our findings support the feasibility of gene therapy in LCA2 patients and support a role for alpha A crystallin, heat shock protein 70 and peroxiredoxin 6 in the pathogenetic mechanisms involved in LCA2 disease process.  相似文献   

7.
A form of acute retinal necrosis occurred in the contralateral eyes of susceptible mice 1 week after each received a uniocular injection of live herpes simplex virus type 1 (HSV-1) in the anterior chamber. Although these mice did not develop systemic delayed hypersensitivity to virus antigens, their sera contained virus-specific antibodies at the time contralateral retinitis occurred. These findings suggest that systemic immunity might not be able to protect against contralateral retinitis. To explore this possibility further, we examined lymph nodes and spleens of intraocularly infected mice to determine whether their lymphoid tissues contained primed HSV-1-specific cytotoxic T cells. Virus-specific cytotoxic T cells were readily identified in these mice. We wondered why successful immune priming did not confer protection against HSV-1 retinitis. We examined this issue by evaluating the capacity of in vitro-generated, HSV-1-specific effector T cells to prevent retinitis by infusing these cells by various routes and at various times into mice that received an intracameral injection of HSV-1. The results revealed that virus-specific effector cells could prevent contralateral retinitis if injected intravenously or into the anterior chamber of the contralateral eye at the same time that virus was injected into one eye. However, the effector cells failed to prevent retinitis if they were injected into the same eye that received HSV-1 or if their intravenous administration was delayed until 24 h after the HSV-1 injection into the eye. We concluded that immune T cells can protect against contralateral retinal necrosis caused by uniocular injection of HSV-1 into the anterior chamber but only if they are administered during the first 24 h after virus infection. We propose that a retinitis-inducing process is set in motion during this early time interval postinfection. Once the process has been initiated and established, it is no longer susceptible to immune intervention. It would appear that mice that are susceptible to contralateral retinitis fail to mobilize a protective response quickly enough to ward off the establishment of the retinitis-inducing process and its disastrous eventuality.  相似文献   

8.
ObjectiveTo assess associations between the aqueous humour concentration of interleukin IL-1β, IL-6, IL-8, IL-10 and IL-12p, tumor necrosis factor α (TNF-α) and vascular endothelial growth factor (VEGF) and axial length in eyes with cataract.MethodsThe hospital-based investigation included patients who underwent cataract surgery between March 2014 and April 2014. Using aqueous humour collected at the start of cataract surgery, the interleukins IL-1β, IL-6, IL-8, IL-10 and IL-12p, TNF-α and VEGF were examined using a cytometric bead array. Axial length was determined by partial coherence laser interferometry (IOL Master).ResultsThe study included 33 patients with cataract (33 eyes) with a mean age of 69.2±10.8 years (range:50–87 years) and a mean axial length of 24.7±1.9 mm (range:22.6–31.5 mm). Lower aqueous concentration of VEGF was significantly associated with longer axial length (VEGF concentration (pg/mL) = -5.12 x Axial Length (mm) + 163; correlation coefficient r = -0.41; P<0.001) and more myopic refractive error (VEGF concentration (pg/mL) = 1.27xspherical equivalent (diopters)+44.8; r = 0.383; P = 0.002). The aqueous concentrations of all other substances were not significantly (all P>0.10) associated with axial length or refractive error.ConclusionsHigher intravitreal concentrations of VEGF were measured in eyes with a longer axial length, while the intraocular concentrations of IL-1β, IL-6, IL-8, IL-10, IL-12p and TNF-α were not correlated with axial length. The lower concentration of VEGF in axially elongated eyes may be one of the reasons for the lower prevalence of age-related macular degeneration and diabetic retinopathy in myopic eyes.  相似文献   

9.
IL-1beta is a pro-inflammatory agent associated with angiogenesis and increased vascular permeability. To determine whether IL-1beta elicits these responses through an upregulation of VEGF, transgenic mice that overexpress IL-1beta in the lens were evaluated at various time points for the localization of VEGF, the location and extent of blood-retinal barrier (BRB) breakdown, and the origin and extent of neovascularization (NV). In homozygous and heterozygous transgenic mice, but not controls, intense VEGF immunoreactivity was scattered throughout the retina at postnatal days 5-7 (P5-7), just after the onset of inflammatory cell infiltration. VEGF staining in the retina remained widespread, but weak from P9-15. Beginning at P15, the intensity of VEGF immunoreactivity achieved a second peak, which it maintained through adulthood. This peak coincided with significant retinal destruction due to massive inflammation. The onset of BRB breakdown coincided with the upregulation of VEGF (P5-7) and widespread BRB breakdown was demonstrated from about P9. From P9-12, aggregates of cells positive for Griffonia simplicifolia isolectin-B4, a marker for vascular endothelial cells, formed on the retinal surface. These cells migrated into the retina at P12-15 with the more superficial cells forming a network of vessels and the deeper cells remaining in small clusters, thus demonstrating that NV occurs much later than BRB breakdown. Non-transgenic FVB/N mice, which undergo retinal degeneration beginning at about P9, also demonstrate the latter peak of VEGF upregulation and the accompanying BRB breakdown, but not the early upregulation. VEGF immunostaining of transgenic and non-transgenic mouse retinas was eliminated by pre-incubation of the VEGF antibodies with VEGF peptide. The data suggest that the early peak of VEGF upregulation (P5-7) and its accompanying BRB breakdown is due to IL-1beta expression and is likely to be dependent on inflammatory cell infiltration. The latter peak appears to be related to retinal destruction.  相似文献   

10.
11.
Tumor necrosis factor alpha (TNF-alpha) has been shown to have a protective role in the eyes and brains of herpes simplex virus type 1 (HSV-1)-infected mice. To determine whether overexpression of TNF-alpha affected the course of virus infection following uniocular anterior chamber inoculation, a recombinant of HSV-1 that produces TNF-alpha constitutively (KOSTNF) was constructed. BALB/c mice were injected with the TNF-alpha recombinant, a recombinant containing the pCI plasmid, a recombinant rescue virus, or the parental virus. Flow cytometry and immunohistochemistry were used to identify virus-infected cells and to determine the numbers and types of infiltrating inflammatory cells in the uninjected eyes. Virus titers were determined by plaque assay. There were no differences among the groups in virus titers or the route and timing of virus spread in the injected eyes or in the suprachiasmatic nuclei. However, in the uninjected eyes of KOSTNF-infected mice, TNF-alpha expression was increased and there were more viral antigen-positive cells and immune inflammatory cells. There was earlier microscopic evidence of retinal infection and destruction in these mice, and the titers of virus in the uninjected eyes were significantly increased in KOSTNF-infected mice on day 7 postinfection compared with those of KOSpCI-, KOS6beta rescue-, or KOS6beta-infected mice. The results suggest that instead of moderating infection and reducing virus spread, overexpression of TNF-alpha has deleterious effects due to increased inflammation and virus infection that result in earlier destruction of the retina of the uninoculated eye.  相似文献   

12.
Elevated TGFbeta signaling inhibits ocular vascular development   总被引:3,自引:0,他引:3  
Alterations in the ocular vasculature are associated with retinal diseases such as retinopathy of prematurity and diabetic retinopathy. Vascular endothelial growth factor (VEGF) as a potent stimulator for normal and abnormal vascular growth has been extensively studied. However, little is known about secreted factors that negatively regulate vascular growth in ocular tissues. We now report that expression of a self-activating TGFbeta1 in the ocular lens of transgenic mice results in inhibition of retinal angiogenesis followed by retinal degeneration. Transgenic TGFbeta1 can rescue the hyperplasic hyaloid tissue and reverse the corneal deficiency in TGFbeta2-null embryos. These results demonstrate that TGFbeta signaling modulates development of ocular vasculature and cornea in a dosage-dependent manner and that TGFbeta1 can substitute for TGFbeta2 in ocular tissues.  相似文献   

13.
14.
Activated hepatic stellate cells produce vascular endothelial growth factor (VEGF). VEGF has been shown to act on mesenchymal cells as well. If hepatic stellate cells can express FLT tyrosine receptor family, flt-1 and KDR/flk-1, their function might be regulated by VEGF in an autocrine manner. This hypothesis was tested using hepatic stellate cells isolated from normal rats. Northern blot analysis and immunocytochemical study revealed that hepatic stellate cells cultured for 3 days on plastic dishes expressed both flt-1 and KDR/flk-1. When the culture was prolonged to 10 days, the flt-1 mRNA expression was increased, whereas both KDR/flk-1 mRNA and protein expressions diminished. DNA and collagen syntheses were minimal in the cells cultured for 3 days, but marked in those cultured for 10 days. Addition of recombinant human VEGF to the culture medium did not change both syntheses but attenuated an increase of smooth muscle alpha-actin expression in the cells during culture on plastic dishes and also contraction of collagen gels on which the cells were cultured. We conclude that VEGF may inhibit contraction of hepatic stellate cells appearing during activation by culture, probably through attenuation of smooth muscle alpha-actin expression via upregulated VEGF receptor, flt-1.  相似文献   

15.
Subretinal delivery of polyethylene glycol-substituted lysine peptide (CK30PEG)-compacted DNA nanoparticles results in efficient gene expression in retinal cells. This work evaluates the ocular safety of compacted DNA nanoparticles. CK30PEG-compacted nanoparticles containing an EGFP expression plasmid were subretinally injected in adult mice (1 µl at 0.3, 1.0 and 3.0 µg/µl). Retinas were examined for signs of inflammation at 1, 2, 4 and 7 days post-injection. Neither infiltration of polymorphonuclear neutrophils or lymphocytes was detected in retinas. In addition, elevation of macrophage marker F4/80 or myeloid marker myeloperoxidase was not detected in the injected eyes. The chemokine KC mRNA increased 3–4 fold in eyes injected with either nanoparticles or saline at 1 day post-injection, but returned to control levels at 2 days post-injection. No elevation of KC protein was observed in these mice. The monocyte chemotactic protein-1, increased 3–4 fold at 1 day post-injection for both nanoparticle and saline injected eyes, but also returned to control levels at 2 days. No elevations of tumor necrosis factor alpha mRNA or protein were detected. These investigations show no signs of local inflammatory responses associated with subretinal injection of compacted DNA nanoparticles, indicating that the retina may be a suitable target for clinical nanoparticle-based interventions.  相似文献   

16.
Vascular endothelial growth factor (VEGF) is a potent mediator of increased vascular permeability and an endothelial cell mitogen. Because VEGF is upregulated during ventilated ischemia of isolated lungs and may lead to both increased vascular permeability and neovascularization, we hypothesized that VEGF and kinase insert domain-containing receptor/fetal liver kinase-1 (KDR/flk-1) expression would increase acutely after unilateral pulmonary arterial (PA) ischemia in vivo in association with evidence of endothelial cell barrier dysfunction. To test this hypothesis, VEGF and KDR/flk-1 mRNA and protein expression were measured after 4, 8, and 24 h of left PA ligation in mice. Permeability was assessed at the same time points by measurement of bronchoalveolar lavage protein concentration and lung wet-to-dry weight ratios. Results were compared with those from uninstrumented and sham-operated mice. VEGF and KDR/flk-1 protein in the left lung both increased by 4 h and then returned to baseline, whereas increased VEGF and KDR/flk-1 mRNA expression was sustained throughout 24 h of unilateral ischemia. Bronchoalveolar lavage protein concentration increased transiently during ischemia, whereas wet-to-dry weight ratio of the left lung increased more slowly and remained elevated after 24 h of left PA ligation. These results suggest that increased expression of VEGF and KDR/flk-1 during unilateral PA occlusion in mice may contribute to the development of acute lung injury in this model.  相似文献   

17.
Interleukin 6 (IL-6) is considered a proliferation and survival factor for B cells. To assess the role of IL-6 in Kaposi sarcoma-associated herpesvirus (KSHV) latency, KSHV latency locus-transgenic mice (referred to as latency mice) lacking IL-6 were evaluated. IL-6−/− latency mice had the same phenotypes as the latency mice, i.e., increased frequency of marginal zone B cells, hyperplasia, and hyperglobulinemia, indicating that the KSHV latency locus, which includes all viral microRNAs (miRNAs), can compensate for lack of IL-6 in premalignant B cell activation.  相似文献   

18.
Vascular endothelial growth factor (VEGF) has been suggested to play a critical role in the pathogenesis of rheumatoid arthritis (RA). We previously identified a novel RRKRRR hexapeptide that blocked the interaction between VEGF and its receptor through the screening of peptide libraries. In this study, we investigated whether anti-VEGF peptide RRKRRR (dRK6) could suppress collagen-induced arthritis (CIA) and regulate the activation of mononuclear cells of RA patients. A s.c. injection of dRK6 resulted in a dose-dependent decrease in the severity and incidence of CIA and suppressed synovial infiltration of inflammatory cells in DBA/1 mice. In these mice, the T cell responses to type II collagen (CII) in lymph node cells and circulating IgG Abs to CII were also dose-dependently inhibited by the peptides. In addition, VEGF directly increased the production of TNF-alpha and IL-6 from human PBMC. Synovial fluid mononuclear cells of RA patients showed a greater response to VEGF stimulation than the PBMC of healthy controls. The major cell types responding to VEGF were monocytes. Moreover, anti-VEGF dRK6 inhibited the VEGF-induced production of TNF-alpha and IL-6 from synovial fluid mononuclear cells of RA patients and decreased serum IL-6 levels in CIA mice. In summary, we observed first that dRK6 suppressed the ongoing paw inflammation in mice and blocked the VEGF-induced production of proinflammatory cytokines. These data suggest that dRK6 may be an effective strategy in the treatment of RA, and could be applied to modulate various chronic VEGF-dependent inflammatory diseases.  相似文献   

19.

Purpose

To investigate the rate of lens subluxation following plasmin and/or SF6 injections in eyes, and whether a subsequent elevated level of vascular endothelial growth factor (VEGF) and vitreous tap would aggravate subluxation.

Methods

Four groups of rabbits were used. Group 1 received an intravitreal injection (IVI) of plasmin and SF6 in the right eye; group 2 received an IVI of plasmin in the right eye; group 3 received an IVI of SF6 in the right eye; and group 4 received an IVI of balanced salt solution in the right eye. After treatment, IVIs of VEGF were given and vitreous tap was performed three times, followed by clinical observation of lens subluxation and scanning electronic microscope evaluation of the zonular fibers.

Results

After IVIs of plasmin and SF6, and VEGF and vitreous tap had been performed one to three times, lens subluxation was noted in 0%, 43%, 71%, 71%, and 86% of the eyes in group 1. After IVIs of plasmin, VEGF, and vitreous tap had been performed one to three times, lens subluxation was noted in 11%, 22%, 44%, 44%, and 67% of the eyes in group 2. The eyes in group 3 and 4 did not show signs of lens subluxation after VEGF IVIs and vitreous tap. Histology confirmed zonular fiber damage in the eyes treated with plasmin.

Conclusions

The incidence of lens subluxation increased following plasmin injections in the eyes, and this was aggravated by the subsequent high VEGF level in the eyes and vitreous tapping. Zonular fibers were disrupted following plasmin treatment. These effects should be kept in mind when using plasmin enzymes in patients with vitreoretinal abnormalities.  相似文献   

20.

Background

Previous studies by us and other have provided evidence that leukocytes play a critical role in the development of diabetic retinopathy, suggesting a possible role of the innate immune system in development of the retinopathy. Since MyD88 is a convergence point for signaling pathways of the innate immune system (including Toll-Like Receptors (TLRs) and interleukin-1ß (IL-1ß)), the purpose of this study was to assess the role of MyD88 and its dependent pathways on abnormalities that develop in retina and white blood cells related to diabetic retinopathy.

Methods

C57BL/6J mice were made diabetic with streptozotocin. Chimeric mice were generated in which MyD88-dependent pathways were deleted from bone marrow-derived only. Mice were sacrificed at 2 mos of diabetes for assessment of, leukostasis, albumin accumulation in neural retina, leukocyte-mediated killing of retinal endothelial cells, and cytokine/chemokine generation by retinas of diabetic mice in response to TLR agonists,

Results

IL-6 and CXCL1 were generated in retinas from diabetic (but not nondiabetic mice) following incubation with Pam3CysK/TLR2, but incubation with other TLR ligands or IL-1ß did not induce cytokine production in retinas from nondiabetic or diabetic mice. Diabetes-induced abnormalities (leukostasis, ICAM-1 expression on the luminal surface of the vascular endothelium, retinal superoxide generation) were significantly inhibited by removing either MyD88 or the signaling pathways regulated by it (TLRs 2 and 4, and IL-1ß) from bone marrow-derived cells only. Leukocyte-mediated killing of endothelial cells tended to be decreased in the marrow-derived cells lacking TLR2/4, but the killing was significantly exacerbated if the marrow cells lacked MyD88 or the receptor for IL-1ß (IL-1ßr).

Conclusions

MyD88-dependent pathways play an important role in the development of diabetes-induced inflammation in the retina, and inhibition of MyD88 might be a novel target to inhibit early abnormalities of diabetic retinopathy and other complications of diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号