首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erythropoietin (EPO) is a pleiotropic cytokine originally identified for its role in erythropoiesis. In addition, in various preclinical models EPO exhibited protective activity against tissue injury. There is an urgent need for potent treatments of autoimmune driven disorders of the peripheral nervous system (PNS), such as the Guillain-Barré syndrome (GBS), a disabling autoimmune disease associated with relevant morbidity and mortality. To test the therapeutic potential of EPO in experimental autoimmune neuritis (EAN) - an animal model of human GBS – immunological and clinical effects were investigated in a preventive and a therapeutic paradigm. Treatment with EPO reduced clinical disease severity and if given therapeutically also shortened the recovery phase of EAN. Clinical findings were mirrored by decreased inflammation within the peripheral nerve, and myelin was well maintained in treated animals. In contrast, EPO increased the number of macrophages especially in later stages of the experimental disease phase. Furthermore, the anti-inflammatory cytokine transforming growth factor (TGF)-beta was upregulated in the treated cohorts. In vitro experiments revealed less proliferation of T cells in the presence of EPO and TGF-beta was moderately induced, while the secretion of other cytokines was almost not altered by EPO. Our data suggest that EPO revealed its beneficial properties by the induction of beneficial macrophages and the modulation of the immune system towards anti-inflammatory responses in the PNS. Further studies are warranted to elaborate the clinical usefulness of EPO for treating immune-mediated neuropathies in affected patients.  相似文献   

2.
Erythropoietin (EPO) is a pleiotropic cytokine originally identified for its role in erythropoiesis. In addition, in various preclinical models EPO exhibited protective activity against tissue injury. There is an urgent need for potent treatments of autoimmune driven disorders of the peripheral nervous system (PNS), such as the Guillain-Barré syndrome (GBS), a disabling autoimmune disease associated with relevant morbidity and mortality. To test the therapeutic potential of EPO in experimental autoimmune neuritis (EAN) - an animal model of human GBS--immunological and clinical effects were investigated in a preventive and a therapeutic paradigm. Treatment with EPO reduced clinical disease severity and if given therapeutically also shortened the recovery phase of EAN. Clinical findings were mirrored by decreased inflammation within the peripheral nerve, and myelin was well maintained in treated animals. In contrast, EPO increased the number of macrophages especially in later stages of the experimental disease phase. Furthermore, the anti-inflammatory cytokine transforming growth factor (TGF)-beta was upregulated in the treated cohorts. In vitro experiments revealed less proliferation of T cells in the presence of EPO and TGF-beta was moderately induced, while the secretion of other cytokines was almost not altered by EPO. Our data suggest that EPO revealed its beneficial properties by the induction of beneficial macrophages and the modulation of the immune system towards anti-inflammatory responses in the PNS. Further studies are warranted to elaborate the clinical usefulness of EPO for treating immune-mediated neuropathies in affected patients.  相似文献   

3.
Erythropoietin (EPO) has been known to have cytoprotective effects on several types of tissues, presumably through modulation of apoptosis and inflammation. The effect of EPO on myocardial inflammation, however, has not yet been clarified. We investigated the cardioprotective effects of EPO in rats with experimental autoimmune myocarditis (EAM). Seven-week-old Lewis rats immunized with cardiac myosin were treated either with EPO or vehicle and were examined on day 22. EPO attenuated the functional and histological severity of EAM along with suppression of mRNAs of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 in the hearts as well as a reduction of apoptotic cardiomyocytes. The EPO receptor (EPO-R) was upregulated in the myocardium of EAM compared with that of healthy rats. These results may suggest that EPO ameliorated the progression of EAM by modulating myocardial inflammation and apoptosis.  相似文献   

4.
5.
Experimental autoimmune neuritis (EAN), an autoantigen-specific T-cell-mediated disease model for human demyelinating inflammatory disease of the peripheral nervous system, is characterized by self-limitation. Here we investigated the regulation and contribution of erythropoietin (EPO) in EAN self-limitation. In EAN sciatic nerves, hypoxia, and protein and mRNA levels of hypoxia-inducible factor 1α (HIF-1α), HIF-2α, EPO and EPO receptor (EPOR) were induced in parallel at disease peak phase but reduced at recovery periods. Further, the deactivation of HIF reduced EAN-induced EPO/EPOR upregulation in EAN, suggesting the central contribution of HIF to EPO/EPOR induction. The deactivation of EPOR signalling exacerbated EAN progression, implying that endogenous EPO contributed to EAN recovery. Exogenous EPO treatment greatly improved EAN recovery. In addition, EPO was shown to promote Schwann cell survival and myelin production. In EAN, EPO treatment inhibited lymphocyte proliferation and altered helper T cell differentiation by inducing increase of Foxp3+/CD4+ regulatory T cells and decrease of IFN-γ+/CD4+ Th1 cells. Furthermore, EPO inhibited inflammatory macrophage activation and promoted its phagocytic activity. In summary, our data demonstrated that EPO was induced in EAN by HIF and contributed to EAN recovery, and endogenous and exogenous EPO could effectively suppress EAN by attenuating inflammation and exerting direct cell protection, indicating that EPO contributes to the self-recovery of EAN and could be a potent candidate for treatment of autoimmune neuropathies.  相似文献   

6.
7.
It has been proposed that the basis of severe malarial anaemia, a major cause of morbidity and mortality in endemic areas, is multifactorial. Inappropriately low reticulocytosis is observed in malaria patients suggesting that insufficient erythropoiesis is a major factor. Clinical studies provide conflicting data concerning the production of adequate levels of erythropoietin (EPO) during malaria. Plasmodium chabaudi AS causes non-lethal infection in resistant C57BL/6 mice, and lethal infection in susceptible A/J mice. In P. chabaudi AS infected C57BL/6 and A/J mice, which experience varying degrees of severity of anaemia, kidney EPO production is appropriate to the severity of anaemia and is regulated by haematocrit level. Neutralisation of endogenous EPO during infection leads to lethal anaemia while timely administration of exogenous EPO rescues mice although reticulocytosis is suppressed in proportion to the parasitemia level. Characterisation of alterations in splenic erythroid compartments in naive and P. chabaudi AS infected A/J mice revealed that infection, with or without EPO treatment, leads to sub-optimal increases in TER119+ erythroblasts compared to EPO-treated naive mice. A lower percentage of TER119+ erythroblasts in infected mice undergo terminal differentiation to become mature haemoglobin-producing cells. Furthermore, there is a shift in transferrin receptor (CD71) expression from TER119+ cells to a non-erythroid population. Deficiencies in the number and maturation of TER119+ erythroblasts during infection coincide with blunted proliferation to EPO stimulation in vitro by splenocytes, although a high frequency express EPO receptor (EPOR). Together, these data suggest that during malaria, EPO-induced proliferation of early EPOR+ erythroid progenitors is suppressed, leading to sub-optimal generation of TER119+ erythroblasts. Moreover, a shift in CD71 expression may result in impaired terminal maturation of erythroblasts. Thus, suppressed proliferation, differentiation, and maturation of erythroid precursors in association with inadequate reticulocytosis may be the basis of insufficient erythropoiesis during malaria.  相似文献   

8.
Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity.  相似文献   

9.
Erythropoietin (EPO) reduces symptoms of experimental autoimmune encephalomyelitis in rodents and shows neuroregenerative effects in chronic progressive multiple sclerosis. The mechanisms of action of EPO in these conditions with shared immunological etiology are still unclear. Therefore, we used a model of toxic demyelination allowing exclusion of T cell-mediated inflammation. In a double-blind (for food/injections), placebo-controlled, longitudinal four-arm design, 8-wk-old C57BL/6 mice (n = 26/group) were assigned to cuprizone-containing (0.2%) or regular food (ground chow) for 6 wks. After 3 wks, mice were injected every other day with placebo or EPO (5,000 IU/kg intraperitoneally) until the end of cuprizone feeding. Half of the mice were exposed to behavioral testing, magnetic resonance imaging (MRI) and histology immediately after treatment cessation, whereas the other half were allowed a 3-wk treatment-free recovery. Immediately after termination of cuprizone feeding, all toxin-exposed mice were compromised regarding vestibulomotor function/coordination, with EPO-treated animals performing better than placebo. Likewise, ventricular enlargement after cuprizone, as documented by MRI, was less pronounced upon EPO. After a 3-wk recovery, remarkable spontaneous improvement was observed in all mice with no measurable further benefit in the EPO group ("ceiling effect"). Histological analysis of the corpus callosum revealed attenuation by EPO of the cuprizone-induced increase in microglial numbers and amyloid precursor protein accumulations as a readout of inflammation and axonal degeneration. To conclude, EPO ameliorates neurological symptoms in the cuprizone model of demyelination, possibly by reduction of inflammation-associated axonal degeneration in white matter tracts. These findings underscore the value of future therapeutic strategies for multiple sclerosis based on EPO or EPO variants.  相似文献   

10.
Systemic Salmonella infection commonly induces prolonged splenomegaly in murine or human hosts. Although this increase in splenic cellularity is often assumed to be due to the recruitment and expansion of leukocytes, the actual cause of splenomegaly remains unclear. We monitored spleen cell populations during Salmonella infection and found that the most prominent increase is found in the erythroid compartment. At the peak of infection, the majority of spleen cells are immature CD71(-)Ter119(+) reticulocytes, indicating that massive erythropoiesis occurs in response to Salmonella infection. Indeed, this increase in RBC precursors corresponded with marked elevation of serum erythropoietin (EPO). Furthermore, the increase in RBC precursors and EPO production required innate immune signaling mediated by Myd88/TRIF. Neutralization of EPO substantially reduced the immature RBC population in the spleen and allowed a modest increase in host control of infection. These data indicate that early innate immunity to Salmonella initiates marked splenic erythropoiesis and may hinder bacterial clearance.  相似文献   

11.
We have previously reported that erythropoiesis commences in the liver and spleen after malarial infection, and that newly generated erythrocytes in the liver are essential for infection of malarial parasites as well as continuation of infection. At this time, erythropoietin (EPO) is elevated in the serum. In the present study, we administered EPO or anti-EPO antibody into C57BL/6 (B6) mice to modulate the serum level of EPO. When mice were infected with a non-lethal strain (17NXL) of Plasmodium yoelii (blood-stage infection of 10(4) parasitized erythrocytes per mouse), parasitemia continued for 1 month, showing a peak at day 17. Daily injection of EPO (200 IU/day per mouse) from day five to day 14 prolonged parasitemia, whereas injection of anti-EPO antibody (1.5 mg/day per mouse) every second day from day five to day 28 decreased it. Erythropoiesis was confirmed in the liver, spleen and bone marrow by the appearance of nucleated erythrocytes (TER119+). When anti-EPO antibody was injected by the same protocol into mice infected with a lethal strain (17XL) of P. yoelii, all mice showed decreased parasitemia and recovered from the infection. These results suggest that the use of anti-EPO antibody after malarial infection may be of therapeutic value in severe cases of malaria.  相似文献   

12.
Anemia generated from African trypanosome infection is considered an important symptom in humans and in domestic animals. In order to recover from anemia, the process of erythropoiesis is essential. Erythropoiesis is affected by erythropoietin (EPO), an erythropoietic hormone, supplying iron and inflammatory and proinflammatory cytokines. However, the role of these factors in erythropoiesis during African trypanosome infection remains unclear. In the present study, we analyze how erythropoiesis is altered in anemic Trypanosoma brucei brucei (interleukin-tat 1.4 strain [ILS])-infected rats. We report that the packed cell volume (PCV) of blood from ILS-infected rats was significantly lower 4 days after infection, whereas the number of reticulocytes, as an index of erythropoiesis, did not increase. The level of EPO mRNA in ILS-infected rats did not increase from the third day to the sixth day after infection, the same time that the PCV decreased. Kidney cells of uninfected rats cultured with ILS trypanosome strain for 8 hr in vitro decreased EPO mRNA levels. Treatment of both ILS and cobalt chloride mimicked hypoxia, which restrained the EPO-production-promoting effect of the cobalt. Messenger RNA levels of β-globin and transferrin receptor, as markers of erythropoiesis in the bone marrow, also decreased in ILS-infected rats. Levels of hepcidin mRNA, which controls the supply of iron to the marrow in liver, were increased in ILS-infected rats; however, the concentration of serum iron did not change. Furthermore, mRNA levels of interleukin-12, interferon-γ, tumor necrosis factor-α, and macrophage migration inhibitory factor in the spleen, factors that have the potential to restrain erythropoiesis in bone marrow, were elevated in the ILS-infected rats. These results suggest that ILS infection in rats affect erythropoiesis, which responds by decreasing EPO production and restraining its function in the bone marrow.  相似文献   

13.
ObjectiveThe objective of this study is to explore the protective effect of erythropoietin (EPO) on brain injury induced by intrauterine infection in premature infants and its related mechanism, so as to provide reference for clinical medication.MethodsIntrauterine infection model is established by injecting lipopolysaccharide into pregnant mice, and HE staining of mouse placenta is used to judge whether the model of intrauterine infection is successful or not. Fifteen female rats are successfully pregnant and divided into intrauterine infection group (10 rats) and control group (5 rats). The mice in the intrauterine infection group are intraperitoneally injected with lipopolysaccharide (LPS) at a dose of 0.3 mg/kg. After delivery, 16 newborn mice in the control group are randomly selected as blank control group. 32 newborn mice in the intrauterine infection group are selected as model group, and then divided into infection group and EPO treatment group, 16 mice in each group. After birth, mice in the blank control group are intraperitoneally injected with 0.2 mL saline daily. The infected mice are intraperitoneally injected with 0.2 mL saline daily. The mice in the EPO treatment group are intraperitoneally injected with recombinant human erythropoietin (rhEPO) 5000 IU/kg daily. HE staining results, EPOR protein and NMDAR1 mRNA expression in brain tissue of three groups of neonatal mice were compared.ResultsFirstly, the blood vessels of the mice in the intrauterine infection group are markedly hyperemic and edematous, and the infiltration of neutrophils is increased. The white matter structure of the neonatal mice in the intrauterine infection group is loose and stained lightly. The nerve fibers in the brain are different in thickness and disordered in arrangement. The nucleus is small and dark stained. The number of glial cells in brain tissue increases significantly. Secondly, the EPOR protein expression and physiological level of neonatal mice in intrauterine infection group increase significantly at 3, 7 and 14 days after birth. Compared with the blank control group, the difference is statistically significant (P < 0.05). On the 3rd day after birth, the expression level of EPOR protein in the EPO treated group is significantly higher than that in the intrauterine infection group (P < 0.05). Thirdly, the expression level of NMDA R1mRNA in brain tissue of neonatal mice at birth, on the 3rd and 7th day after EPO treatment is significantly lower than that of intrauterine infection group (P < 0.05).ConclusionEPO can promote the proliferation and differentiation of brain endogenous neural stem cells, and has a certain therapeutic effect on brain injury of premature mice caused by intrauterine infection.  相似文献   

14.
Plasmodium yoelii-infected erythrocytes were injected into mice with or without 6.5 Gy irradiation. This irradiation suppressed erythropoiesis and induced severe immunosuppression. However, these mice showed a rather delayed infection, suggesting that fresh erythrocytes may become malarial targets. In other words, malarial infection did not persist without newly generated erythrocytes in mice. We then examined erythropoiesis in the liver and bone marrow of mice with malaria. Surprisingly, erythropoiesis began in the liver. At this time, the serum level of erythropoietin (EPO) was prominently elevated and the EPO mRNA also became detectable in the kidney. Many clusters of red blood cells appeared de novo in the parenchymal space of the liver. These results revealed that malarial infection had a potential to induce the onset of hepatic erythropoiesis in mice.  相似文献   

15.
16.
ABSTRACT: BACKGROUND: Cerebral malaria (CM) is a severe complication of malaria with considerable mortality. In addition to acute encephalopathy, survivors frequently suffer from neurological sequelae. The pathogenesis is incompletely understood, hampering the development of an effective, adjunctive therapy, which is not available at present. Previously, erythropoietin (EPO) was reported to significantly improve the survival and outcome in a murine CM model. The study objectives were to assess myelin thickness and ultrastructural morphology in the corpus callosum in murine CM and to adress the effects of EPO treatment in this context. METHODS: The study consisted of two groups of Plasmodium berghei-infected mice and two groups of uninfected controls that were either treated with EPO or placebo (n = 4 mice/group). In the terminal phase of murine CM the brains were removed and processed for electron microscopy. Myelin sheaths in the corpus callosum were analysed with transmission electron microscopy and stereology. RESULTS: The infection caused clinical CM, which was counteracted by EPO. The total number of myelinated axons was identical in the four groups and mice with CM did not have reduced mean thickness of the myelin sheaths. Instead, CM mice had significantly increased numbers of abnormal myelin sheaths, whereas EPO-treated mice were indistinguishable from uninfected mice. Furthermore, mice with CM had frequent and severe axonal injury, pseudopodic endothelial cells, perivascular oedemas and intracerebral haemorrhages. CONCLUSIONS: EPO treatment reduced clinical signs of CM and reduced cerebral pathology. Murine CM does not reduce the general thickness of myelin sheaths in the corpus callosum.  相似文献   

17.
人促红细胞生成素基因在家蚕体中的高效表达   总被引:8,自引:0,他引:8  
人促红细胞生成素(EPO)是一种调控红系干细胞增殖、分化和成熟的糖蛋白激素。将合成的EPO cDNA插入杆状病毒转移载体pBlueBacⅢ,使其置于Ph基因强启动子控制之下,获得了转移载体pBlueBacEPO。将pBlueBacEPO DNA与野生型BmNPV DNA共转染BmN细胞,经空斑纯化,获插入EPO cDNA的重组病毒rBmNPVEPO。经Sonthern杂交和PCR扩增鉴定证明人EPO基因已正确组建于BmNPV的预定位置。将重组病毒rBmNPVEPO穿刺接种5龄幼虫和蛹,收集感染第3~5d的幼虫血淋巴和3~6.5d蛹血淋巴。用ELISA检测幼虫血淋巴中EPO表达量高达62800u/mL,蛹血淋巴中表达量达74000u/mL。Western blot结果显示幼虫血淋巴和蛹血淋巴均有一条明显的免疫杂交带,分子量均约为26kD。用TF1细胞对幼虫表达产物进行了生物活性测定,每毫升血淋巴中EPO活性约为63000u。  相似文献   

18.
The utility of recombinant herpes simplex virus type 1 (HSV-1) vectors may be expanded by manipulation of the virus envelope to achieve cell-specific gene delivery. To this end, an HSV-1 mutant virus deleted for glycoprotein C (gC) and the heparan sulfate binding domain of gB (KgBpKgC) was engineered to encode different chimeric proteins composed of N-terminally truncated forms of gC and the full-length erythropoietin hormone (EPO). Biochemical analyses demonstrated that one gC-EPO chimeric molecule (gCEPO2) was posttranslationally processed, incorporated into recombinant HSV-1 virus (KgBpKgCEPO2), and neutralized with antibodies directed against gC or EPO in a complement-dependent manner. Moreover, KgBpKgCEPO2 recombinant virus was specifically retained on a soluble EPO receptor column, was neutralized by soluble EPO receptor, and stimulated proliferation of FD-EPO cells, an EPO growth-dependent cell line. FD-EPO cells were nevertheless refractory to productive infection by both wild-type HSV-1 and recombinant KgBpKgCEPO2 virus. Transmission electron microscopy of FD-EPO cells infected with KgBpKgCEPO2 showed virus endocytosis leading to aborted infection. Despite the lack of productive infection, these data provide the first evidence of targeted HSV-1 binding to a non-HSV-1 cell surface receptor.  相似文献   

19.
Neonatal infection of the mouse T lymphotropic virus (MTLV), a member of herpes viridae, causes various organ-specific autoimmune diseases, such as autoimmune gastritis, in selected strains of normal mice. The infection selectively depletes CD4+ T cells in the thymus and periphery for 2-3 wk from 1 wk after infection. Thymectomy 3 wk after neonatal MTLV infection enhances the autoimmune responses and produces autoimmune diseases at higher incidences and in a wider spectrum of organs than MTLV infection alone. On the other hand, inoculation of peripheral CD4+ cells from syngeneic noninfected adult mice prevents the autoimmune development. These autoimmune diseases can be adoptively transferred to syngeneic athymic nude mice by CD4+ T cells. The virus is not detected by bioassay in the organs/tissues damaged by the autoimmune responses. Furthermore, similar autoimmune diseases can be induced in normal mice by manipulating the neonatal thymus/T cells (e.g., by neonatal thymectomy) without virus infection. These results taken together indicate that neonatal MTLV infection elicits autoimmune disease by primarily affecting thymocytes/T cells, not self Ags. It may provoke or enhance thymic production of CD4+ pathogenic self-reactive T cells by altering the thymic clonal deletion mechanism, or reduce the production of CD4+ regulatory T cells controlling self-reactive T cells, or both. The possibility is discussed that other T cell-tropic viruses may cause autoimmunity in humans and animals by affecting the T cell immune system, not the self Ags to be targeted by the autoimmunity.  相似文献   

20.
Toxocara canis infection of abnormal hosts results in a condition in which infective larvae migrate through the soft tissues of the body, exclusive of the skin. This condition is known as visceral larva migrans (VLM) and causes a syndrome characterized by hepatosplenomegaly, hyperglobulinemia, hypereosinophilia, and transient pulmonary infiltrates. Because of the known association between hypereosinophilia and eosinophilic heart disease, we have been studying the hearts of mice infected with T. canis for evidence of myocardial damage and have previously described a severe eosinophilic myocarditis that leads to a marked myocardial fibrosis. We have measured eosinophil peroxidase (EPO) levels (a marker enzyme for specific granules of eosinophils) in homogenized lungs, homogenized hearts, and eosinophils recovered from the lungs of mice infected with T. canis over a 6-wk period. A marked accumulation of EPO was observed in the lungs of infected mice from day 14 postinfection (PI) to at least 6 wk of infection. Most of the EPO was associated with eosinophils that comprise the bulk of the pulmonary infiltrates associated with the VLM syndrome. However, following bronchoalveolar lavage, cytochemical localization of EPO activity in lungs from infected mice suggested that eosinophil degranulation had resulted in this marker enzyme being deposited within the pulmonary parenchyma. Peak levels of EPO were found in the myocardium by day 14 PI and declined over the 6-wk period. These levels equaled about 1/3 of the levels seen in the lungs of the same mice. These studies suggest that in mice infected with T. canis, the presence of increased numbers of eosinophils may lead to marked peroxidatic cardiopulmonary damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号