首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Relative biological effectiveness (RBE) of gamma-neutron radiation with neutron energy of 0.9 MeV was estimated with a reference to rat death. It was shown that RBE of gamma-neutron radiation (the share of neutrons was 67% as related to dose) at LD33/30 and LD100/30 was 2, and RBE of 0.9 MeV neutrons, in experiments with mixed radiation, was 3.1 and 2.86 at LD33/30 and LD100/30, respectively. The value of a maximum dose at which death was not registered during 30 days, was 1 Gy with gamma-neutron radiation and 4 Gy with X-radiation.  相似文献   

2.
With L-cells exposed to neutrons and X-rays the RBE of fission spectrum neutrons (1.2 MeV) was 2.8, and that of high-energy neutrons (22 MeV), 1.3. X-Irradiation with small doses (0.25 to 0.50 Gy) exerted a stimulatory effect on the growth and division of cells.  相似文献   

3.
A comparative study was made of the death rate of guinea pigs after neutron (0.85 MeV) and 137Cs-gamma-radiation (0.66 MeV); LD50/30 were 1.58 and 3.44 Gy respectively. CRBE of neutrons was 2.2 as determined by median lethal dose values for guinea pigs.  相似文献   

4.
A study was made of lethal and mutagenic effects of fast neutrons of different energy on spores of prototrophic and auxotrophic strains of Streptomyces griseus. Relative biological effectiveness of fast neutrons is higher than that of gamma-rays and depends on beam energy. Neutrons of 22-50 MeV induce Streptomyces griseus mutations more frequently (by one order of magnitude) than neutrons of 1.4-1.6 MeV do. The obtained mutants can be used in studying Streptomyces griseus genetics.  相似文献   

5.
The relative biological effectiveness (RBE) of the 25-MeV (average energy) neutron beam at the Fermi National Accelerator Laboratory was measured using murine bone marrow (LD50/30) and gut (LD50/6) lethality and killing of hematopoietic colony forming units (CFU-S) or intestinal clonogenic cells (ICC). The reference radiation was 60Co gamma rays. The LD50/30 and LD50/6 for mice exposed to the Fermilab neutron beam were 6.6 and 8.7 Gy, respectively, intermediate between those of JANUS neutrons and 60Co gamma rays. The D0 values for CFU-S and ICC were 47 cGy and 1.05 Gy, respectively, also intermediate between the lowest values found for JANUS neutrons and the highest values found after 60Co gamma rays. The split-dose survival ratios for CFU-S at intervals of 1-6 hr between doses were essentially 1.0 for both neutron sources, while the corresponding split-dose survival ratio for 60Co gamma rays was consistantly above 1, reaching a maximum of 1.7 with a 1-hr interval between doses. The 3-hr split-dose survival ratios for ICC were 1.0 for JANUS neutrons, 1.85 for Fermilab neutrons, and 6.5 for 60Co gamma rays. The RBE estimates for LD50/30 were 1.5 and 2.3 for Fermilab and JANUS neutrons, respectively. Based on LD50/6, the RBEs were 1.9 (Fermilab) and 3.0 (JANUS). The RBEs for CFU-S D0 were 1.4 (Fermilab) and 1.9 (JANUS) and for jejunal microcolony D0 1.4 (Fermilab) and 2.8 (JANUS).  相似文献   

6.
The RBE coefficient of neutrons (0.85 MeV) was 1.87 in comparison with that of electron radiation (8 MeV) as determined by the death rate of guinea pigs with the cerebral form of radiation sickness. LD50/1.5 amounted to 43.2 and 80.7 Gy. The dynamics of clinical symptoms at the height of the disease is discussed.  相似文献   

7.
The most radiation-sensitive cells in the testis are B and intermediate spermatogonia. We have used a histological scoring technique to compare three neutron beams of different mean energies (1 MeV at the ECN, Petten, 2.3 MeV at the Gray Laboratory, Northwood, and 5.6 MeV at the Oncological Centre, Krakow). CBA inbred mice, 14-20 weeks old, were exposed to whole-body irradiation with single doses of either X-rays (0.1-1 Gy) or neutrons (0.2-0.25 Gy). Relative biological effectiveness values, calculated at the level of 50 per cent reduction in survival of B spermatogonia, were 5.7 at the ECN, Petten, 4.6 at the Gray Laboratory and 3.0 at the Oncological Centre in Krakow. The Do value for the B spermatogonia after X-rays was 0.34 +/- 0.02 Gy when the data from the three centres were combined. Do values for neutrons for the examined spermatogonia were 0.08 Gy, 0.09 Gy and 0.11 Gy at the ECN, Petten, the Gray Laboratory and the Oncological Centre, respectively.  相似文献   

8.
Study of heavy ion radiation-induced effects on mice could provide insight into the human health risks of space radiation exposure. The purpose of the present study is to assess the relative biological effectiveness (RBE) of (12)C and (28)Si ion radiation, which has not been reported previously in the literature. Female C57BL/6J mice (n = 15) were irradiated using 4-8 Gy of (28)Si (300 MeV/nucleon energy; LET 70 keV/μm) and 5-8 Gy of (12)C (290 MeV/nucleon energy; LET 13 keV/μm) ions. Post-exposure, mice were monitored regularly, and their survival observed for 30 days. The LD(50/30) dose (the dose at which 50 % lethality occurred by 30-day post-exposure) was calculated from the survival curve and was used to determine the RBE of (28)Si and (12)C in relation to γ radiation. The LD(50/30) for (28)Si and (12)C ion is 5.17 and 7.34 Gy, respectively, and the RBE in relation to γ radiation (LD(50/30)-7.25 Gy) is 1.4 for (28)Si and 0.99 for (12)C. Determination of RBE of (28)Si and (12)C for survival in mice is not only important for space radiation risk estimate studies, but it also has implications for HZE radiation in cancer therapy.  相似文献   

9.
Oncogenic transformation by fractionated doses of neutrons   总被引:1,自引:0,他引:1  
Oncogenic transformation was assayed after C3H 10T1/2 cells were irradiated with monoenergetic neutrons; cells were exposed to 0.23-, 0.35-, 0.45-, 5.9-, and 13.7-MeV neutrons given singly or in five equal fractions over 8 h. At the biologically effective neutron energy of 0.45 MeV, enhancement of transformation was evident with some small fractionated doses (below 1 Gy). When transformation was examined as a function of neutron energy at 0.5 Gy, enhancement was seen for cells exposed to three of the five energies (0.35, 0.45, and 5.9 MeV). Enhancement was greatest for cells irradiated with 5.9-MeV neutrons. Of the neutron energies examined, 5.9-MeV neutrons had the lowest dose-averaged lineal energy and linear energy transfer. This suggests that enhancement of transformation by fractionated low doses of neutrons may be radiation-quality dependent.  相似文献   

10.
The production and rejoining of DNA single-strand and double-strand breaks have been monitored in monolayer cultures of proliferating human skin fibroblasts by means of sensitive techniques. Cells were irradiated with low doses of either 60Co gamma-rays or 14.6 MeV neutrons at 0 degrees C (0-5 Gy for measurement of single-strand breaks by alkaline elution and 0-50 Gy for double-strand breaks measured by neutral elution). The yield of single-strand breaks induced by neutrons was 30 per cent of that produced by the same dose of gamma-rays; whilst in the induction of double-strand breaks neutrons were 1.6 times as effective as gamma-rays. Upon post-irradiation incubation of cells at 37 degrees C, neutron-induced single-strand and double-strand breaks were rejoined with a similar time-course to gamma-induced breaks. Rejoining followed biphasic kinetics; of the single-strand breaks, 50 per cent disappeared within 2 min after gamma-rays and 6-10 min after neutrons. Fifty per cent of the double-strand breaks disappeared within 10 min, after gamma-rays and neutrons. Cells derived from patients suffering from ataxia-telangiectasia showed the same capacity for repair of single- and double-strand breaks induced by 14.6 MeV neutrons, as cells established from normal donors. The comparison of neutrons and gamma-rays in the induction of DNA breaks did not explain the elevated r.b.e. on high LET radiation. However, a study of the variation in the spectrum of lesions induced by different radiation sources will probably contribute to the clarification of the relative importance of other radio products.  相似文献   

11.
A dose-effect relationship has been established for high-energy neutrons (maximum energy 600 MeV) within a dose range of 0.2 to 80 cGy and for low-energy neutrons produced by a 252Cf source (mean energy 2.35 MeV) for doses between 0.2 and 5 cGy. The frequency of micronuclei was found to increase linearly with dose. The relative biological effectiveness (r.b.e) values calculated using 60Co radiation as a reference were, in the high-dose region, 4.7 +/- 0.4 and 11.8 +/- 1.3 for the high- and low-energy neutrons, respectively. At doses below 1 cGy constant values of 25.4 +/- 4.4 and 63.7 +/- 12 were reached for the respective neutron energies.  相似文献   

12.
A further study on the response of the mouse kidney to d(4)-Be neutrons (EN = 2.3 MeV) is described. The results confirm and augment the work published previously by Stewart et al. [Br. J. Radiol. 57, 1009-1021 (1984)]; the present paper includes the data from a "top-up" design of experiment which extends the measurements of neutron RBE (relative to 240 kVp X rays) down to X-ray doses of 0.75 Gy per fraction. The mean RBE for these neutrons increases from 5.8 to 7.3 as X-ray dose per fraction decreases from 3.0 to 1.5 Gy in the kidney. This agrees with the predictions from the linear quadratic (LQ) model, based on the renal response to X-ray doses above 4 Gy per fraction. The mean RBE estimate from a single dose group at 0.75 Gy per fraction of X rays is, however, 3.9. This is below the LQ prediction and may indicate increasing X-ray sensitivity at low doses. Data from this study and from those published previously have been used to determine more accurately the shape of the underlying response to d(4)-Be neutrons; an alpha/beta ratio of 20.5 +/- 3.7 Gy was found. The best value of alpha/beta for X rays determined from these experiments was 3.04 +/- 0.35 Gy, in agreement with previous values.  相似文献   

13.
The effectiveness of neutrons from a facsimile of the Hiroshima bomb was determined cytogenetically. The "Little-Boy" replica (LBR), assembled at Los Alamos as a controlled nuclear reactor for detailed physical dosimetry, was used. Of special interest, the neutron energy characteristics (including lineal energy) measured 0.74 m from the LBR were remarkably similar to those calculated for the 1945 Hiroshima bomb at 1 to 2 km from the hypocenter, as shown in a companion dosimetric paper (Straume, et al., Radiat. Res. 128, 133-142 (1991)). Thus we examine here the effectiveness of neutrons closely resembling those that the A-bomb survivors received at Hiroshima. Chromosome aberration frequencies were determined in human blood lymphocytes exposed in vitro to graded doses of LBR radiation (97% neutrons, 3% gamma rays). Vials of blood suspended in air at distances up to 2.10 m from the center of the LBR uranium core received doses ranging from 0.02 to 2.92 Gy. The LBR neutrons (E approximately 0.2 MeV) produced 1.18 dicentrics and rings per cell per Gy. They were more effective than the higher-energy fission neutrons (E approximately 1 MeV) commonly used in radiobiology. The maximum RBE (RBEM) of LBR neutrons at low doses is estimated to be 60 to 80 compared to 60Co gamma rays and 22 to 30 compared to 250-kVp X rays. These results provide a quantitative measurement of the biological effectiveness of Hiroshima-like neutrons.  相似文献   

14.
The influence of various doses of external radiation to survive, growth and productivity of hybrid broiler and egg-laying leghorn chicken was studied in comparative aspect. It was found that broiler radio-resistanse is 1.5 times higher than that of leghorns: LD50/30 of 10-days broilers is equal to 16.3 +/- 0.7 Gy, while LD50/30 of 10-days leghorns is equal to 11.0 +/- 0.9 Gy.  相似文献   

15.
The effects of bremsstrahlung, electron, gamma, and neutron radiations were investigated on the motor performance of male Sprague-Dawley rats. Rats were irradiated at a midline tissue dose rate of 20 Gy/min +/- 1 with one of the following: 18.6-MeV electrons (N = 40) or 18.1-MVp bremsstrahlung (N = 57) from a linear accelerator, 60Co 1.25-MeV gamma-ray photons (N = 48), or reactor neutrons at 1.67 MeV tissue-kerma weighted-mean energy (N = 43). Radiation effects were determined by establishing median effective doses (ED50) for rats trained on an accelerod, a shock-avoidance motor performance test. ED50's were based on 10-min postexposure performance. The ED50's were 61 Gy for electrons, 81 Gy for bremsstrahlung, 89 Gy for gamma-ray photons, and 98 Gy for neutrons. In terms of relative biological effectiveness to produce early performance decrement (10 min from the start of irradiation), significant differences existed between the electrons and the other three fields and between the bremsstrahlung and neutron fields. These differences could not be explained by macroscopic dose distribution patterns in the irradiated animals. The data imply that different radiation qualities are not equally effective at disrupting performance, with high-energy electrons being the most effective and neutrons the least.  相似文献   

16.
A filtered reactor beam, consisting mainly of 24 keV neutrons, was used to study the induction of chromosome aberrations in the V79/4(AH1) Chinese hamster cell line. The yields of both dicentrics and acentrics were linear with dose and the value of relative biological effectiveness (RBE) for dicentrics at low doses was 6.5 +/- 1.4. This value was similar to that found previously for a neutron spectrum with mean energy 2.1 MeV, and suggests that the RBE of neutrons does not increase to very high values in the energy region below 100 keV. This result does not support the suggestions of Davy (1969) and Key (1971) that the neutron RBE rises to very high values in the intermediate energy range.  相似文献   

17.
It was shown by method of cytokinetic blocking that with neutron irradiation of human lymphocyte culture (mean energy of 0.85 MeV, doses of 0.05 to 2 Gy) the dose-response relationship, with respect to the share of binuclear cells with micronuclei and the frequency of micronuclei in binuclear cells, was of a multiphase nature with a more or less manifest plateau within the dose-range from 0.5 to 1.0 Gy. Both micronuclear tests may be used for indicating the degree of radiation injury to the organism caused by neutrons of the above-mentioned energy and doses of 0.05-0.5 Gy.  相似文献   

18.
The early effects of an irradiation on the intestinal epithelium have been evaluated, at the tissular level, by LD50 after single and multifraction irradiation, and, at the cellular level, by numeration of the regenerated intestinal crypts (Withers technique) after a single fraction irradiation. From the set of informations provided by both criteria, one derived the values of the parameters defining the survival curve of the intestinal clonogenic crypt cells after irradiation by gamma-rays (two component model): D0 = 1.5 Gy, 1D0 = 4.5 Gy, nD0 = 2.25 Gy and n = 20. In other respects, the p(65) + Be neutrons RBE (ref. 60-Cobalt) after a single fraction irradiation is equal to 1.75 +/- 0.2 and 1.64 +/- 0.25 for the LD50 at the 5th day and for the regeneration of 50 crypts after 3.5 days respectively.  相似文献   

19.
Seventy-six 8 week old Mongolian gerbils were exposed to acute, whole-body fast neutrons produced by The University of Michigan 83-in. cyclotron. Groups of seven or eigth gerbils were given doses between 485 and 881 rad at 25 rad per minute. The LD 50/30 determined by probit analysis was 750 rad, with 95 per cent fiducial limits of 733 and 776. For the 50 per cent mortality level, an r.b.e. of fast neutrons compared with cobalt-60 of 1-45 was determined. For the same end-point, the r.b.e. for fast neutrons compared with X-rays is 1-33. Mortality data, body-weight and microhaematocrit changes are discussed.  相似文献   

20.
A spherical graphite calorimeter was used to determine the ratio of kerma to influence (kerma factor) for neutrons whose mean energy was approximately 14.6 MeV. The calorimeter was used to measure carbon kerma, while activation foils of Al and Au were used to determine the neutron fluence. The calorimeter was constructed specifically to measure kerma in neutron fields. The amount of graphite and other materials was kept to a minimum to reduce absorption and scattering of the neutrons. Ionization chambers were used to measure A-150 plastic kerma and to monitor the intensity of the exposures. The value for the carbon kerma factor was determined to be 1.80 +/- 0.16 X 10(-11) Gy X cm2. The relationship of this value to other recent measurements and calculations at similar neutron energies is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号