首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Caulobacter crescentus differentiates from a motile, foraging swarmer cell into a sessile, replication-competent stalked cell during its cell cycle. This developmental transition is inhibited by nutrient deprivation to favor the motile swarmer state. We identify two cell cycle regulatory signals, ppGpp and polyphosphate (polyP), that inhibit the swarmer-to-stalked transition in both complex and glucose-exhausted media, thereby increasing the proportion of swarmer cells in mixed culture. Upon depletion of available carbon, swarmer cells lacking the ability to synthesize ppGpp or polyP improperly initiate chromosome replication, proteolyze the replication inhibitor CtrA, localize the cell fate determinant DivJ, and develop polar stalks. Furthermore, we show that swarmer cells produce more ppGpp than stalked cells upon starvation. These results provide evidence that ppGpp and polyP are cell-type-specific developmental regulators.  相似文献   

3.
For successful generation of different cell types by asymmetric cell division, cell differentiation should be initiated only after completion of division. Here, we describe a control mechanism by which Caulobacter couples the initiation of a developmental program to the completion of cytokinesis. Genetic evidence indicates that localization of the signaling protein DivK at the flagellated pole prevents premature initiation of development. Photobleaching and FRET experiments show that polar localization of DivK is dynamic with rapid pole-to-pole shuttling of diffusible DivK generated by the localized activities of PleC phosphatase and DivJ kinase at opposite poles. This shuttling is interrupted upon completion of cytokinesis by the segregation of PleC and DivJ to different daughter cells, resulting in disruption of DivK localization at the flagellated pole and subsequent initiation of development in the flagellated progeny. Thus, dynamic polar localization of a diffusible protein provides a control mechanism that monitors cytokinesis to regulate development.  相似文献   

4.
Summary: Caulobacter crescentus is an aquatic Gram-negative alphaproteobacterium that undergoes multiple changes in cell shape, organelle production, subcellular distribution of proteins, and intracellular signaling throughout its life cycle. Over 40 years of research has been dedicated to this organism and its developmental life cycles. Here we review a portion of many developmental processes, with particular emphasis on how multiple processes are integrated and coordinated both spatially and temporally. While much has been discovered about Caulobacter crescentus development, areas of potential future research are also highlighted.  相似文献   

5.
6.
7.
The bacterium Caulobacter crescentus divides asymmetrically, producing daughter cells with differing polar structures, different cell fates and asymmetric regulation of the initiation of chromosome replication. Complex intracellular signaling is required to keep the organelle developmental processes at the cell poles synchronized with other cell cycle events. Two recently characterized switch mechanisms controlling cell cycle progress are triggered by relatively large-scale developmental events in the cell: the progress of the DNA replication fork and the physical compartmentalization of the cell that occurs well before division. These mechanisms invoke rapid, precisely timed and even spatially differentiated regulatory responses at important points in the cell cycle.  相似文献   

8.
Paul R  Jaeger T  Abel S  Wiederkehr I  Folcher M  Biondi EG  Laub MT  Jenal U 《Cell》2008,133(3):452-461
The two-component phosphorylation network is of critical importance for bacterial growth and physiology. Here, we address plasticity and interconnection of distinct signal transduction pathways within this network. In Caulobacter crescentus antagonistic activities of the PleC phosphatase and DivJ kinase localized at opposite cell poles control the phosphorylation state and subcellular localization of the cell fate determinator protein DivK. We show that DivK functions as an allosteric regulator that switches PleC from a phosphatase into an autokinase state and thereby mediates a cyclic di-GMP-dependent morphogenetic program. Through allosteric activation of the DivJ autokinase, DivK also stimulates its own phosphorylation and polar localization. These data suggest that DivK is the central effector of an integrated circuit that operates via spatially organized feedback loops to control asymmetry and cell fate determination in C. crescentus. Thus, single domain response regulators can facilitate crosstalk, feedback control, and long-range communication among members of the two-component network.  相似文献   

9.
Penicillin G at low concentrations blocked cell division in Caulobacter crescentus without inhibiting cell growth. The long filamentous cells formed after two to three generations under these conditions had a stalk at one pole and usually one or more flagella at the opposite pole. The failure of the filaments to form a second stalk at the flagellated pole indicates that stalk formation was dependent upon completion of a step that was also required for cell division. Two observations support this conclusion. (i) Penicillin did not stop the normal development of synchronous swarmer cells into stalked initiation and stalk elongation. (ii) When the action of penicillin was reversed by the addition of penicillinase to cultures of filaments, stalks were not formed at the nonstalked pole until after cell division had occurred; thus the normal order of development events was maintained: cell division leads to stalk formation. These results are consistent with a model in which the organization of the developmental program for stalk formation occurs before cell division as a consequence of steps that branch from the cell division pathway.  相似文献   

10.
The energy-dependent proteases originally defined in Escherichia coli have proven to have particularly important roles in bacterial developmental systems, including sporulation in Bacillus subtilis and cell cycle in Caulobacter. Degradation of key regulatory proteins participates, with regulation of synthesis and activity of the regulators, to ensure tight control and, where required, irreversible commitment of the cell to specific developmental pathways.  相似文献   

11.
Development in Caulobacter reflects a level of complexity once thought only to exist in eukaryotic cells. The cell cycle and development are not isolated from each other, but are interdependent processes. Checkpoints are in place to ensure that both cell cycle and developmental processes are completed accurately before the next stage is initiated. The timing of these processes is regulated by signal transduction networks that integrate signals from DNA replication, cell division and development. These signal transduction networks achieve precise timing of the cell cycle and development by regulating temporal gene expression, and protein activity by dynamic spatial localization within the cell and timed proteolysis.  相似文献   

12.
Progression through the Caulobacter crescentus cell cycle is coupled to a cellular differentiation program. The swarmer cell is replicationally quiescent, and DNA replication initiates at the swarmer-to-stalked cell transition. There is a very short delay between initiation of DNA replication and movement of one of the newly replicated origins to the opposite pole of the cell, indicating the absence of cohesion between the newly replicated origin-proximal parts of the Caulobacter chromosome. The terminus region of the chromosome becomes located at the invaginating septum in predivisional cells, and the completely replicated terminus regions stay associated with each other after chromosome replication is completed, disassociating very late in the cell cycle shortly before the final cell division event. Invagination of the cytoplasmic membrane occurs earlier than separation of the replicated terminus regions and formation of separate nucleoids, which results in trapping of a chromosome on either side of the cell division septum, indicating that there is not a nucleoid exclusion phenotype.  相似文献   

13.
Spatial complexity and control of a bacterial cell cycle   总被引:3,自引:0,他引:3  
A major breakthrough in understanding the bacterial cell cycle is the discovery that bacteria exhibit a high degree of intracellular organization. Chromosomal loci and many protein complexes are positioned at particular subcellular sites. In this review, we examine recently discovered control mechanisms that make use of dynamically localized protein complexes to orchestrate the Caulobacter crescentus cell cycle. Protein localization, notably of signal transduction proteins, chromosome partition proteins, and proteases, serves to coordinate cell division with chromosome replication and cell differentiation. The developmental fate of daughter cells is decided before completion of cytokinesis, via the early establishment of cell polarity by the distribution of activated signaling proteins, bacterial cytoskeleton, and landmark proteins.  相似文献   

14.
15.

Background  

Each Caulobacter crescentus cell division yields two distinct cell types: a flagellated swarmer cell and a non-motile stalked cell. The swarmer cell is further distinguished from the stalked cell by an inability to reinitiate DNA replication, by the physical properties of its nucleoid, and its discrete program of gene expression. Specifically, with regard to the latter feature, many of the genes involved in DNA replication are not transcribed in swarmer cells.  相似文献   

16.
Caulobacter crescentus has a dimorphic life cycle composed of a motile stage and a sessile stage. In the sessile stage, C. crescentus is often found tightly attached to a surface through its adhesive holdfast. In this study, we examined the contribution of growth and external structures to the attachment of C. crescentus to abiotic surfaces. We show that the holdfast is essential but not sufficient for optimal attachment. Rather, adhesion in C. crescentus is a complex developmental process. We found that the attachment of C. crescentus to surfaces is cell cycle regulated and that growth or energy or both are essential for this process. The initial stage of attachment occurs in swarmer cells and is facilitated by flagellar motility and pili. Our results suggest that strong attachment is mediated by the synthesis of a holdfast as the swarmer cell differentiates into a stalked cell.  相似文献   

17.
18.
Bacterial cells maintain sophisticated levels of intracellular organization that allow for signal amplification, response to stimuli, cell division, and many other critical processes. The mechanisms underlying localization and their contribution to fitness have been difficult to uncover, due to the often challenging task of creating mutants with systematically perturbed localization but normal enzymatic activity, and the lack of quantitative models through which to interpret subtle phenotypic changes. Focusing on the model bacterium Caulobacter crescentus, which generates two different types of daughter cells from an underlying asymmetric distribution of protein phosphorylation, we use mathematical modeling to investigate the contribution of the localization of histidine kinases to the establishment of cellular asymmetry and subsequent developmental outcomes. We use existing mutant phenotypes and fluorescence data to parameterize a reaction-diffusion model of the kinases PleC and DivJ and their cognate response regulator DivK. We then present a systematic computational analysis of the effects of changes in protein localization and abundance to determine whether PleC localization is required for correct developmental timing in Caulobacter. Our model predicts the developmental phenotypes of several localization mutants, and suggests that a novel strain with co-localization of PleC and DivJ could provide quantitative insight into the signaling threshold required for flagellar pole development. Our analysis indicates that normal development can be maintained through a wide range of localization phenotypes, and that developmental defects due to changes in PleC localization can be rescued by increased PleC expression. We also show that the system is remarkably robust to perturbation of the kinetic parameters, and while the localization of either PleC or DivJ is required for asymmetric development, the delocalization of one of these two components does not prevent flagellar pole development. We further find that allosteric regulation of PleC observed in vitro does not affect the predicted in vivo developmental phenotypes. Taken together, our model suggests that cells can tolerate perturbations to localization phenotypes, whose evolutionary origins may be connected with reducing protein expression or with decoupling pre- and post-division phenotypes.  相似文献   

19.
Localization of kinases and other signalling molecules at discrete cellular locations is often an essential component of signal transduction in eukaryotes. Caulobacter crescentus is a small, single-celled bacterium that presumably lacks intracellular organelles. Yet in Caulobacter, the subcellular distribution of several two-component signal transduction proteins involved in the control of polar morphogenesis and cell cycle progression changes from a fairly dispersed distribution to a tight accumulation at one or both poles in a spatial and temporal pattern that is reproduced during each cell cycle. This cell cycle-dependent choreography suggests that similarly to what happens in eukaryotes, protein localization provides a means of modulating signal transduction in bacteria. Recent studies have provided important insights into the biological role and the mechanisms for the differential localization of these bacterial signalling proteins during the Caulobacter cell cycle.  相似文献   

20.
Adhesion of bacterial cells to surfaces can be mediated by a wide variety of extracellular structures, which can either recognize specific molecular motifs or adhere in non-specific ways to multiple types of surfaces. The attachment is thought to be highly regulated, but the underlying sensory mechanism(s) are poorly understood. In the α-proteobacterium Caulobacter crescentus, the formation of adhesive organelles is 'hardwired' into the cell cycle regulatory circuitry. In this issue of Molecular Microbiology, Li et al. (2011) employed this model organism to examine the adhesion process and the transition from temporary to permanent attachment using total internal reflection fluorescence (TIRF) microscopy. Surprisingly, they observed that adhesin production was not only under developmental control, but was also stimulated by surface contact. Initial reversible contact of the pili with the surface was followed by flagellum rotation arrest and subsequent induction of the holdfast to allow irreversible surface adhesion. These findings demonstrate that Caulobacter produces its holdfast only at the appropriate time for surface attachment, preventing premature export of the adhesin, which could then be inactivated by 'curing' or be masked by occluding particles. Importantly, their results support the notion that the flagellum serves as a mechanosensor for adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号