首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang YJ  Ma PF  Li DZ 《PloS one》2011,6(5):e20596

Background

Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies.

Methodology/Principal Findings

Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae.

Conclusions/Significance

The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of temperate woody bamboos, even with complete cp genome sequences, suggests that these lineages may have diverged very rapidly.  相似文献   

2.
Phylogenetic relationships within the grass family were studied using a newly obtained locus of the nuclear single copy gene topoisomerase 6 (Topo6) spanning the four exons 8–11 and the chloroplast matK gene. Data were evaluated using maximum parsimony, maximum likelihood and Bayesian methods. All analyses showed genera Streptochaeta and Anomochloa as early diverging, followed by Pharus as sister to the rest of the Poaceae, and monophyly of the subfamily Anomochlooideae was supported by the nuclear dataset. The remaining grasses formed a strongly supported and monophyletic group, which split into the major clades BEP and PACMAD in the Topo6 analyses. Monophyly of the BEP clade was strongly supported by the Topo6 data. The results showed clearly incongruity between the two sets of data, such as the different subfamilial relationships of Bambusoideae, Ehrhartoideae and Pooideae. Most of the analysed species are representatives of subfamily Pooideae, which was analysed in more detail by PCR fragment length differences of another Topo6 region spanning the exons 17–19. Monophyly of Pooideae was strongly supported by the matK data, whereas the nuclear data placed Brachyelytrum outside of the remaining Pooideae. Relationships within the early evolutionary lineages remained largely unresolved in the phylogenetic trees, but the ‘core’ Pooideae (Aveneae/Poeae tribe complex and Hordeeae) were highly supported in all analyses. The differences in amplification lengths illustrate the tribe and subtribe classification of Pooideae. The comparatively conserved structure of the newly studied Topo6 region makes it a promising marker from the nuclear genome that could be successfully PCR-amplified to study higher-level phylogenetic relationships within grasses and perhaps between families within the order Poales.  相似文献   

3.
Phylogeny of the grass family (Poaceae) from rpl16 intron sequence data   总被引:3,自引:0,他引:3  
DNA sequence data from the chloroplast noncoding rpl16 intron are used to address phylogenetic relationships among the major lineages of the grass family, with particular emphasis on the highly heterogeneous subfamily Bambusoideae and the basal lineages. Thirty-five grass sequences representing all six currently recognized major groups of the family and one outgroup sequence were analyzed using both parsimony and distance methods. The phylogenetic analyses indicated: (1) Puelia, a traditionally isolated bambusoid genus, is the most basal lineage in the BOP clade (Bambusoideae, Oryzoideae, and Pooideae); (2) the bambusoid clade is a sister group to the pooid clade; and (3) the monophyletic oryzoid clade is well separated from the bambusoid clade. The study further confirmed the recognition of two primary groups in the grass family: the BOP clade and the PACC clade (Panicoideae, Arundinoideae, Chloridoideae, and Centothecoideae); it also provided further evidence that the traditional subfamily Bambusoideae is highly heterogeneous and phylogenetically unacceptable. The data support Streptochaeteae, Anomochloeae, and Phareae as the most basal lineages among the extant grasses. Within the BOP clade, oryzoids and pooids are confirmed as two monophyletic clades, but the bambusoid clade, including only the woody bamboo tribe Bambuseae and the herbaceous bamboo tribe Olyreae, is relatively weakly supported. The study also indicated that the chloroplast noncoding region sequence data could be useful in phylogenetic analysis at relatively high taxonomic levels.  相似文献   

4.
Phylogenetic analyses of partial phytochrome B (PHYB) nuclear DNA sequences provide unambiguous resolution of evolutionary relationships within Poaceae. Analysis of PHYB nucleotides from 51 taxa representing seven traditionally recognized subfamilies clearly distinguishes three early-diverging herbaceous "bambusoid" lineages. First and most basal are Anomochloa and Streptochaeta, second is Pharus, and third is Puelia. The remaining grasses occur in two principal, highly supported clades. The first comprises bambusoid, oryzoid, and pooid genera (the BOP clade); the second comprises panicoid, arundinoid, chloridoid, and centothecoid genera (the PACC clade). The PHYB phylogeny is the first nuclear gene tree to address comprehensively phylogenetic relationships among grasses. It corroborates several inferences made from chloroplast gene trees, including the PACC clade, and the basal position of the herbaceous bamboos Anomochloa, Streptochaeta, and Pharus. However, the clear resolution of the sister group relationship among bambusoids, oryzoids, and pooids in the PHYB tree is novel; the relationship is only weakly supported in ndhF trees and is nonexistent in rbcL and plastid restriction site trees. Nuclear PHYB data support Anomochlooideae, Pharoideae, Pooideae sensu lato, Oryzoideae, Panicoideae, and Chloridoideae, and concur in the polyphyly of both Arundinoideae and Bambusoideae.  相似文献   

5.
The taxonomy of Bambusoideae is in a state of flux and phylogenetic studies are required to help resolve systematic issues. Over 60 taxa, representing all subtribes of Bambuseae and related non-bambusoid grasses were sampled. A combined analysis of five plastid DNA regions, trnL intron, trnL-F intergenic spacer, atpB-rbcL intergenic spacer, rps16 intron, and matK, was used to study the phylogenetic relationships among the bamboos in general and the woody bamboos in particular. Within the BEP clade (Bambusoideae s.s., Ehrhartoideae, Pooideae), Pooideae were resolved as sister to Bambusoideae s.s. Tribe Bambuseae, the woody bamboos, as currently recognized were not monophyletic because Olyreae, the herbaceous bamboos, were sister to tropical Bambuseae. Temperate Bambuseae were sister to the group consisting of tropical Bambuseae and Olyreae. Thus, the temperate Bambuseae would be better treated as their own tribe Arundinarieae than as a subgroup of Bambuseae. Within the tropical Bambuseae, neotropical Bambuseae were sister to the palaeotropical and Austral Bambuseae. In addition, Melocanninae were found to be sister to the remaining palaeotropical and Austral Bambuseae. We discuss phylogenetic and morphological patterns of diversification and interpret them in a biogeographic context.  相似文献   

6.
竹亚科系统学和生物地理学研究进展及存在的问题   总被引:9,自引:1,他引:8  
郭振华  李德铢 《云南植物研究》2002,24(4):431-438,462
对近年来在竹亚科作为一个单系类群的界定、其系统位置的确定、内部系统演化趋势以及地理分布和起源方面研究所取得的进展进行了评述。竹亚科作为一个单系类群仅包括了木本的竹族(Bambuseae)和一个草本的莪利竹族(Olyreae),其中莪利竹族分布在新几内亚的伊里安竹(Buergersiochloa)处于Olyreae最基部。禾本科12个亚科中除了3个亚科为基部类群以外,其余9个亚科分成PACCAD(包括黍亚科,狭义的芦竹亚科,广义的虎尾草亚科,假淡竹叶亚科,三芒草亚科和扁芒草亚科)和BOP单系分支(包括竹亚科,稻亚科和早熟禾亚科)。在BOP支中,竹亚科与早熟禾亚科相近缘,共同组成稻亚科的姐妹群。竹亚科分成草本和木本两个单系类群,木本竹子又分成热带和温带支系,热带支系进一步分成新世界热带和旧世界热带两个单系类群。从现有的化石证据和基部类群的地理分布推断,竹亚科很可能起源于晚白垩纪的冈瓦纳古陆。最后,本文就竹亚科研究尚存在的问题做了初步探讨。  相似文献   

7.
The fully sequenced chloroplast genomes of maize (subfamily Panicoideae), rice (subfamily Bambusoideae), and wheat (subfamily Pooideae) provide the unique opportunity to investigate the evolution of chloroplast genes and genomes in the grass family (Poaceae) by whole-genome comparison. Analyses of nucleotide sequence variations in 106 cereal chloroplast genes with tobacco sequences as the outgroup suggested that (1) most of the genic regions of the chloroplast genomes of maize, rice, and wheat have evolved at similar rates; (2) RNA genes have highly conservative evolutionary rates relative to the other genes; (3) photosynthetic genes have been under strong purifying selection; (4) between the three cereals, 14 genes which account for about 28% of the genic region have evolved with heterogeneous nucleotide substitution rates; and (5) rice genes tend to have evolved more slowly than the others at loci where rate heterogeneity exists. Although the mechanism that underlies chloroplast gene diversification is complex, our analyses identified variation in nonsynonymous substitution rates as a genetic force that generates heterogeneity, which is evidence of selection in chloroplast gene diversification at the intrafamilial level. Phylogenetic trees constructed with the variable nucleotide sites of the chloroplast genes place maize basal to the rice-wheat clade, revealing a close relationship between the Bambusoideae and Pooideae.  相似文献   

8.
A cladistic analysis of chloroplast DNA restriction site variation among representatives of all subfamilies of the grass family (Poaceae), using Joinvillea (Joinvilleaceae) as the outgroup, placed most genera into two major clades. The first of these groups corresponds to a broadly circumscribed subfamily Pooideae that includes all sampled representatives of Ampelodesmeae, Aveneae, Brachypodieae, Bromeae, Diarrheneae, Meliceae, Poeae, Stipeae, and Triticeae. The second major clade includes all sampled representatives of four subfamilies (Panicoideae [tribes Andropogoneae and Paniceae], Arundinoideae [Arundineae], Chloridoideae [Eragrostideae], and Centothecoideae [Centotheceae]). Within this group (the “PACC” clade), the Panicoideae are resolved as monophyletic and as the sister group of the clade that comprises the other three subfamilies. Within the latter group, Danthonia (Arundinoideae) and Eragroslis (Chloridoideae) are resolved as a stable monophyletic group that excludes Phragmites (Arundinoideae); this structure is inconsistent with the Arundinoideae being monophyletic as currently circumscribed. The PACC clade is placed within a more inclusive though unstable clade that includes the woody Bambusoideae (Bambuseae) plus several disparate tribes of herbaceous grasses of uncertain affinity that are often recognized as herbaceous Bambusoideae (Brachyelytreae, Nardeae, Olyreae, Oryzeae, and Phareae). Among eight most-parsimonious trees resolved by the analysis, four include a monophyletic Bambusoideae sensu lato (comprising Bambuseae and all five of these herbaceous tribes) as the sister group of the PACC clade; in the other four trees these bambusoid elements are not resolved as monophyletic, and the PACC clade is nested among these tribes. These results are consistent with those of previous analyses that resolve a basal or near-basal branch within the family between Pooideae and all other grasses. However, resolution by the present analysis of the PACC clade, which includes Centothecoideae, Chloridoideae, and Panicoideae, but excludes Bambusoideae, is inconsistent with the results of previous analyses that place Bambusoideae and Panicoideae in a monophyletic group that excludes Centothecoideae and Chloridoideae.  相似文献   

9.
Explaining relationships between species richness and biogeographical patterns over a broad geographic scale is a central issue of biogeography and macroecology. We document the realized climate niches for grasses in China’s nature reserves and discuss its formation mechanism using grass richness data combined with climatic, physiological, and phylogenetic data. Our results suggest that climate niche structure of grasses is phylogenetically conservative for BEP (Bambusoideae, Ehrhartoideae, and Pooideae) and PACMAD (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae) clades along temperature gradients and for Chloridoideae and Panicoideae along precipitation gradients. At the national scale, the divergence patterns of climate niches between two major clades are more distinguishable than between C3 and C4 grasses. High rates of climate niche evolution are found in C4 clades in the subtropical forest region. There appears to be a strong association between elevation gradients and grass diversity: the specific environmental conditions (e.g. energy) and the rapid shifts of climate conditions drive high grass diversification. Evolutionary conservatism of climate niches may be influenced by the specific adaptive ability to changing environmental conditions within NAD-ME/NADP-ME clades. Our results indicate that adaptations to major climate changes may be accomplished by C4 grass nodes of high climate niche evolutionary rates in China’s nature reserves.  相似文献   

10.
A phylogenetic analysis of the grass family (Poaceae) was conducted using two character sets, one representing variation in 364 mapped and cladistically informative restriction sites from all regions of the chloroplast genome, the other representing variation in 42 informative “structural characters.” The structural character set includes morphological, anatomical, chromosomal, and biochemical features, plus structural features of the chloroplast genome. The taxon sample comprises 75 exemplar taxa, including 72 representatives of Poaceae and one representative of each of three related families (Flagellariaceae, Restionaceae, and Join-villeaceae);Flagellaria served as the outgroup for the purpose of cladogram rooting. Among the grasses, 24 tribes and all 16 subfamilies of grasses recognized by various modern authors were sampled. Transformations of structural characters are mapped onto the phylogenetic hypotheses generated by the analysis, and interpreted with respect to biogeography and the evolution of wind pollination in the grass family. A major goal of the study was to test the monophyly of several putatively natural groups, including Bambusoideae, Pooideae, Arundinoideae, and the “PACC clade” (the latter comprising subfamilies Panicoideae, Arundinoideae, Chloridoideae, and Centothecoideae), as well as to analyze the phylogenetic structure within these groups and others. Several genera of controversial placement (Amphipogon, Anisopogon, Anomochloa, Brachyelytrum, Diarrhena, Eremitis, Ehrharta, Lithachne, Lygeum, Nardus, Olyra, Pharus, andStreptochaeta) also were included, with the goal of determining their phylogenetic affinities. The two character sets were analyzed separately, and a simultaneous analysis of the combined matrices also was conducted. The combined data set also was analyzed using homoplasy-implied weights. Among major results of the combined unweighted analysis were resolution of a sister-group relationship betweenJoinvillea and Poaceae; resolution of a clade comprisingAnomochloa andStreptochaeta as the sister of all other grasses, withPharus the next group to diverge from the lineage that includes all remaining grasses; and resolution of other taxa often assigned to Bambusoideae s.l. (includingEhrharta and Oryzeae, and excluding a few other taxa as noted) as a paraphyletic assemblage, within which is nested a clade that consists ofBrachyelytrum, the PACC clade (includingAmphipogon), and Pooideae (including Brachypodieae, Stipeae,Anisopogon, Diarrhena, Lygeum, andNardus). Within the PACC clade,Aristida is identified as the sister of all other elements of the group; Chloridoideae, Centothecoideae, and Panicoideae are each resolved as monophyletic, the latter two being sister-groups; and the remaining Arundinoid elements constitute a paraphyletic group within which are nested these three subfamilies. Within the Pooideae, four “core tribes” (Bromeae, Hordeeae [i.e., Triticeae], Agrostideae [i.e., Aveneae], andPoeae, the latter includingSesleria) are resolved as a monophyletic group that is nested among the remaining elements of the subfamily (Brachypodieae, Meliceae, Stipeae,Anisopogon, Diarrhena, Lygeum, andNardus). A second principal goal of the analysis was to identify structural synapomorphies of clades. Among the synapomorphies identified for some of the major clades are the following: gain of a 6.4 kb inversion in the chloroplast genome inJoinvillea and the grasses; reduction to 1 ovule per pistil, gain of a lateral “grass-type” embryo, and gain of an inversion around the gene trnT in the chloroplast genome in the grasses; loss of arm cells in the clade that consists ofBrachyelytrum, Pooideae, and the PACC clade; loss of the epiblast and gain of an elongate mesocotyl internode in the PACC clade; gain of proximal female-sterile florets in female-fertile spikelets, gain of overlapping embryonic leaf margins, and gain ofPanicum- type endosperm starch grains in the clade that comprises Centothecoideae and Panicoideae; and loss of the scutellar tail of the embryo in Pooideae (in one of two alternative placements of Pooideae among other groups). These findings are consistent with an origin and early diversification of grasses as forest understory herbs, followed by one or more radiations into open habitats, concomitant with multiple origins of C4 photosynthesis and specialization for wind pollination.  相似文献   

11.
Due to the immense ecological and economic significance of grasses, their highly characteristic long–short epidermal patterning and associated silica phytoliths represent significant diagnostic markers in studies of ancient climate change and agriculture. We explore the link between epidermal cell patterning and phytolith development and review the evolutionary history of phytoliths in the context of recent well-resolved phylogenetic analyses of grasses and allied Poales, focusing on early-divergent grasses and the subfamilies that constitute the BEP group (the bamboos and their allies). Dimorphic epidermal patterning is a common feature of Poaceae and the related family Joinvilleaceae, where phytoliths are located primarily in the short cells. However, Joinvillea lacks the short-cell pairs that occur in many grasses. The costal rows of phytoliths that characterize some grasses could represent loss of long–short cell patterning over the veins. Unlobed phytoliths probably represent the ancestral condition in grasses, though bilobate phytoliths evolved at an early stage. Either transverse-unlobed or transverse-bilobate phytoliths predominate in the early-divergent lineages, whereas axial-bilobates (or polylobates) primarily characterize the PACMAD clade and the BEP subfamily Pooideae.  相似文献   

12.
The full nucleotide sequences of the chloroplast encoded large subunit of ribulose-1,5-bisphosphate carboxylase (rbcL) are available for nine grass species and partial sequence data for one species. Relative rate tests of the “molecular clock” hypothesis suggest that rbcL evolved more rapidly in the lineage leading to Zea than in those leading to the other species. The estimated overall substitution rate for rbcL among these grasses is about 5 times 10?10 substitutions per site per year, or about one-half the synonymous rate. The nine full sequences were analyzed by the UPGMA, Wagner parsimony, maximum likelihood, and Fitch-Margoliash methods. The latter three methods produced trees with the same topology. This topology largely agrees with current taxonomic evidence regarding the relationships among these grasses. UPGMA produced a topology that conflicts more substantially with available taxonomic evidence. Statistical comparison of the three alternative topologies for the subfamilies Panicoideae, Pooideae and Bambusoideae failed to support one of these topologies over the others, reflecting the taxonomic ambiguities surrounding the relationships among these taxa. Phylogenetic analyses based on the partial sequences of all 10 species gave conflicting results with regard to the relationship between Hordeum and Triticum, both members of the tribe Triticeae. This indicates that rbcL sequences contain too little information to resolve relationships among genera within this tribe. Overall, the results suggest that rbcL sequence data can provide some new information concerning grass phylogeny, but that the amount of available data from this gene is too small to differentiate statistically among alternative topologies for the grasses. Conflicting results from parsimony, maximum likelihood, and Fitch-Margoliash methods proved useful in exploring the validity of assumptions underlying these methods.  相似文献   

13.
Comparisons of complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera to six published grass chloroplast genomes reveal that gene content and order are similar but two microstructural changes have occurred. First, the expansion of the IR at the SSC/IRa boundary that duplicates a portion of the 5' end of ndhH is restricted to the three genera of the subfamily Pooideae (Agrostis, Hordeum and Triticum). Second, a 6 bp deletion in ndhK is shared by Agrostis, Hordeum, Oryza and Triticum, and this event supports the sister relationship between the subfamilies Erhartoideae and Pooideae. Repeat analysis identified 19-37 direct and inverted repeats 30 bp or longer with a sequence identity of at least 90%. Seventeen of the 26 shared repeats are found in all the grass chloroplast genomes examined and are located in the same genes or intergenic spacer (IGS) regions. Examination of simple sequence repeats (SSRs) identified 16-21 potential polymorphic SSRs. Five IGS regions have 100% sequence identity among Zea mays, Saccharum officinarum and Sorghum bicolor, whereas no spacer regions were identical among Oryza sativa, Triticum aestivum, H. vulgare and A. stolonifera despite their close phylogenetic relationship. Alignment of EST sequences and DNA coding sequences identified six C-U conversions in both Sorghum bicolor and H. vulgare but only one in A. stolonifera. Phylogenetic trees based on DNA sequences of 61 protein-coding genes of 38 taxa using both maximum parsimony and likelihood methods provide moderate support for a sister relationship between the subfamilies Erhartoideae and Pooideae.  相似文献   

14.
Immunological affinities were investigated among twenty taxa belonging to the grass subfamilies Pooideae, Chloridoideae, Panicoideae, Oryzoideae, and Bambusoideae. Antisera were raised to the prolamin fraction of seed proteins from species of eleven grass genera (Hordeum, Bromus, Festuca, Phleum, Elensine, Panicum, Pennisetum, Tripsacum, Dendrocalamus, and Oryza) and reacted with their homologous antigens and nineteen different heterologous antigens in Enzyme-Linked Immunosorbent Assay (ELISA). The immunological cross-reactivity among the eleven taxa whose prolamin was used for antisera production was analyzed quantitatively by generating matrices of averaged cross-reactivities, Q correlation and distance. The averaged cross-reactivity matrix was calculated from averaging reciprocal immunological reactions while the two other matrices were computed by considering each antiserum as a character and antigens as OTUs. The three matrices were subjected to clustering by the Unweighted Pair Group Method using Arithmetic Averaging (UPGMA). The phenogram based on the averaged similarity matrix showed some distortion, while the other two phenograms were similar in topology and were informative. A phenon line at r = 0.17 divided the phenogram based on Q correlation into four major groups: Pooideae, Oryzoideae, Bambusoideae, and Chloridoideae-Panicoideae. The two subfamilies in the Chloridoideae-Panicoideae group clustered at a correlation coefficient of 0.22. Within the Pooideae, the tribes Aveneae and Agrostideae were closely grouped together (r = 0.85), but they were quite distinct (r = 0.16) from the tightly clustered (r = 0.84–0.85) Bromeae, Poeae, and Triticeae. The Oryzoideae and Bambusoideae showed low immunological similarity (r = –0.07). The two tribes of the Panicoideae, Paniceae and Andropogoneae, displayed extensive immunological similarity clustering tightly at r = 0.84–0.86. The immunological data revealed a possible trend in grass evolution encompassing the chloridoid-panicoid groups and provided insights into the phylogenetic affinities of the bambusoid and oryzoid grasses. The results also underscored the heterogeneity of the taxa within the Pooideae.  相似文献   

15.

Background

Obtaining chloroplast genome sequences is important to increase the knowledge about the fundamental biology of plastids, to understand evolutionary and ecological processes in the evolution of plants, to develop biotechnological applications (e.g. plastid engineering) and to improve the efficiency of breeding schemes. Extraction of pure chloroplast DNA is required for efficient sequencing of chloroplast genomes. Unfortunately, most protocols for extracting chloroplast DNA were developed for eudicots and do not produce sufficiently pure yields for a shotgun sequencing approach of whole plastid genomes from the monocot grasses.

Methodology/Principal Findings

We have developed a simple and inexpensive method to obtain chloroplast DNA from grass species by modifying and extending protocols optimized for the use in eudicots. Many protocols for extracting chloroplast DNA require an ultracentrifugation step to efficiently separate chloroplast DNA from nuclear DNA. The developed method uses two more centrifugation steps than previously reported protocols and does not require an ultracentrifuge.

Conclusions/Significance

The described method delivered chloroplast DNA of very high quality from two grass species belonging to highly different taxonomic subfamilies within the grass family (Lolium perenne, Pooideae; Miscanthus×giganteus, Panicoideae). The DNA from Lolium perenne was used for whole chloroplast genome sequencing and detection of SNPs. The sequence is publicly available on EMBL/GenBank.  相似文献   

16.
In this paper we included a very broad representation of grass family diversity (84% of tribes and 42% of genera). Phylogenetic inference was based on three plastid DNA regions rbcL, matK and trnL-F, using maximum parsimony and Bayesian methods. Our results resolved most of the subfamily relationships within the major clades (BEP and PACCMAD), which had previously been unclear, such as, among others the: (i) BEP and PACCMAD sister relationship, (ii) composition of clades and the sister-relationship of Ehrhartoideae and Bambusoideae + Pooideae, (iii) paraphyly of tribe Bambuseae, (iv) position of Gynerium as sister to Panicoideae, (v) phylogenetic position of Micrairoideae. With the presence of a relatively large amount of missing data, we were able to increase taxon sampling substantially in our analyses from 107 to 295 taxa. However, bootstrap support and to a lesser extent Bayesian inference posterior probabilities were generally lower in analyses involving missing data than those not including them. We produced a fully resolved phylogenetic summary tree for the grass family at subfamily level and indicated the most likely relationships of all included tribes in our analysis.  相似文献   

17.
Graminoid molecular evolution was investigated by chloroplast genome (plastome) scale analyses. A complete plastome from Coix lacryma-jobi (Poaceae) and a draft plastome from Joinvillea plicata (Joinvilleaceae) were sequenced and analyzed. The draft plastome included conserved protein-coding loci routinely analyzed in previous studies plus one additional locus of demonstrated phylogenetic utility. The methodological approach was to directly sequence overlapping amplicons from known plastome regions. Over 100 pairs of amplification and sequencing primers were designed and positioned to flank overlapping 1,200-base pair fragments around the entire plastome. Newly determined sequences were analyzed with published plastomes from representatives of Panicoideae, Ehrhartoideae, and Pooideae. Considerable variation was found for studies within the family and even within Andropogoneae. Readily interpreted mutation patterns were observed, such as small inversions in hairpin-loop regions and indels, which were common in intergenic spacers. Maximum or near-maximum bootstrap support was observed in all analyses resolving relationships between subfamilies. However, the addition of characters from noncoding regions increased the number of parsimony-informative characters and lengthened short internal branches (Andropogoneae), better defining intergeneric relationships. Thus, characters in complete plastomes can be used over a wide scope of phylogenetic studies.  相似文献   

18.
BACKGROUND AND AIMS: Little information is available on DNA C-values for the New Zealand flora. Nearly 85 % of the named species of the native vascular flora are endemic, including 157 species of Poaceae, the second most species-rich plant family in New Zealand. Few C-values have been published for New Zealand native grasses, and chromosome numbers have previously been reported for fewer than half of the species. The aim of this research was to determine C-values and chromosome numbers for most of the endemic and indigenous Poaceae from New Zealand. SCOPE: To analyse DNA C-values from 155 species and chromosome numbers from 55 species of the endemic and indigenous grass flora of New Zealand. KEY RESULTS: The new C-values increase significantly the number of such measurements for Poaceae worldwide. New chromosome numbers were determined from 55 species. Variation in C-value and percentage polyploidy were analysed in relation to plant distribution. No clear relationship could be demonstrated between these variables. CONCLUSIONS: A wide range of C-values was found in the New Zealand endemic and indigenous grasses. This variation can be related to the phylogenetic position of the genera, plants in the BOP (Bambusoideae, Oryzoideae, Pooideae) clade in general having higher C-values than those in the PACC (Panicoideae, Arundinoideae, Chloridoideae + Centothecoideae) clade. Within genera, polyploids typically have smaller genome sizes (C-value divided by ploidy level) than diploids and there is commonly a progressive decrease with increasing ploidy level. The high frequency of polyploidy in the New Zealand grasses was confirmed by our additional counts, with only approximately 10 % being diploid. No clear relationship between C-value, polyploidy and rarity was evident.  相似文献   

19.
20.
While there has been strong support for Amborella and Nymphaeales (water lilies) as branching from basal-most nodes in the angiosperm phylogeny, this hypothesis has recently been challenged by phylogenetic analyses of 61 protein-coding genes extracted from the chloroplast genome sequences of Amborella, Nymphaea, and 12 other available land plant chloroplast genomes. These character-rich analyses placed the monocots, represented by three grasses (Poaceae), as sister to all other extant angiosperm lineages. We have extracted protein-coding regions from draft sequences for six additional chloroplast genomes to test whether this surprising result could be an artifact of long-branch attraction due to limited taxon sampling. The added taxa include three monocots (Acorus, Yucca, and Typha), a water lily (Nuphar), a ranunculid (Ranunculus), and a gymnosperm (Ginkgo). Phylogenetic analyses of the expanded DNA and protein data sets together with microstructural characters (indels) provided unambiguous support for Amborella and the Nymphaeales as branching from the basal-most nodes in the angiosperm phylogeny. However, their relative positions proved to be dependent on the method of analysis, with parsimony favoring Amborella as sister to all other angiosperms and maximum likelihood (ML) and neighbor-joining methods favoring an Amborella + Nymphaeales clade as sister. The ML phylogeny supported the later hypothesis, but the likelihood for the former hypothesis was not significantly different. Parametric bootstrap analysis, single-gene phylogenies, estimated divergence dates, and conflicting indel characters all help to illuminate the nature of the conflict in resolution of the most basal nodes in the angiosperm phylogeny. Molecular dating analyses provided median age estimates of 161 MYA for the most recent common ancestor (MRCA) of all extant angiosperms and 145 MYA for the MRCA of monocots, magnoliids, and eudicots. Whereas long sequences reduce variance in branch lengths and molecular dating estimates, the impact of improved taxon sampling on the rooting of the angiosperm phylogeny together with the results of parametric bootstrap analyses demonstrate how long-branch attraction might mislead genome-scale phylogenetic analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号