首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Outer membrane vesicles (OMVs) shed from the gastroduodenal pathogen Helicobacter pylori have measurable effects on epithelial cell responses. The aim of this study was to determine the effect of iron availability, and its basis, on the extent and nature of lipopolysaccharide (LPS) produced on H. pylori OMVs and their parental bacterial cells. Electrophoretic, immunoblotting and structural analyses revealed that LPSs of bacterial cells grown under iron-limited conditions were notably shorter than those of bacteria and OMVs obtained from iron-replete conditions. Structural analysis and serological probing showed that LPSs of iron-replete cells and OMVs expressed O-chains of Lewis(x) with a terminal Lewis(y) unit, whereas Lewis(y) expression was notably reduced on bacteria and OMVs from iron-limiting conditions. Unlike the O-chain, the core oligosaccharide and lipid A moieties of iron-replete and iron-limited bacteria and their OMVs were similar. Quantitatively, shed OMVs from iron-replete bacteria were found to be LPSenriched, whereas shed OMVs from iron-limited bacteria had a significantly reduced content of LPS. These differences were linked to bacterial ATP levels. Since iron availability affects the extent and nature of LPS expressed by H. pylori, host iron status may contribute to H. pylori pathogenesis.  相似文献   

2.
Gram-negative bacteria shed outer membrane vesicles composed of outer membrane and periplasmic components. Since vesicles from pathogenic bacteria contain virulence factors and have been shown to interact with eukaryotic cells, it has been proposed that vesicles behave as delivery vehicles. We wanted to determine whether heterologously expressed proteins would be incorporated into the membrane and lumen of vesicles and whether these altered vesicles would associate with host cells. Ail, an outer membrane adhesin/invasin from Yersinia enterocolitica, was detected in purified outer membrane and in vesicles from Escherichia coli strains DH5alpha, HB101, and MC4100 transformed with plasmid-encoded Ail. In vesicle-host cell co-incubation assays we found that vesicles containing Ail were internalized by eukaryotic cells, unlike vesicles without Ail. To determine whether lumenal vesicle contents could be modified and delivered to host cells, we used periplasmically expressed green fluorescent protein (GFP). GFP fused with the Tat signal sequence was secreted into the periplasm via the twin arginine transporter (Tat) in both the laboratory E. coli strain DH5alpha and the pathogenic enterotoxigenic E. coli ATCC strain 43886. Pronase-resistant fluorescence was detectable in vesicles from Tat-GFP-transformed strains, demonstrating that GFP was inside intact vesicles. Inclusion of GFP cargo increased vesicle density but did not result in morphological changes in vesicles. These studies are the first to demonstrate the incorporation of heterologously expressed outer membrane and periplasmic proteins into bacterial vesicles.  相似文献   

3.
Acinetobacter baumannii secretes outer membrane vesicles (OMVs) during both in vitro and in vivo growth, but the biogenesis mechanism by which A. baumannii produces OMVs remains undefined. Outer membrane protein A of A. baumannii (AbOmpA) is a major protein in the outer membrane and the C-terminus of AbOmpA interacts with diaminopimelate of peptidoglycan. This study investigated the role of AbOmpA in the biogenesis of A. baumannii OMVs. Quantitative and qualitative approaches were used to analyze OMV biogenesis in A. baumannii ATCC 19606T and an isogenic ΔAbOmpA mutant. OMV production was significantly increased in the ΔAbOmpA mutant compared to wild-type bacteria as demonstrated by quantitation of proteins and lipopolysaccharides (LPS) packaged in OMVs. LPS profiles prepared from OMVs from wild-type bacteria and the ΔAbOmpA mutant had identical patterns, but proteomic analysis showed different protein constituents in OMVs from wild-type bacteria compared to the ΔAbOmpA mutant. In conclusion, AbOmpA influences OMV biogenesis by controlling OMV production and protein composition.  相似文献   

4.
Jin JS  Kwon SO  Moon DC  Gurung M  Lee JH  Kim SI  Lee JC 《PloS one》2011,6(2):e17027
Acinetobacter baumannii is an important nosocomial pathogen that causes a high morbidity and mortality rate in infected patients, but pathogenic mechanisms of this microorganism regarding the secretion and delivery of virulence factors to host cells have not been characterized. Gram-negative bacteria naturally secrete outer membrane vesicles (OMVs) that play a role in the delivery of virulence factors to host cells. A. baumannii has been shown to secrete OMVs when cultured in vitro, but the role of OMVs in A. baumannii pathogenesis is not well elucidated. In the present study, we evaluated the secretion and delivery of virulence factors of A. baumannii to host cells via the OMVs and assessed the cytotoxic activity of outer membrane protein A (AbOmpA) packaged in the OMVs. A. baumannii ATCC 19606(T) secreted OMVs during in vivo infection as well as in vitro cultures. Potential virulence factors, including AbOmpA and tissue-degrading enzymes, were associated with A. baumannii OMVs. A. baumannii OMVs interacted with lipid rafts in the plasma membranes and then delivered virulence factors to host cells. The OMVs from A. baumannii ATCC 19606(T) induced apoptosis of host cells, whereas this effect was not detected in the OMVs from the ΔompA mutant, thereby reflecting AbOmpA-dependent host cell death. The N-terminal region of AbOmpA(22-170) was responsible for host cell death. In conclusion, the OMV-mediated delivery of virulence factors to host cells may well contribute to pathogenesis during A. baumannii infection.  相似文献   

5.
The outer membrane is a distinguishing feature of the Gram-negative envelope. It lies on the external face of the peptidoglycan sacculus and forms a robust permeability barrier that protects extracytoplasmic structures from environmental insults. Overcoming the barrier imposed by the outer membrane presents a significant hurdle towards developing novel antibiotics that are effective against Gram-negative bacteria. As the outer membrane is an essential component of the cell, proteins involved in its biogenesis are themselves promising antibiotic targets. Here, we summarize key findings that have built our understanding of the outer membrane. Foundational studies describing the discovery and composition of the outer membrane as well as the pathways involved in its construction are discussed.  相似文献   

6.
Brucella, an aerobic, nonsporeforming, nonmotile Gram-negative coccobacillus, is a NIH/CDC category B bioterror threat agent that causes incapacitating human illness. Medical defense against the bioterror threat posed by Brucella would be strengthened by development of a human vaccine and improved diagnostic tests. Central to advancement of these goals is discovery of bacterial constituents that are immunogenic or antigenic for humans. Outer membrane proteins (OMPs) are particularly attractive for this purpose. In this study, we cloned, expressed, and purified seven predicted OMPs of Brucella suis. The recombinant proteins were fused with 6-His and V5 epitope tags at their C termini to facilitate detection and purification. The B. suis surface genes were PCR synthesized based on their ORF sequences and directly cloned into an entry vector. The recombinant entry constructs were propagated in TOP 10 cells, recombined into a destination vector, pET-DEST42, then transformed into Escherichia coli BL21 cells for IPTG-induced protein expression. The expressed recombinant proteins were confirmed with Western blot analysis using anti-6-His antibody conjugated with alkaline phosphatase. These B. suis OMPs were captured and purified using a HisGrab plate. The purified recombinant proteins were examined for their binding activity with antiserum. Serum derived from a rabbit immunized intramuscularly with dialyzed cell lysate of Brucella rough mutant WRR51. The OMPs were screened using the rabbit antiserum and purified IgG. The results suggested that recombinant B. suis OMPs were successfully cloned, expressed and purified. Some of the expressed OMPs showed high binding activity with immunized rabbit antiserum.  相似文献   

7.
The outer membrane of Gram‐negative bacteria is a crucial permeability barrier allowing the cells to survive a myriad of toxic compounds, including many antibiotics. This innate form of antibiotic resistance is compounded by the evolution of more active mechanisms of resistance such as efflux pumps, reducing the already limited number of clinically relevant treatments for Gram‐negative pathogens. During cell division Gram‐negative bacteria must coordinate constriction of the outer membrane in conjunction with other crucial layers of the cell envelope, the peptidoglycan cell wall and the inner membrane. Coordination is crucial in maintaining structural integrity of the envelope, and represents a highly vulnerable time for the cell as any failure can be fatal, if not least disadvantageous. However, the molecular mechanisms of cell division and how the biogenesis of the three layers is synchronised during constriction remain largely unknown. Perturbations of the outer membrane have been shown to increase the effectiveness of antibiotics in vitro, and so with improved understanding of this process we may be able to exploit this vulnerability and improve the effectiveness of antibiotic treatments. In this review the current knowledge of how Gram‐negative bacteria facilitate constriction of their outer membranes during cell division will be discussed.  相似文献   

8.
9.
The binding of deoxyribonucleic acid (DNA) to the outer membrane of Escherichia coli was examined. The amount of DNA found to be bound to outer membrane was low and was estimated to be about 0.4% of the total DNA. Treatment of cells with chloramphenicol or rifampin caused a disassociation of the apparent DNA-outer membrane complex. The results presented here suggest that the binding between membrane and DNA is specific and involves a membrane protein having a molecular weight of 13,000.  相似文献   

10.
The channel-forming protein, VDAC, located in the mitochondrial outer membrane, is probably responsible for the high permeability of the outer membrane to small molecules. The ability to regulate this channelin vitro raises the possibility that VDAC may perform a regulatory rolein vivo. VDAC exists in multiple, quasi-degenerate conformations with different permeability properties. Therefore a modest input of energy can change VDAC's conformation. The ability to use a membrane potential to convert VDAC from a high (open) to a low (closed) conducting form indicates the presence of a sensor in the protein that allows it to respond to the electric field. Titration and modification experiments point to a polyvalent, positively charged sensor. Soluble, polyvalent anions such as dextran sulfate and Konig's polyanion seem to be able to interact with the sensor to induce channel closure. Thus there are multiple ways of applying a force on the sensor so as to induce a conformational change in VDAC. Perhaps cells use one or more of these methods.  相似文献   

11.
12.
The outer membrane of Spirochaeta aurantia was isolated after cells were extracted with sodium lauryl sarcosinate and was subsequently purified by differential centrifugation and KBr isopycnic gradient centrifugation. The purified outer membrane was obtained in the form of carotenoid-containing vesicles. Four protein species with apparent molecular weights of 26,000 (26K), 36.5K, 41K, and 48.5K were readily observed as components of the vesicles. The 36.5K protein was the major polypeptide and constituted approximately 90% of the outer membrane protein observed on sodium dodecyl sulfate-polyacrylamide gels. Under mild denaturing conditions the 36.5K major protein exhibited an apparent molecular weight of approximately 90,000. This, together with the results of protein cross-linking studies, indicates that the 36.5K polypeptide has an oligomeric conformation in the native state. Reconstitution of solubilized S. aurantia outer membrane into lipid bilayer membranes revealed the presence of a porin, presumably the 36.5K protein, with an estimated channel diameter of 2.3 nm based on the measured single channel conductance of 7.7 nS in 1 M KCl.  相似文献   

13.
鱼腥藻 PCC7120外膜的纯化和外膜蛋白的鉴定   总被引:2,自引:0,他引:2  
鱼腥藻(Anabaena sp.)PCC7120是一种丝状同氮蓝藻,在缺氮诱导条件下,沿着丝体约每隔10个营养细胞分化出一个固氮细胞即异形胞,在细胞分化中伴随着复杂的基因表达和调控,成为一维原核生物体细胞分化及图式形成研究的模式[1].  相似文献   

14.
Rhizobium leguminosarum cells were separated into four distinct fractions by using density gradient centrifugation for the separation of the outer and cytoplasmic membranes and lysozyme-EDTA treatment of whole cells for the isolation of the periplasmic and cytoplasmic fractions. These methods allowed the subcellular localization of R. leguminosarum proteins.  相似文献   

15.
The outer membrane of Treponema pallidum, the non-cultivable agent of venereal syphilis, contains a paucity of protein(s) which has yet to be definitively identified. In contrast, the outer membranes of gram-negative bacteria contain abundant immunogenic membrane-spanning beta-barrel proteins mainly involved in nutrient transport. The absence of orthologs of gram-negative porins and outer membrane nutrient-specific transporters in the T. pallidum genome predicts that nutrient transport across the outer membrane must differ fundamentally in T. pallidum and gram-negative bacteria. Here we describe a T. pallidum outer membrane protein (TP0453) that, in contrast to all integral outer membrane proteins of known structure, lacks extensive beta-sheet structure and does not traverse the outer membrane to become surface exposed. TP0453 is a lipoprotein with an amphiphilic polypeptide containing multiple membrane-inserting, amphipathic alpha-helices. Insertion of the recombinant, non-lipidated protein into artificial membranes results in bilayer destabilization and enhanced permeability. Our findings lead us to hypothesize that TP0453 is a novel type of bacterial outer membrane protein which may render the T. pallidum outer membrane permeable to nutrients while remaining inaccessible to antibody.  相似文献   

16.
The complex organization of the mycobacterial cell wall poses unique challenges for the study of its assembly. Although mycobacteria are classified evolutionarily as Gram-positive bacteria, their cell wall architecture more closely resembles that of Gram-negative organisms. They possess not only an inner cytoplasmic membrane, but also a bilayer outer membrane that encloses an aqueous periplasm and includes diverse lipids that are required for the survival and virulence of pathogenic species. Questions surrounding how mycobacterial outer membrane lipids are transported from where they are made in the cytoplasm to where they function at the cell exterior are thus similar, and similarly compelling, to those that have driven the study of Gram-negative outer membrane transport pathways. However, little is understood about these processes in mycobacteria. Here we contextualize these questions by comparing our current knowledge of mycobacteria with better-defined systems in other organisms. Based on this analysis, we propose possible models and highlight continuing challenges to improving our understanding of outer membrane assembly in these medically and environmentally important bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.  相似文献   

17.
The topography of lipopolysaccharide insertion into the outer membrane of Salmonella is discussed in context with a review of recent findings pertaining to general properties of the outer membrane, such as asymmetry and lateral mobility of surface components.  相似文献   

18.
Abstract Within gram-negative bacteria such as Escherichia coli , the outer membrane porins provide a relatively non-specific uptake route which is utilised by a wide range of solutes including many antibiotics. Understanding the targeting and membrane assembly of these proteins is therefore of importance and this mini review aims to discuss this process in light of present knowledge.  相似文献   

19.
The assembly of beta-barrel proteins into membranes is a fundamental process that is essential in Gram-negative bacteria, mitochondria and plastids. Our understanding of the mechanism of beta-barrel assembly is progressing from studies carried out in Escherichia coli and Neisseria meningitidis. Comparative sequence analysis suggests that while many components mediating beta-barrel protein assembly are conserved in all groups of bacteria with outer membranes, some components are notably absent. The Alphaproteobacteria in particular seem prone to gene loss and show the presence or absence of specific components mediating the assembly of beta-barrels: some components of the pathway appear to be missing from whole groups of bacteria (e.g. Skp, YfgL and NlpB), other proteins are conserved but are missing characteristic domains (e.g. SurA). This comparative analysis is also revealing important structural signatures that are vague unless multiple members from a protein family are considered as a group (e.g. tetratricopeptide repeat (TPR) motifs in YfiO, beta-propeller signatures in YfgL). Given that the process of the beta-barrel assembly is conserved, analysis of outer membrane biogenesis in Alphaproteobacteria, the bacterial group that gave rise to mitochondria, also promises insight into the assembly of beta-barrel proteins in eukaryotes.  相似文献   

20.
As an approach to understanding the molecular basis of the reduction in plant yield depression by root-colonizing Pseudomonas spp. and especially of the role of the bacterial cell surfaces in this process, we characterized 30 plant-root-colonizing Pseudomonas spp. with respect to siderophore production, antagonistic activity, plasmid content, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis patterns of their cell envelope proteins. The results showed that all strains produce hydroxamate-type siderophores which, because of the correlation with Fe3+ limitation, are thought to be the major factor responsible for antagonistic activity. Siderophore-negative mutants of two strains had a strongly decreased antagonistic activity. Five strains maintained their antagonistic activity under conditions of iron excess. Analysis of cell envelope protein patterns of cells grown in excess Fe3+ showed that most strains differed from each other, although two classes of similar or identical strains were found. In one case such a class was subdivided on the basis of the patterns of proteins derepressed by iron limitation. Small plasmids were not detected in any of the strains, and only one of the four tested strains contained a large plasmid. Therefore, it is unlikely that the Fe3+ uptake system of the antagonistic strains is usually plasmid encoded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号