首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteria contain cytoskeletal elements involved in major cellular processes including DNA segregation and cell morphogenesis and division. Distant bacterial homologues of tubulin (FtsZ) and actin (MreB and ParM) not only resemble their eukaryotic counterparts structurally but also show similar functional characteristics, assembling into filamentous structures in a nucleotide-dependent fashion. Recent advances in fluorescence microscopic imaging have revealed that FtsZ and MreB form highly dynamic helical structures that encircle the cells along the inside of the cell membrane. With the discovery of crescentin, a cell-shape-determining protein that resembles eukaryotic intermediate filament proteins, the third major cytoskeletal element has now been identified in bacteria as well.  相似文献   

2.
3.
Actin and tubulin are the major components of the cytoskeleton that pervades the cytoplasm of all eukaryotic cells. These proteins were traditionally thought not to be present in prokaryotes, but structural and functional homologues of tubulin (FtsZ) and actin (MreB) are now known to be present virtually throughout the eubacteria and in some archae. FtsZ protein is a key player in cell division of bacteria and some eukaryotic organelles. MreB proteins are involved in the regulation of cell shape and the segregation of some bacterial plasmids, and might have a range of other functions. Recent data demonstrate that the bacterial proteins are, like their eukaryotic counterparts, highly dynamic. Here, we review the general properties and functions of actin and tubulin homologues in bacteria, their dynamic behaviour and the implications for understanding cell division and morphogenesis in bacteria.  相似文献   

4.
In the recent decade, our view on the organization of the bacterial cell has been revolutionized by the identification of cytoskeletal elements. Most bacterial species have structural homologs of actin and tubulin that assemble into dynamic, filamentous structures at precisely defined sub-cellular locations. The essential cell division protein FtsZ forms a dynamic ring at mid-cell and is similar in its structure to tubulin. Proteins of the MreB family, which are structural homologs of actin, assemble into helical or straight filaments in the bacterial cytoplasm. As in eukaryotic cells, the bacterial cytoskeleton drives essential cellular processes such as cell division, cell wall growth, DNA movement, protein targeting, and alignment of organelles. Different high-throughput assays have been developed to search for inhibitors of components of the bacterial cytoskeleton. Cell-based assays for the detection of cell division inhibitors as well as FtsZ GTPase assays led to the identification of several compounds that inhibit the polymerization of FtsZ, by this blocking bacterial cell division. Such inhibitors might not only be valuable tools for basic research, but might also lead to novel therapeutic agents against pathogenic bacteria. For example, the polyphenol dichamanetin, the 2-alkoxycarbonylaminopyridine SRI-3072, and the benzophenanthridine alkaloid sanguinarine inhibit the GTPase activity of FtsZ and exhibit antimicrobial activity.  相似文献   

5.
长期以来,人们认为细胞骨架仅为真核生物所特有的结构,但近年来的研究发现它也存在于细菌等原核生物中。目前已经在细菌中发现的FtsZ、MreB和CreS依次与真核细胞骨架蛋白中的微管蛋白、肌动蛋白丝及中间丝类似。FtsZ能在细胞分裂位点装配形成Z环结构,并通过该结构参与细胞分裂的调控;MreB能形成螺旋丝状结构,其主要功能有维持细胞形态、调控染色体分离等;CreS存在于新月柄杆菌中,它在细胞凹面的细胞膜下面形成弯曲丝状或螺旋丝状结构,该结构对维持新月柄杆菌细胞的形态具有重要作用。  相似文献   

6.
Evolution of the cytoskeleton   总被引:1,自引:0,他引:1  
The eukaryotic cytoskeleton appears to have evolved from ancestral precursors related to prokaryotic FtsZ and MreB. FtsZ and MreB show 40-50% sequence identity across different bacterial and archaeal species. Here I suggest that this represents the limit of divergence that is consistent with maintaining their functions for cytokinesis and cell shape. Previous analyses have noted that tubulin and actin are highly conserved across eukaryotic species, but so divergent from their prokaryotic relatives as to be hardly recognizable from sequence comparisons. One suggestion for this extreme divergence of tubulin and actin is that it occurred as they evolved very different functions from FtsZ and MreB. I will present new arguments favoring this suggestion, and speculate on pathways. Moreover, the extreme conservation of tubulin and actin across eukaryotic species is not due to an intrinsic lack of variability, but is attributed to their acquisition of elaborate mechanisms for assembly dynamics and their interactions with multiple motor and binding proteins. A new structure-based sequence alignment identifies amino acids that are conserved from FtsZ to tubulins. The highly conserved amino acids are not those forming the subunit core or protofilament interface, but those involved in binding and hydrolysis of GTP.  相似文献   

7.
The structural and functional resemblance between the bacterial cell-division protein FtsZ and eukaryotic tubulin was the first indication that the eukaryotic cytoskeleton may have a prokaryotic origin. The bacterial ancestry is made even more obvious by the findings that the bacterial cell-shape-determining proteins Mreb and Mbl form large spirals inside non-spherical cells, and that MreB polymerises in vitro into protofilaments very similar to actin. Recent advances in research on two proteins involved in prokaryotic cytokinesis and cell shape determination that have similar properties to the key components of the eukaryotic cytoskeleton are discussed.  相似文献   

8.
The past decade has witnessed the identification and characterization of bacterial homologs of the three major eukaryotic cytoskeletal families: actin, tubulin and intermediate filaments. These proteins play essential roles in organizing bacterial subcellular environments. Recently, the ParA/MinD superfamily has emerged as a new bacterial cytoskeletal class, and imaging studies hint at the existence of even more, as yet unidentified, cytoskeletal systems. Much as the cytoskeleton is used for different purposes in different eukaryotic cells, the specific identities, functions and regulatory mechanisms of cytoskeletal proteins can vary between different bacterial species. In addition, extensive cross-talk between bacterial cytoskeletal systems may represent an important mode of cytoskeletal regulation. These themes of diversity, species-specificity and crosstalk are emerging as central properties of cytoskeletal biology.  相似文献   

9.
For many years, prokaryotic cells were distinguished from eukaryotic cells based on the simplicity of their cytoplasm, in which the presence of organelles and cytoskeletal structures had not been discovered. Based on current knowledge, this review describes the complex components of the prokaryotic cell cytoskeleton, including (i) tubulin homologues composed of FtsZ, BtuA, BtuB and several associated proteins, which play a fundamental role in cell division, (ii) actin-like homologues, such as MreB and Mb1, which are involved in controlling cell width and cell length, and (iii) intermediate filament homologues, including crescentin and CfpA, which localise on the concave side of a bacterium and along its inner curvature and associate with its membrane. Some prokaryotes exhibit specialised membrane-bound organelles in the cytoplasm, such as magnetosomes and acidocalcisomes, as well as protein complexes, such as carboxysomes. This review also examines recent data on the presence of nanotubes, which are structures that are well characterised in mammalian cells that allow direct contact and communication between cells.  相似文献   

10.
Structural proteins are now known to be as necessary for controlling cell division and cell shape in prokaryotes as they are in eukaryotes. Bacterial ParM and MreB not only have atomic structures that resemble eukaryotic actin and form similar filaments, but they are also equivalent in function: the assembly of ParM drives intracellular motility and MreB maintains the shape of the cell. FtsZ resembles tubulin in structure and in its dynamic assembly, and is similarly controlled by accessory proteins. Bacterial MinD and eukaryotic dynamin appear to have similar functions in membrane control. In dividing eukaryotic organelles of bacterial origin, bacterial and eukaryotic proteins work together.  相似文献   

11.
Visualization of a cytoskeleton-like FtsZ network in chloroplasts   总被引:20,自引:0,他引:20  
It has been a long-standing dogma in life sciences that only eukaryotic organisms possess a cytoskeleton. Recently, this belief was questioned by the finding that the bacterial cell division protein FtsZ resembles tubulin in sequence and structure and, thus, may be the progenitor of this major eukaryotic cytoskeletal element. Here, we report two nuclear-encoded plant ftsZ genes which are highly conserved in coding sequence and intron structure. Both their encoded proteins are imported into plastids and there, like in bacteria, they act on the division process in a dose-dependent manner. Whereas in bacteria FtsZ only transiently polymerizes to a ring-like structure, in chloroplasts we identified persistent, highly organized filamentous scaffolds that are most likely involved in the maintenance of plastid integrity and in plastid division. As these networks resemble the eukaryotic cytoskeleton in form and function, we suggest the term "plastoskeleton" for this newly described subcellular structure.  相似文献   

12.
MreB, the bacterial actin homologue, is thought to function in spatially co-ordinating cell morphogenesis in conjunction with MreC, a protein that wraps around the outside of the cell within the periplasmic space. In Caulobacter crescentus, MreC physically associates with penicillin-binding proteins (PBPs) which catalyse the insertion of intracellularly synthesized precursors into the peptidoglycan cell wall. Here we show that MreC is required for the spatial organization of components of the peptidoglycan-synthesizing holoenzyme in the periplasm and MreB directs the localization of a peptidoglycan precursor synthesis protein in the cytosol. Additionally, fluorescent vancomycin (Van-FL) labelling revealed that the bacterial cytoskeletal proteins MreB and FtsZ, as well as MreC and RodA, were required for peptidoglycan synthetic activity. MreB and FtsZ were found to be required for morphogenesis of the polar stalk. FtsZ was required for a cell cycle-regulated burst of peptidoglycan synthesis early in the cell cycle resulting in the synthesis of cross-band structures, whereas MreB was required for lengthening of the stalk. Thus, the bacterial cytoskeleton and cell shape-determining proteins such as MreC, function in concert to orchestrate the localization of cell wall synthetic complexes resulting in spatially co-ordinated and efficient peptidoglycan synthetic activity.  相似文献   

13.
Summary: Bacterial cells utilize three-dimensional (3D) protein assemblies to perform important cellular functions such as growth, division, chemoreception, and motility. These assemblies are composed of mechanoproteins that can mechanically deform and exert force. Sometimes, small-nucleotide hydrolysis is coupled to mechanical deformations. In this review, we describe the general principle for an understanding of the coupling of mechanics with chemistry in mechanochemical systems. We apply this principle to understand bacterial cell shape and morphogenesis and how mechanical forces can influence peptidoglycan cell wall growth. We review a model that can potentially reconcile the growth dynamics of the cell wall with the role of cytoskeletal proteins such as MreB and crescentin. We also review the application of mechanochemical principles to understand the assembly and constriction of the FtsZ ring. A number of potential mechanisms are proposed, and important questions are discussed.  相似文献   

14.
All free-living bacteria carry the toxin-antitoxin (TA) systems controlling cell growth and death under stress conditions. YeeU-YeeV (CbtA) is one of the Escherichia coli TA systems, and the toxin, CbtA, has been reported to inhibit the polymerization of bacterial cytoskeletal proteins, MreB and FtsZ. Here, we demonstrate that the antitoxin, YeeU, is a novel type of antitoxin (type IV TA system), which does not form a complex with CbtA but functions as an antagonist for CbtA toxicity. Specifically, YeeU was found to directly interact with MreB and FtsZ, and enhance the bundling of their filamentous polymers in vitro. Surprisingly, YeeU neutralized not only the toxicity of CbtA but also the toxicity caused by other inhibitors of MreB and FtsZ, such as A22, SulA and MinC, indicating that YeeU-induced bundling of MreB and FtsZ has an intrinsic global stabilizing effect on their homeostasis. Here we propose to rename YeeU as CbeA for cytoskeleton bundling-enhancing factor A.  相似文献   

15.
Toxin-antitoxin (TA) systems of free-living bacteria have recently demonstrated that these toxins inhibit cell growth by targeting essential functions of cellular metabolism. Here we show that YeeV toxin inhibits cell division, leads to a change in morphology and lysis of Escherichia coli cells. YeeV interacts with two essential cytoskeleton proteins, FtsZ and MreB. Purified YeeV inhibits both the GTPase activity and the GTP-dependent polymerization of FtsZ. YeeV also inhibits ATP-dependent polymerization of MreB. Truncated C-terminal deletions of YeeV result in elongation of cells, and a deletion of the first 15 amino acids from the N-terminus of YeeV caused lemon-shaped cell formation. The YeeV toxin is distinct from other well-studied toxins: it directs the binding of two cytoskeletal proteins and inhibits FtsZ and MreB simultaneously.  相似文献   

16.
We studied morphologic changes after sublethal high hydrostatic pressure treatment (HPT) of Escherichia coli K-12 strains in which genes related to the cytoskeleton, cell wall, and cell division had been deleted. Some long filamentous and swelling cells were observed in wild-type bacteria, while some spherical, branched, or collapsed cells were observed in deletion mutants. In particular, ΔzapA and ΔrodZ showed distinguished morphologies. ZapA supports FtsZ, a cytoskeletal protein, forming ring with ZapB. RodZ, a cytoskeletal protein, interacts with MreB, also a cytoskeletal protein, and both factors are necessary for maintaining the rod shape of the cell. These results showed that insufficient formation of FtsZ rings induced cell elongation and that insufficient formation of MreB induced a branched and collapsed cell shape. Therefore, the correct formation of the bacteria cytoskeleton by FtsZ rings and MreB is important for keeping normal cell shape during growth after HPT, and the polymerization of cytoskeletal proteins was a critical target of sublethal HPT. These results indicate that sublethal HPT induces bacterial cell morphologic change and provide important information on the role of genes involved in morphogenesis. Therefore, sublethal HPT may be a good tool for studying the morphogenesis of bacterial cells.  相似文献   

17.
The Bacterial Actin-Like Cytoskeleton   总被引:13,自引:0,他引:13       下载免费PDF全文
Recent advances have shown conclusively that bacterial cells possess distant but true homologues of actin (MreB, ParM, and the recently uncovered MamK protein). Despite weak amino acid sequence similarity, MreB and ParM exhibit high structural homology to actin. Just like F-actin in eukaryotes, MreB and ParM assemble into highly dynamic filamentous structures in vivo and in vitro. MreB-like proteins are essential for cell viability and have been implicated in major cellular processes, including cell morphogenesis, chromosome segregation, and cell polarity. ParM (a plasmid-encoded actin homologue) is responsible for driving plasmid-DNA partitioning. The dynamic prokaryotic actin-like cytoskeleton is thought to serve as a central organizer for the targeting and accurate positioning of proteins and nucleoprotein complexes, thereby (and by analogy to the eukaryotic cytoskeleton) spatially and temporally controlling macromolecular trafficking in bacterial cells. In this paper, the general properties and known functions of the actin orthologues in bacteria are reviewed.  相似文献   

18.
How bacteria coordinate cell growth with division is not well understood. Bacterial cell elongation is controlled by actin–MreB while cell division is governed by tubulin–FtsZ. A ring‐like structure containing FtsZ (the Z ring) at mid‐cell attracts other cell division proteins to form the divisome, an essential protein assembly required for septum synthesis and cell separation. The Z ring exists at mid‐cell during a major part of the cell cycle without contracting. Here, we show that MreB and FtsZ of Escherichia coli interact directly and that this interaction is required for Z ring contraction. We further show that the MreB–FtsZ interaction is required for transfer of cell‐wall biosynthetic enzymes from the lateral to the mature divisome, allowing cells to synthesise the septum. Our observations show that bacterial cell division is coupled to cell elongation via a direct and essential interaction between FtsZ and MreB.  相似文献   

19.
Two mechanisms have thus far been characterized for the assistance by chaperonins of the folding of other proteins. The first and best described is that of the prokaryotic chaperonin GroEL, which interacts with a large spectrum of proteins. GroEL uses a nonspecific mechanism by which any conformation of practically any unfolded polypeptide interacts with it through exposed, hydrophobic residues. ATP binding liberates the substrate in the GroEL cavity where it is given a chance to fold. A second mechanism has been described for the eukaryotic chaperonin CCT, which interacts mainly with the cytoskeletal proteins actin and tubulin. Cryoelectron microscopy and biochemical studies have revealed that both of these proteins interact with CCT in quasi-native, defined conformations. Here we have performed a detailed study of the docking of the actin and tubulin molecules extracted from their corresponding CCT:substrate complexes obtained from cryoelectron microscopy and image processing to localize certain regions in actin and tubulin that are involved in the interaction with CCT. These regions of actin and tubulin, which are not present in their prokaryotic counterparts FtsA and FtsZ, are involved in the polymerization of the two cytoskeletal proteins. These findings suggest coevolution of CCT with actin and tubulin in order to counteract the folding problems associated with the generation in these two cytoskeletal protein families of new domains involved in their polymerization.  相似文献   

20.
During the past decade, the appreciation and understanding of how bacterial cells can be organized in both space and time have been revolutionized by the identification and characterization of multiple bacterial homologs of the eukaryotic actin cytoskeleton. Some of these bacterial actins, such as the plasmid-borne ParM protein, have highly specialized functions, whereas other bacterial actins, such as the chromosomally encoded MreB protein, have been implicated in a wide array of cellular activities. In this review we cover our current understanding of the structure, assembly, function, and regulation of bacterial actins. We focus on ParM as a well-understood reductionist model and on MreB as a central organizer of multiple aspects of bacterial cell biology. We also discuss the outstanding puzzles in the field and possible directions where this fast-developing area may progress in the future.The discovery of cytoskeletal proteins in bacteria has fundamentally altered our understanding of the organization and evolution of bacteria as cells. Homologs of eukaryotic actin represent the most molecularly and functionally diverse family of bacterial cytoskeletal elements. Recent phylogenetic studies have identified more than 20 subgroups of bacterial actin homologs (Derman et al. 2009) (Fig. 1). Many of these bacterial actins are encoded on extrachromosomal plasmids, but most bacterial species with nonspherical morphologies also encode chromosomal actin homologs (Daniel and Errington 2003). The two earliest proteins to be characterized as bacterial actins were the chromosomal protein MreB (Jones et al. 2001) and the plasmidic protein ParM (Jensen and Gerdes 1997). MreB and ParM remain the best-characterized of the bacterial actins and we will thus focus on these two proteins for most of this article.Open in a separate windowFigure 1.The superfamily of bacterial actin homologs. Shown is a phylogenetic tree of the bacterial actin subfamilies that have been identified to date based on sequence homology. The subfamilies that have been experimentally shown to polymerize are labeled and colored. (Courtesy of Joe Pogliano, based on Derman et al. 2009.)The appreciation that bacteria possess actin homologs only occurred in the past decade. MreB was first identified as a protein involved in cell shape regulation in Escherichia coli in the late 1980s (Doi et al. 1988). In the early 1990s, pioneering bioinformatic studies identified similarities in a group of ATPases that have five conserved motifs (Bork et al. 1992), a feature dubbed the actin superfamily fold. Although this group includes actin and MreB, it also contains proteins that do not polymerize into filaments, such as sugar kinases like hexokinase and chaperones like Hsp70. A number of bacterial proteins are present in the actin superfamily, including the bacterial cell division protein FtsA which interacts with the tubulin homolog FtsZ and may or may not form filaments in different contexts (van den Ent and Lowe 2000). Because MreB did not appear significantly more related to actin than these nonfilamentous proteins, the weak sequence similarity with actin was largely ignored for the better part of a decade. This changed in 2001 when two seminal papers showed that Bacillus subtilis MreB forms cytoskeletal filaments in vivo (Jones et al. 2001) and that Thermotoga maritima MreB forms cytoskeletal filaments in vitro (van den Ent et al. 2001). Indeed, structural and biochemical studies of both MreB and ParM have convincingly showed that these proteins closely resemble actin and polymerize into linear filaments in a nucleotide-dependent manner (Fig. 2).Open in a separate windowFigure 2.Structures of F-actin (Holmes et al. 1990), MreB (van den Ent et al. 2001), and ParM (van den Ent et al. 2002). (Left) Structures of F-actin filaments (PDB entry 1YAG). (Second from the left) MreB filaments from T. maritima (PDB entry 1JCE). (Center) ParM:ADP monomer in the “closed” conformation. (Second from the right) apo ParM monomer in the “open” conformation. (Right) ParM filament. Shown are the position of the nucleotide within the interdomain cleft, the conservation of fold, and the axis of the protofilament extension (arrow). Note that the conformational change shown for ParM from the “open” to “closed” state is predicted for all actin homologs. (Adapted, with permission from, Michie and Löwe 2006.)Research following the identification of bacterial cytoskeletal proteins has focused on understanding their assembly, regulation, and function. Here, we will summarize our current understanding of these issues and highlight the outstanding questions. We will begin with ParM, whose well-characterized assembly and dynamics represent a model for future studies of all cytoskeletal proteins. We will then focus on MreB, whose diverse activities appear to be central to the cell biology of many bacterial species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号