首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BACKGROUND: Recent data have demonstrated that treatment with sodium benzoate (SB) leads to significant developmental defects in motor neuron axons and neuromuscular junctions in zebrafish larvae, thereby implying that SB can be neurotoxic. This study examined whether SB affects the development of dopaminergic neurons in the zebrafish brain. METHODS: Zebrafish embryos were exposed to different concentrations of SB for various durations, during which the survival rates were recorded, the expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the neurons in the ventral diencephalon were detected by in situ hybridization and immunofluorescence, and the locomotor activity of larval zebrafish was measured. RESULTS: The survival rates were significantly decreased with the increase of duration and dose of SB-treatment. Compared to untreated clutch mates (untreated controls), treatment with SB significantly downregulated expression of TH and DAT in neurons in the ventral diencephalon of 3-day post-fertilization (dpf) zebrafish embryos in a dose-dependent manner. Furthermore, there was a marked decrease in locomotor activity in zebrafish larvae at 6dpf in response to SB treatment. CONCLUSIONS: The results suggest that SB exposure can cause significantly decreased survival rates of zebrafish embryos in a time- and dose-dependent manner and downregulated expression of TH and DAT in dopaminergic neurons in the zebrafish ventral diencephalon, which results in decreased locomotor activity of zebrafish larvae. This study may provide some important information for further elucidating the mechanism underlying SB-induced developmental neurotoxicity. Birth Defects Res (Part B)86: 85-91, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

3.
L-fucose, a monosaccharide widely distributed in eukaryotes and certain bacteria, is a determinant of many functional glycans that play central roles in numerous biological processes. The molecular mechanism, however, by which fucosylation mediates these processes remains largely elusive. To study how changes in fucosylation impact embryonic development, we up-regulated N-linked fucosylation via over-expression of a key GDP-Fucose transporter, Slc35c1, in zebrafish. We show that Slc35c1 overexpression causes elevated N-linked fucosylation and disrupts embryonic patterning in a transporter activity dependent manner. We demonstrate that patterning defects associated with enhanced N-linked fucosylation are due to diminished canonical Wnt signaling. Chimeric analyses demonstrate that elevated Slc35c1 expression in receiving cells decreases the signaling range of Wnt8a during zebrafish embryogenesis. Moreover, we provide biochemical evidence that this decrease is associated with reduced Wnt8 ligand and elevated Lrp6 coreceptor, which we show are both substrates for N-linked fucosylation in zebrafish embryos. Strikingly, slc35c1 expression is regulated by canonical Wnt signaling. These results suggest that Wnt limits its own signaling activity in part via up-regulation of a transporter, slc35c1 that promotes terminal fucosylation and thereby limits Wnt activity.  相似文献   

4.
The mechanisms and treatment of psychomotor retardation, which includes motor and cognitive impairment, are indefinite. The Allan-Herndon-Dudley syndrome (AHDS) is an X-linked psychomotor retardation characterized by delayed development, severe intellectual disability, muscle hypotonia, and spastic paraplegia, in combination with disturbed thyroid hormone (TH) parameters. AHDS has been associated with mutations in the monocarboxylate transporter 8 (mct8/slc16a2) gene, which is a TH transporter. In order to determine the pathophysiological mechanisms of AHDS, MCT8 knockout mice were intensively studied. Although these mice faithfully replicated the abnormal serum TH levels, they failed to exhibit the neurological and behavioral symptoms of AHDS patients. Here, we generated an mct8 mutant (mct8−/−) zebrafish using zinc-finger nuclease (ZFN)-mediated targeted gene editing system. The elimination of MCT8 decreased the expression levels of TH receptors; however, it did not affect the expression of other TH-related genes. Similar to human patients, mct8−/− larvae exhibited neurological and behavioral deficiencies. High-throughput behavioral assays demonstrated that mct8−/− larvae exhibited reduced locomotor activity, altered response to external light and dark transitions and an increase in sleep time. These deficiencies in behavioral performance were associated with altered expression of myelin-related genes and neuron-specific deficiencies in circuit formation. Time-lapse imaging of single-axon arbors and synapses in live mct8−/− larvae revealed a reduction in filopodia dynamics and axon branching in sensory neurons and decreased synaptic density in motor neurons. These phenotypes enable assessment of the therapeutic potential of three TH analogs that can enter the cells in the absence of MCT8. The TH analogs restored the myelin and axon outgrowth deficiencies in mct8−/− larvae. These findings suggest a mechanism by which MCT8 regulates neural circuit assembly, ultimately mediating sensory and motor control of behavioral performance. We also propose that the administration of TH analogs early during embryo development can specifically reduce neurological damage in AHDS patients.  相似文献   

5.
The SLC2A10 gene located on chromosome 20q13.1 encodes the facilitative glucose transporter 10 (GLUT10), a class III member of the SLC2A facilitative glucose transporter family. Mutations in the human SLC2A10 gene cause arterial tortuosity syndrome (ATS), a rare autosomal recessive connective tissue disorder. In this work, we report the characterization of the slc2a10 ortholog gene in zebrafish (Danio rerio) and its expression pattern during embryonic development and in adult tissues. The slc2a10 gene consists of 5 exons, spanning 8 kb and mapping to a region on chromosome 11 that exhibits conserved synteny with human chromosome 20. The gene encodes Glut10, a 513 amino acid protein that maintains the 12 transmembrane domain structure typical of the GLUTs family, and shares the specific functional motifs involved in sugar transport with the vertebrate GLUT10. RT-PCR analysis showed that two specific splice variants, both including the 5’-UTR region, were expressed during embryogenesis and in different adult zebrafish tissues and organs. In situ hybridization analyses demonstrated a maternal origin of the total slc2a10 mRNA and its ubiquitous distribution until the early somitogenesis stage. In later embryonic stages, slc2a10 mRNA was detected in the otic vesicles, hatching gland cells, pectoral fin, posterior tectum and swim bladder. Overall, these results suggest a wide role of slc2a10 during zebrafish development.  相似文献   

6.
7.
The neural circuitry that constrains visual acuity in the CNS has not been experimentally identified. We show here that zebrafish blumenkohl (blu) mutants are impaired in resolving rapid movements and fine spatial detail. The blu gene encodes a vesicular glutamate transporter expressed by retinal ganglion cells. Mutant retinotectal synapses release less glutamate, per vesicle and per terminal, and fatigue more quickly than wild-type in response to high-frequency stimulation. In addition, mutant axons arborize more extensively, thus increasing the number of synaptic terminals and effectively normalizing the combined input to postsynaptic cells in the tectum. This presumably homeostatic response results in larger receptive fields of tectal cells and a degradation of the retinotopic map. As predicted, mutants have a selective deficit in the capture of small prey objects, a behavior dependent on the tectum. Our studies successfully link the disruption of a synaptic protein to complex changes in neural circuitry and behavior.  相似文献   

8.
Locomotor behaviors were examined in two experiments using zebrafish (Danio rerio) larvae at 4, 5, 6 and 7 days post fertilization (dpf). Larvae were observed in individual wells of a 12-well plate for 1 h a day. In Experiment 1, the same larvae were observed for four consecutive days beginning on post-fertilization day 4; in Experiment 2, different groups of larvae from the same egg collection were observed at 4, 5, 6 and 7 dpf. Automated images collected every 6 s were analyzed for information about larval location, orientation and general activity. In both experiments, 4 dpf larvae rested significantly more, used a smaller area of the well more frequently, and were generally less active than older larvae. All larvae exhibited a preference for facing away from the center of the well and for the edge of the well. However, prolonged exposure to the well influenced overall activity, orientation, and preference for the edge region. The implications of these results for understanding the development of larval behavior and for the design of procedures to measure the effects of experience in zebrafish larvae are discussed.  相似文献   

9.
Manganese (manganese ion; referred to as Mn) is essential for neuronal function, yet it is toxic at high concentrations. Environmental and occupational exposure to high concentrations of Mn causes manganism, a well-defined movement disorder in humans, with symptoms resembling Parkinson’s disease (PD). However, manganism is distinct from PD and the neural basis of its pathology is poorly understood. To address this issue, we generated a zebrafish model of manganism by incubating larvae in rearing medium containing Mn. We find that Mn-treated zebrafish larvae exhibit specific postural and locomotor defects. Larvae begin to float on their sides, show a curved spine and swim in circles. We discovered that treatment with Mn causes postural defects by interfering with mechanotransduction at the neuromasts. Furthermore, we find that the circling locomotion could be caused by long-duration bursting in the motor neurons, which can lead to long-duration tail bends in the Mn-treated larvae. Mn-treated larvae also exhibited fewer startle movements. Additionally, we show that the intensity of tyrosine hydroxylase immunoreactivity is reversibly reduced after Mn-treatment. This led us to propose that reduced dopamine neuromodulation drives the changes in startle movements. To test this, when we supplied an external source of dopamine to Mn-treated larvae, the larvae exhibited a normal number of startle swims. Taken together, these results indicate that Mn interferes with neuronal function at the sensory, motor and modulatory levels, and open avenues for therapeutically targeted studies on the zebrafish model of manganism.KEY WORDS: Zebrafish, Manganism, Mechanotransduction, Fictive motor patterns, Dopaminergic neurons  相似文献   

10.
Slc25a17 is known as a peroxisomal solute carrier, but the in vivo role of the protein has not been demonstrated. We found that the zebrafish genome contains two slc25a17 genes that function redundantly, but additively. Notably, peroxisome function in slc25a17 knockdown embryos is severely compromised, resulting in an altered lipid composition. Along the defects found in peroxisome-associated phenotypic presentations, we highlighted that development of the swim bladder is also highly dependent on Slc25a17 function. As Slc25a17 showed substrate specificity towards coenzyme A (CoA), injecting CoA, but not NAD+, rescued the defective swim bladder induced by slc25a17 knockdown. These results indicated that Slc25a17 acts as a CoA transporter, involved in the maintenance of functional peroxisomes that are essential for the development of multiple organs during zebrafish embryogenesis. Given high homology in protein sequences, the role of zebrafish Slc25a17 may also be applicable to the mammalian system.  相似文献   

11.
Glutamate, the major excitatory transmitter in the vertebrate brain, is removed from the synaptic cleft by a family of sodium‐dependent glutamate transporters profusely expressed in glial cells. Once internalized, it is metabolized by glutamine synthetase to glutamine and released to the synaptic space through sodium‐dependent neutral amino acid carriers of the N System (SNAT3/slc38a3/SN1, SNAT5/slc38a5/SN2). Glutamine is then taken up by neurons completing the so‐called glutamate/glutamine shuttle. Despite of the fact that this coupling was described decades ago, it is only recently that the biochemical framework of this shuttle has begun to be elucidated. Using the established model of cultured cerebellar Bergmann glia cells, we sought to characterize the functional and physical coupling of glutamate uptake and glutamine release. A time‐dependent Na+‐dependent glutamate/aspartate transporter/EAAT1‐induced System N‐mediated glutamine release could be demonstrated. Furthermore, D‐aspartate, a specific glutamate transporter ligand, was capable of enhancing the co‐immunoprecipitation of Na+‐dependent glutamate/aspartate transporter and Na+‐dependent neutral amino acid transporter 3, whereas glutamine tended to reduce this association. Our results suggest that glial cells surrounding glutamatergic synapses may act as sensors of neuron‐derived glutamate through their contribution to the neurotransmitter turnover.  相似文献   

12.
Skin pigmentation is a highly heterogeneous trait with diverse consequences worldwide. SLC24A5, encoding a potent K+‐dependent Na+/Ca2+ exchanger, is among the known color‐coding genes that participate in melanogenesis by maintaining pH in melanosomes. Deficient SLC24A5 activity results in oculocutaneous albinism (OCA) type 6 in humans. In this study, by utilizing a exome sequencing (ES) approach, we identified two new variants [p. (Gly110Arg) and p. (IIe189Ilefs*1)] of SLC24A5 cosegregating with the OCA phenotype, including nystagmus, strabismus, foveal hypoplasia, albinotic fundus, and vision impairment, in three large consanguineous Pakistani families. Both of these variants failed to rescue the pigmentation in zebrafish slc24a5 morphants, confirming the pathogenic effects of the variants. We also phenotypically characterized a commercially available zebrafish mutant line (slc24a5ko) that harbors a nonsense (p.Tyr208*) allele of slc24a5. Similar to morphants, homozygous slc24a5ko mutants had significantly reduced melanin content and pigmentation. Next, we used these slc24a5ko zebrafish mutants to test the efficacy of nitisinone, a compound known to increase ocular and fur pigmentation in OCA1 (TYR) mutant mice. Treatment of slc24a5ko mutant zebrafish embryos with varying doses of nitisinone did not improve melanin production and pigmentation, suggesting that treatment with nitisinone is unlikely to be therapeutic in OCA6 patients.  相似文献   

13.
The zebrafish is a recent vertebrate model system that shows great potential for a genetic analysis of behavior. Early development is extraordinarily rapid, so that larvae already display a range of behaviors 5 days after fertilization. In particular the visual system develops precociously, supporting a number of visually mediated behaviors in the larva. This provides the opportunity to use these visually mediated behaviors to screen chemically mutagenized strains for defects in vision. Larval optokinetic and optomotor responses have already been successfully employed to screen for mutant strains with defects in the visual system. In the adult zebrafish a visually mediated escape response has proved useful for screening for dominant mutations of the visual system. Here, I summarize visually mediated behaviors of both larval and adult zebrafish and their applicability for genetic screens, and present, the approaches and results of visual behavior carried out to date.  相似文献   

14.
Similar to mammalian proximal tubular cells, H(+)-ATPase rich (HR) cells in zebrafish skin and gills are also responsible for Na(+) uptake and acid secretion functions. However, the basolateral transport pathways in HR cells are still unclear. In the present study, we tested the hypothesis if there are specific slc4 members involved in basolateral ion transport pathways in HR cells. Fourteen isoforms were identified in the zebrafish(z) slc4 family, and the full-length cDNAs of two novel isoforms, zslc4a1b (anion exchanger, zAE1b) and zslc4a4b (Na(+)/HCO(3)(-) cotransporter, zNBCe1b), were sequenced. mRNA signals of zslc4a1b and zslc4a4b were mainly detected in certain groups of ionocytes in zebrafish skin/gills. Further double immunocytochemistry or in situ hybridization demonstrated that zAE1b, but not zNBCe1b, was localized to basolateral membranes of HR cells. Acclimation to low-Na(+) or acidic environments stimulated the mRNA expression of zslc4a1b in zebrafish gills, and loss-of-function of zslc4a1b with specific morpholinos caused significant decreases in both the whole body Na(+) content and the skin H(+) activity in the morphants. On the basis of these results, it was concluded that zAE1b, but not zNBCe1b, is involved in the basolateral transport pathways in Na(+) uptake/acid secretion mechanisms in zebrafish HR cells.  相似文献   

15.
The authors show that a circadian clock that regulates locomotor activity in larval zebrafish develops gradually over the first 4 days of life and that exposure to entraining signals late in embryonic development is necessary for initiation of robust behavioral rhythmicity. When zebrafish larvae were transferred from a light-dark (LD) cycle to constant darkness (DD) on the third or fourth day postfertilization, the locomotor activity of almost all fish was rhythmic on days 5 to 9 postfertilization, with peak activity occurring during the subjective day. Rhythm amplitude was higher after four LD cycles than after three LD cycles. When embryos were transferred from LD to DD on the second day postfertilization, only about half of the animals later displayed statistically significant activity rhythms. These rhythms were noisier and of lower amplitude, but phased normally. When zebrafish were raised in DD beginning at 14 h postfertilization, only 22% of them expressed significant circadian rhythmicity as larvae. These rhythms were of low amplitude and phase-locked to the time of handling on the third day rather than to the maternal LD cycle. These results show that behavioral rhythmicity in zebrafish is regulated by a pacemaking system that is sensitive to light by the second day of embryogenesis but continues to develop into the fourth day. This pacemaking system requires environmental signals to initiate or synchronize circadian rhythmicity.  相似文献   

16.
To evaluate the potential for fertilization by sperm injection into fish eggs, sperm from zebrafish, Danio rerio, were microinjected directly into egg cytoplasm of two different zebrafish lines. To evaluate physiological changes of gametes on the possible performance of intracytoplasmic sperm injection (ICSI), four different combinations of injection conditions were conducted using activated or nonactivated gametes. From a total of 188 zebrafish eggs injected with sperm in all treatments, 31 (16%) developed to blastula, 28 (15%) developed to gastrula, 10 (5%) developed abnormally to larval stages, and another 3 (2%) developed normally and hatched. The highest fertilization rate (blastodisc formation) was achieved by injection of activated spermatozoa into nonactivated eggs (35%). Injections were most effective when performed within the first hour after egg collection. Flow cytometric analysis of the DNA content of the developing ICSI embryos revealed diploidy, and the use of a dominant pigment marker confirmed paternal inheritance. Our study indicates that injection of a single sperm cell into the cytoplasm of zebrafish eggs allows fertilization and subsequent development of normal larvae to hatching and beyond.  相似文献   

17.
Endogenous microbiota play essential roles in the host’s immune system, physiology, reproduction and nutrient metabolism. We hypothesized that a continuous administration of an exogenous probiotic might also influence the host’s development. Thus, we treated zebrafish from birth to sexual maturation (2-months treatment) with Lactobacillus rhamnosus, a probiotic species intended for human use. We monitored for the presence of L. rhamnosus during the entire treatment. Zebrafish at 6 days post fertilization (dpf) exhibited elevated gene expression levels for Insulin-like growth factors -I and -II, Peroxisome proliferator activated receptors -α and -β, VDR-α and RAR-γ when compared to untreated-10 days old zebrafish. Using a gonadotropin-releasing hormone 3 GFP transgenic zebrafish (GnRH3-GFP), higher GnRH3 expression was found at 6, 8 and 10 dpf upon L. rhamnosus treatment. The same larvae exhibited earlier backbone calcification and gonad maturation. Noteworthy in the gonad development was the presence of first testes differentiation at 3 weeks post fertilization in the treated zebrafish population -which normally occurs at 8 weeks- and a dramatic sex ratio modulation (93% females, 7% males in control vs. 55% females, 45% males in the treated group). We infer that administration of L. rhamnosus stimulated the IGF system, leading to a faster backbone calcification. Moreover we hypothesize a role for administration of L. rhamnosus on GnRH3 modulation during early larval development, which in turn affects gonadal development and sex differentiation. These findings suggest a significant role of the microbiota composition on the host organism development profile and open new perspectives in the study of probiotics usage and application.  相似文献   

18.
The acoustic startle response is an evolutionarily conserved avoidance behavior. Disruptions in startle behavior, particularly startle magnitude, are a hallmark of several human neurological disorders. While the neural circuitry underlying startle behavior has been studied extensively, the repertoire of genes and genetic pathways that regulate this locomotor behavior has not been explored using an unbiased genetic approach. To identify such genes, we took advantage of the stereotypic startle behavior in zebrafish larvae and performed a forward genetic screen coupled with whole genome analysis. We uncovered mutations in eight genes critical for startle behavior, including two genes encoding proteins associated with human neurological disorders, Dolichol kinase (Dolk), a broadly expressed regulator of the glycoprotein biosynthesis pathway, and the potassium Shaker-like channel subunit Kv1.1. We demonstrate that Kv1.1 and Dolk play critical roles in the spinal cord to regulate movement magnitude during the startle response and spontaneous swim movements. Moreover, we show that Kv1.1 protein is mislocalized in dolk mutants, suggesting they act in a common genetic pathway. Combined, our results identify a diverse set of eight genes, all associated with human disorders, that regulate zebrafish startle behavior and reveal a previously unappreciated role for Dolk and Kv1.1 in regulating movement magnitude via a common genetic pathway.  相似文献   

19.
Perfluorooctane sulfonate (PFOS) is a widely spread environmental contaminant. It accumulates in the brain and has potential neurotoxic effects. The exposure to PFOS has been associated with higher impulsivity and increased ADHD prevalence. We investigated the effects of developmental exposure to PFOS in zebrafish larvae, focusing on the modulation of activity by the dopaminergic system. We exposed zebrafish embryos to 0.1 or 1 mg/L PFOS (0.186 or 1.858 µM, respectively) and assessed swimming activity at 6 dpf. We analyzed the structure of spontaneous activity, the hyperactivity and the habituation during a brief dark period (visual motor response), and the vibrational startle response. The findings in zebrafish larvae were compared with historical data from 3 months old male mice exposed to 0.3 or 3 mg/kg/day PFOS throughout gestation. Finally, we investigated the effects of dexamfetamine on the alterations in spontaneous activity and startle response in zebrafish larvae. We found that zebrafish larvae exposed to 0.1 mg/L PFOS habituate faster than controls during a dark pulse, while the larvae exposed to 1 mg/L PFOS display a disorganized pattern of spontaneous activity and persistent hyperactivity. Similarly, mice exposed to 0.3 mg/kg/day PFOS habituated faster than controls to a new environment, while mice exposed to 3 mg/kg/day PFOS displayed more intense and disorganized spontaneous activity. Dexamfetamine partly corrected the hyperactive phenotype in zebrafish larvae. In conclusion, developmental exposure to PFOS in zebrafish induces spontaneous hyperactivity mediated by a dopaminergic deficit, which can be partially reversed by dexamfetamine in zebrafish larvae.  相似文献   

20.
The cysteine string proteins are integral synaptic vesicle proteins, critical for fast, Ca2+ -regulated exocytosis. Drosophila larvae with null mutations for the cysteine string protein (csp) gene have temperature-sensitive impairments of neurotransmission and presynaptic calcium removal at the neuromuscular junction. Using the larval Drosophila preparation to examine central pattern generation, we characterized the temperature sensitivity of locomotor patterns in wildtype and csp mutant larvae. Intraburst frequency of motoneuronal activity reached 100 Hz and was sufficiently high to rescue the temperature-sensitive synaptic failure in the mutant. Nevertheless, we show that deletion of the csp gene resulted in a severe deficiency in the generation of coordinated larval motor rhythms. Csp mutants that could generate patterned motor activity had slower, poorly coordinated rhythms with altered temperature sensitivity. We conclude that the temperature-sensitive paralysis characteristic of csp mutants is not a direct result of synaptic failure at neuromuscular junctions, as might be expected, but is the result of a failure of locomotor circuit operation at a higher integrative level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号