首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Azospirillum brasilense is a rhizosphere microorganism which has potential use for promoting plant growth in economically important crops. Its ability to survive the adverse conditions imposed by nutrient starvation and competition in the rhizosphere is of great importance. A. brasilense accumulates up to 70% of its cell dry weight with poly-β-hydroxybutyrate (PHB). In the presence of stress factors such as ultraviolet radiation, desiccation and osmotic stress, PHB-rich cells survived better than PHB-poor cells. Polymer-rich cells of Azospirillum fixed N2 in the absence of exogenous carbon and combined nitrogen. The enzymes of the PHB cycle in both the synthesis and degradation processes as well as during starvation were more active in PHB-rich cells. After 24 h of starvation there was a peak of activity of d (−)β-hydroxybutyrate dehydrogenase, β-ketothiolase and thiophorase due to PHB degradation. Additionally, acetoacetyl-CoA reductase dropped to a minimum level because PHB could not be synthesized. The possible utilization of PHB as a sole carbon and energy source by A. brasilense and other bacteria during establishment, proliferation and survival in the rhizosphere will be discussed.  相似文献   

2.
Salinity stress inhibits the growth and nitrogen fixation ability of the plant growth-promoting rhizobacterium Azospirillum brasilense. Five strains of A. brasilense were isolated from the rhizosphere of Indian cereals and grasses and identified on the basis of their phenotypic features and 16S rRNA gene sequence. The five Indian isolates and two standard strains of A. brasilense, Sp7 and Cd, showed notable differences in growth, acetylene-reducing activity under salt stress, and ability to take up and use glycine betaine for the restoration of growth and acetylene-reducing activity under salt stress. Salt stress also enhanced the production of exopolysaccharides and cell aggregates, the extent of which varied in different strains of A. brasilense at different carbon to nitrogen ratios in the culture medium. It can be concluded that the production of exopolysaccharides and cell aggregates is a more consistent physiological response of A. brasilense to salt stress than is the uptake and osmoprotection by glycine betaine.  相似文献   

3.
Azospirillum is used extensively in rice and other cereal crops as a biofertilizer. There is a substantial opportunity to improve the efficiency of this bacterium through the transfer of genes of agricultural importance from other organisms. Chitinases are antifungal proteins, and expression of chitinase genes in Azospirillum would help to develop strains with potential antifungal activities. So far there are no reports about transfer of plant genes into Azospirillum and their expression. The present study was aimed at expressing an antifungal gene (a rice chitinase) of plant origin in Azospirillum brasilense. A rice chitinase cDNA (RC 7) that codes for a 35 kDa protein was subcloned into a broad host range plasmid pDSK519 under the control of LacZ promoter. The plasmid was mobilized into the nitrogen-fixing bacterium, Azospirillum brasilense strain SP51eFL1, through biparental mating. The conjugation frequency was in the range of 35-40 x 10(-6). The transconjugants grew in nitrogen-free media and fixed gaseous nitrogen in vitro. However, their growth and nitrogen-fixing ability were slightly less than those of the wild-type. Expression of the protein was demonstrated through western blotting of the total cell protein, which detected a 35 kDa band that was immuno-reactive to a barley chitinase antibody. The cell lysates also hydrolyzed various chitin substrates, which resulted in release of free sugars demonstrating the chitinase activity of transconjugants. The expressed protein also had antifungal activity as demonstrated by inhibition of growth of the plant pathogenic fungus, Rhizoctonia solani.  相似文献   

4.
Bacteria of the genus Azospirillum are nitrogen-fixing organisms that live in close association with plants in the rhizosphere. The Azospirillum-plant association leads to the enhanced development and yield of different host plants under appropriate growth conditions. This increase in yield is attributed mainly to an improvement in root development, an increase in the rate of water and mineral uptake by roots, and to a lesser extent, biological N(2) fixation. Worldwide data accumulated in the field over the past 20 years indicates that Azospirillum is capable of promoting the yield of agriculturally important crops in different soils and climatic regions. A.brasilense shows both chemotaxis and chemokinesis in response to temporal gradients of different chemoeffectors, thereby increasing the chance of root-bacterial interactions. Phytohormones synthesized by Azospirillum influence the host root respiration rate, metabolism and root proliferation and hence better the mineral and water uptake in inoculated plants. Positive effects of combined inoculation with Rhizobium have been reported for different legumes and were related to the favorable influence of Azospirillum on the nodule number, plant development, dry weight, and N(2) fixation. Additionally, A. brasilense produces the reserve material polyhydroxybutyrate comprising up to 70% of the cell dry weight This substance has received much attention recently as it can be extracted and formed into a biodegradable thermoplastic.  相似文献   

5.
Growth and nitrogen fixation were followed during the life cycle of Setaria italica (foxtail millet) inoculated with Azospirillum brasilense in controlled-environment growth chambers. The plants were fertilized at seeding with a limiting amount of combined nitrogen and maintained with an N-free mineral solution. During maturation of the plants, substantial nitrogenase activity, measured by acetylene reduction, developed in the rhizosphere, with total fixation estimated to be equivalent to 20% of the N in the inoculated plants. The peak of this activity coincided with depletion of soluble nitrogen from the system, which in turn was reflected by a sharp decrease in the nitrate reductase activity of the leaves. A. brasilense was found in association with the root populations at 8 x 10 cells per gram of dry weight. An increase in shoot growth occurred at this time, but no significant increase in total plant nitrogen could be demonstrated. N(2) enrichment experiments confirmed that fixation was occurring, but only about 5% of the nitrogen fixed by A. brasilense was incorporated into the plants within 3 weeks. There was thus no evidence of direct bacterium-to-plant transport of fixed nitrogen, but rather a slow transfer suggesting the gradual death of bacteria and subsequent mineralization of their nitrogen, at least under growth-room conditions.  相似文献   

6.
The ability of Azospirillum brasilense Cd to colonize the niche occupied by 3 bacterial strains previously isolated from sorghum rhizosphere was studied by means of the Biolog system. The isolates were identified by different methods as strains belonging to Pseudomonas putida, Stenotrophomonas maltophilia, and Klebsiella terrigena species. Several C sources, also chosen among the constituents of sorghum root exudates, were used to evaluate the metabolic profiles of Azospirillum and the sorghum rhizobacteria. Azospirillum brasilense Cd exploited the same class of C compounds as the sorghum rhizobacteria and overlapped in their niche requirements. Since structure and functioning of a microbial community are largely affected by the flow rate of nutrient supply, the competitive behavior of A. brasilense Cd was studied in a chemostat mixed culture under C-limited conditions using disodium succinate as C source. Only at high growth rates, i.e., when the C source was highly supplied, A. brasilense Cd appeared to be a good competitor and it became the dominant species, whereas at low growth rates, it was outnumbered by the other species. However, the coexistence of all the strains was always maintained, thus suggesting that interactions other than competition or a potential cross-feeding might occur within the mixed culture.  相似文献   

7.
The plant growth-promoting proteobacterium Azospirillum brasilense enhances growth of many economically important crops, such as wheat, maize, and rice. The sequencing and annotation of the 1.59-Mbp replicon of A. brasilense CBG497, a strain isolated from a maize rhizosphere grown on an alkaline soil in the northeast of Mexico, revealed a GC content of 68.7?% and the presence of 1,430 potential protein-encoding genes, 1,147 of them classified into clusters of orthologous groups categories, and 16 tRNA genes representing 11 tRNA species. The presence of sixty-two genes representatives of the minimal gene set and chromid core genes suggests its importance in bacterial survival. The phaAB?→?G operon, reported as involved in the bacterial adaptation to alkaline pH in the presence of K(+), was also found on this replicon and detected in several Azospirillum strains. Phylogenetic analysis suggests that it was laterally acquired. We were not able to show its inference on the adaptation to basic pH, giving a hint about the presence of an alternative system for adaptation to alkaline pH.  相似文献   

8.
The survival of Azospirillum brasilense Cd and Sp-245 in the rhizosphere of wheat and tomato plants and in 23 types of plant-free sterilized soils obtained from a wide range of environments in Israel and Mexico was evaluated. Large numbers of A. brasilense cells were detected in all the rhizospheres tested, regardless of soil type, bacterial strain, the origin of the soil, or the amount of rainfall each soil type received prior to sampling. Survival of A. brasilense in soils without plants differed from that in the rhizosphere and was mainly related to the geographical origin of the soil. In Israeli soils from arid, semiarid, or mountain regions, viability of A. brasilense rapidly declined or populations completely disappeared below detectable levels within 35 days after inoculation. In contrast, populations in the arid soils of Baja California Sur, Mexico, remained stable or even increased during the 45-day period after inoculation. In soils from Central Mexico, viability slowly decreased with time. In all soils, percentages of clay, nitrogen, organic matter, and water-holding capacity were positively correlated with bacterial viability. High percentages of CaCO(inf3) and fine or rough sand had a highly negative effect on viability. The percentage of silt, pH, the percentage of phosphorus or potassium, electrical conductivity, and C/N ratio had no apparent effect on bacterial viability in the soil. Fifteen days after removal of inoculated plants, the remaining bacterial population in the three soil types tested began to decline sharply, reaching undetectable levels 90 days after inoculation. After plant removal, percolating the soils with water almost eliminated the A. brasilense population. Viability of A. brasilense in two artificial soils containing the same major soil components as the natural soils from Israel did was almost identical to that in the natural soils. We conclude that A. brasilense is a rhizosphere colonizer which survives poorly in most soils for prolonged periods of time; that outside the rhizosphere, seven abiotic parameters control the survival of this bacterium in the soil; and that disturbance of the soil (percolation with water or plant removal) directly and rapidly affects the population levels.  相似文献   

9.
10.
Pseudomonas syringae pv. tomato, the causal agent of bacterial speck of tomato, and the plant growth-promoting bacterium Azospirillum brasilense were inoculated onto tomato plants, either alone, as a mixed culture, or consecutively. The population dynamics in the rhizosphere and foliage, the development of bacterial speck disease, and their effects on plant growth were monitored. When inoculated onto separate plants, the A. brasilense population in the rhizosphere of tomato plants was 2 orders of magnitude greater than the population of P. syringae pv. tomato (10(7) versus 10(5) CFU/g [dry weight] of root). Under mist chamber conditions, the leaf population of P. syringae pv. tomato was 1 order of magnitude greater than that of A. brasilense (10(7) versus 10(6) CFU/g [dry weight] of leaf). Inoculation of seeds with a mixed culture of the two bacterial strains resulted in a reduction of the pathogen population in the rhizosphere, an increase in the A. brasilense population, the prevention of bacterial speck disease development, and improved plant growth. Inoculation of leaves with the mixed bacterial culture under mist conditions significantly reduced the P. syringae pv. tomato population and significantly decreased disease severity. Challenge with P. syringae pv. tomato after A. brasilense was established in the leaves further reduced both the population of P. syringae pv. tomato and disease severity and significantly enhanced plant development. Both bacteria maintained a large population in the rhizosphere for 45 days when each was inoculated separately onto tomato seeds (10(5) to 10(6) CFU/g [dry weight] of root). However, P. syringae pv. tomato did not survive in the rhizosphere in the presence of A. brasilense. Foliar inoculation of A. brasilense after P. syringae pv. tomato was established on the leaves did not alleviate bacterial speck disease, and A. brasilense did not survive well in the phyllosphere under these conditions, even in a mist chamber. Several applications of a low concentration of buffered malic acid significantly enhanced the leaf population of A. brasilense (>10(8) CFU/g [dry weight] of leaf), decreased the population of P. syringae pv. tomato to almost undetectable levels, almost eliminated disease development, and improved plant growth to the level of uninoculated healthy control plants. Based on our results, we propose that A. brasilense be used in prevention programs to combat the foliar bacterial speck disease caused by P. syringae pv. tomato.  相似文献   

11.
The plant growth-promoting soil bacterium Azospirillum brasilense enhances growth of economically important crops, such as wheat, corn and rice. In order to improve plant growth, a close bacterial association with the plant roots is needed. Genes encoded on a 90-MDa plasmid, denoted pRhico plasmid, present in A. brasilense Sp7, play an important role in plant root interaction. Sequencing, annotation and in silico analysis of this 90-MDa plasmid revealed the presence of a large collection of genes encoding enzymes involved in surface polysaccharide biosynthesis. Analysis of the 90-MDa plasmid genome provided evidence for its essential role in the viability of the bacterial cell.  相似文献   

12.
目的:从玉米根际和土壤中分离具有高产吲哚乙酸较强的泌氨能力的巴西固氮螺菌。方法:分别通过半固体NFb培养基、CR培养基、LB培养基分离培养固氮菌株,并经过一系列菌落菌体形态特征、生理生化特性和16S rDNA序列测定等试验对其进行鉴定。结果:经分离纯化获得10株固氮菌,并鉴定均为巴西固氮螺菌(Azospirillum brasilense),其中菌株R7在甘油半固体培养基上能分泌约14mmol/L的氨,在添加了色氨酸的培养基中能够合成58.8μg/ml的吲哚-3-乙酸(IAA)。结论:成功筛选得到一株既高产吲哚乙酸又有较强的泌氨能力的巴西固氮螺菌。  相似文献   

13.
Positive response of plant species to plant growth-promoting rhizobacteria have led to an increased interest in their use as bacterial inoculants. However, the introduction of exogenous bacteria into natural ecosystems may perturb bacterial populations within the microbial community and lead to the disruption of indigenous populations performing key functional roles. In this study the effect of Azospirillum brasilense inoculation on maize (Zea mays) rhizosphere Actinobacteria, Bacteroidetes, alpha-Proteobacteria, Pseudomonas and Bdellovibrio spp. was assessed using a polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) approach in conjunction with group-specific primers. The DGGE fingerprints analysis revealed that the introduction of A. brasilense did not alter or disrupt the microbial system at the group-specific level. However, some communities such as the alpha-Proteobacteria and Bdellovibrio were influenced by plant age while the other bacterial groups remained unaffected. Based on these as well as previous data, it can be inferred that inoculation with A. brasilense does not perturb the natural bacterial populations investigated.  相似文献   

14.
Malik  K.A.  Bilal  Rakhshanda  Mehnaz  Samina  Rasul  G.  Mirza  M.S.  Ali  S. 《Plant and Soil》1997,194(1-2):37-44
Leptochloa fusca (L.) Kunth (kallar grass) has previously been found to exhibit high rates of nitrogen fixation. A series of experiments to determine the level of biological nitrogen fixation using N isotopic dilution were carried out in nutrient solution and saline soil. These studies indicated an agronomically significant amount of nitrogen being fixed in soil. Kallar grass has a similar growth habitat to rice. Therefore similar studies were carried out with rice after isolating various diazotrophs from the roots which were also screened for their ability to produce auxin (IAA). Five such strains namely Azospirillum lipoferum N-4, Azospirillum brasilense Wb-3, Azoarcus K-1, Pseudomonas 96-51, Zoogloea Ky-1 were selected for inoculating two rice varieties i.e. NIAB-6 and BAS-370 under aseptic laboratory conditions. The nitrogen fixed was quantified using the N isotopic dilution method. Variety BAS-370 had nearly 70% nitrogen derived from atmosphere (Ndfa) when inoculated with Azospirillum N-4. Similar studies with the mixed inoculum using N fertilizer in the micro plots indicated that nearly 29% of plant nitrogen was derived from the atmosphere.  相似文献   

15.
Spontaneous ethylenediamine-resistant mutants of Azospirillum brasilense were selected on the basis of their excretion of NH(4). Two mutants exhibited no repression of their nitrogenase enzyme systems in the presence of high (20 mM) concentrations of NH(4). The nitrogenase activities of these mutants on nitrogen-free minimal medium were two to three times higher than the nitrogenase activity of the wild type. The mutants excreted substantial amounts of ammonia when they were grown either under oxygen-limiting conditions (1 kPa of O(2)) or aerobically on nitrate or glutamate. The mutants grew well on glutamate as a sole nitrogen source but only poorly on NH(4)Cl. Both mutants failed to incorporate [C]methylamine. We demonstrated that nitrite ammonification occurs in the mutants. Wild-type A. brasilense, as well as the mutants, became established in the rhizospheres of axenically grown wheat plants at levels of > 10 cells per g of root. The rhizosphere acetylene reduction activity was highest in the preparations containing the mutants. When plants were grown on a nitrogen-free nutritional medium, both mutants were responsible for significant increases in root and shoot dry matter compared with wild-type-treated plants or with noninoculated controls. Total plant nitrogen accumulation increased as well. When they were exposed to a N(2)-enriched atmosphere, both A. brasilense mutants incorporated significantly higher amounts of N inside root and shoot material than the wild type did. The results of our nitrogen balance and N enrichment studies indicated that NH(4)-excreting A. brasilense strains potentially support the nitrogen supply of the host plants.  相似文献   

16.
Inoculation of wheat roots with Azospirillum brasilense results in an increase of plant growth and yield, which is proposed to be mainly due to the bacterial production of indole-3-acetic acid in the rhizosphere. Field inoculation experiments had revealed more consistent plant growth stimulation using A. brasilense strain Sp245 as compared with the strain Sp7. Therefore, the in situ expression of the key gene ipdC (indole-3-pyruvate decarboxylase) was examined in these two strains. Within the ipdC promoter of strain Sp245 a region of 150 bases was identified, which was missing in strain Sp7. Thus, three different translational ipdC promoter fusions with gfpmut3 were constructed on plasmid level: the first contained the part of the Sp245 promoter region homologous to strain Sp7, the second was bearing the complete promoter region of Sp245 including the specific insertion and the third comprised the Sp7 promoter region. By comparing the fluorescence levels of these constructs after growth on mineral medium with and without inducing amino acids, it could be demonstrated that ipdC expression in A. brasilense Sp245 was subject to a stricter control compared with strain Sp7. Microscopic detection of these reporter strains colonizing the rhizoplane documented for the first time an in situ expression of ipdC.  相似文献   

17.
Carnation cuttings treated with non-transformed and 1-aminocyclopropane (ACC) deaminase-containing Azospirillum brasilense Cd1843 produced significantly more roots than untreated controls and fewer roots than cuttings treated with 0.1% indolebutyric acid (IBA). The roots produced by cuttings treated with ACC deaminase-containing Azospirillum brasilense Cd1843 were the longest roots resulting from any of the treatments, followed by non-transformed Azospirillum brasilense Cd1843, 0.1% IBA, and treatment with water. The results are interpreted in terms of a previously proposed model of bacterial promotion of plant growth by ACC deaminase and indoleacetic acid, and may have implications for the use of plant growth-promoting bacteria in the flower industry.  相似文献   

18.
Auxin production by Azospirillum is believed to play a major role in the observed plant growth promoting effect. By using different genetically modified strains, the contribution of auxin biosynthesis by A. brasilense in altering root morphology was evaluated in a plate assay. Inoculation with the wild type strains A. brasilense Sp245 and Sp7 resulted in a strong decrease in root length and increase in root hair formation. This effect was abolished when inoculating with an ipdC mutant of A. brasilense. The ipdC gene encodes a key enzyme in the IPyA pathway of IAA synthesis by A. brasilense. On the other hand, the observed auxin effect was further enhanced by adding tryptophan, a precursor of IAA, to the plates and could be mimicked by replacing the Azospirillum cells by a particular concentration of IAA. Furthermore, particular mutants (rpoN, scrp) and transconjugants (extra copy of ipdC) of A. brasilense were tested in the plate assay. Together, these results confirm the important role of IAA produced by Azospirillum in altering root morphology and illustrate the power of combining genetic tools and bioassays to elucidate the mechanism of a beneficial Azospirillum-plant interaction. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Here we report on the presence of sulfated lipopolysaccharide molecules in Azospirillum brasilense, a plant growth-promoting rhizosphere bacterium. Chemical analysis provided structural data on the O-antigen composition and demonstrated the possible involvement of the nodPQ genes in O-antigen sulfation.  相似文献   

20.
When grown under suboptimal conditions, rhizobacteria of the genus Azospirillum produce high levels of poly-beta-hydroxybutyrate (PHB). Azospirillum brasilense strain Sp7 and a phbC (PHB synthase) mutant strain in which PHB production is impaired were evaluated for metabolic versatility, for the ability to endure various stress conditions, for survival in soil inoculants, and for the potential to promote plant growth. The carbon source utilization data were similar for the wild-type and mutant strains, but the generation time of the wild-type strain was shorter than that of the mutant strain with all carbon sources tested. The ability of the wild type to endure UV irradiation, heat, osmotic pressure, osmotic shock, and desiccation and to grow in the presence of hydrogen peroxide was greater than that of the mutant strain. The motility and cell aggregation of the mutant strain were greater than the motility and cell aggregation of the wild type. However, the wild type exhibited greater chemotactic responses towards attractants than the mutant strain exhibited. The wild-type strain exhibited better survival than the mutant strain in carrier materials used for soil inoculants, but no difference in the ability to promote plant growth was detected between the strains. In soil, the two strains colonized roots to the same extent. It appears that synthesis and utilization of PHB as a carbon and energy source by A. brasilense under stress conditions favor establishment of this bacterium and its survival in competitive environments. However, in A. brasilense, PHB production does not seem to provide an advantage in root colonization under the conditions tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号