首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emergence of multidrug resistant tuberculosis (MDRTB) highlights the urgent need to understand the mechanisms of resistance to the drugs and to develop a new arena of therapeutics to treat the disease. Ethambutol, isonazid, pyrazinamide, rifampicin are first line of drugs against TB, whereas aminoglycoside, polypeptides, fluoroquinolone, ethionamide are important second line of bactericidal drugs used to treat MDRTB, and resistance to one or both of these drugs are defining characteristic of extensively drug resistant TB. We retrieved 1,221 resistant genes from Antibiotic Resistance Gene Database (ARDB), which are responsible for resistance against first and second line antibiotics used in treatment of Mycobacterium tuberculosis infection. From network analysis of these resistance genes, 53 genes were found to be common. Phylogenetic analysis shows that more than 60% of these genes code for acetyltransferase. Acetyltransferases detoxify antibiotics by acetylation, this mechanism plays central role in antibiotic resistance. Seven acetyltransferase (AT-1 to AT-7) were selected from phylogenetic analysis. Structural alignment shows that these acetyltransferases share common ancestral core, which can be used as a template for structure based drug designing. From STRING analysis it is found that acetyltransferase interact with 10 different proteins and it shows that, all these interaction were specific to M. tuberculosis. These results have important implications in designing new therapeutic strategies with acetyltransferase as lead co-target to combat against MDR as well as Extreme drug resistant (XDR) tuberculosis.

Abbreviations

AA - amino acid, AT - Acetyltransferase, AAC - Aminoglycoside 2''-N-acetyltransferase, XDR - Extreme drug-resistant, MDR - Multidrug-resistant, Mtb - Mycobacterium tuberculosis, TB - Tuberculosis.  相似文献   

2.
Mycobacterium tuberculosis is one of the worlds' most successful and sophisticated pathogens. It is estimated that over 2 billion people today harbour latent M. tuberculosis infection without any clinical symptoms. As most new cases of active tuberculosis (TB) arise from this (growing) number of latently infected individuals, urgent measures to control TB reactivation are required, including post-exposure/therapeutic vaccines. The current bacille Calmette-Guérin (BCG) vaccine and all new generation TB vaccines being developed and tested are essentially designed as prophylactic vaccines. Unfortunately, these vaccines are unlikely to be effective in individuals already latently infected with M. tuberculosis. Here, we argue that detailed analysis of M. tuberculosis genes that are switched on predominantly during latent stage infection may lead to the identification of new antigenic targets for anti-TB strategies. We will describe essential host-pathogen interactions in TB with particular emphasis on TB latency and persistent infection. Subsequently, we will focus on novel groups of late-stage specific genes, encoded amongst others by the M. tuberculosis dormancy (dosR) regulon, and summarise recent studies describing human T-cell recognition of these dormancy antigens in relation to (latent) M. tuberculosis infection. We will discuss the possible relevance of these new classes of antigens for vaccine development against TB.  相似文献   

3.
In spite of a massive effort to apply the tools currently available for tuberculosis (TB) control, both in this country and abroad, it is clear that complicating factors [for example, HIV co-infection, drug resistance, lack of patient compliance with chemotherapy, variable efficacy of Bacille Calmette-Guerin (BCG) vaccine] will prevent disease control unless new drugs, vaccines and diagnostic tests are developed (1). The publication of the complete genome sequence of Mycobacterium tuberculosis in 1998 (2) has facilitated a directed search for virulence genes, new drug targets, and vaccine antigens. This research effort has been made possible by the availability of highly biologically relevant animal models of pulmonary TB ((3)).  相似文献   

4.
5.
Pulmonary tuberculosis (PTB) is a major global public health problem. The purpose of this study was to find biomarkers that can be used to diagnose tuberculosis. We used four NCBI GEO data sets to conduct analysis. Among the four data sets, GSE139825 is lung tissue microarray, and GSE83456 , GSE19491 and GSE50834 are blood microarray. The differential genes of GSE139825 and GSE83456 were 68 and 226, and intersection genes were 11. Gene ontology (GO) analyses of 11 intersection genes revealed that the changes were mostly enriched in regulation of leucocyte cell-cell adhesion and regulation of T-cell activation. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs revealed that the host response in TB strongly involves cytokine-cytokine receptor interactions and folate biosynthesis. In order to further narrow the range of biomarkers, we used protein-protein interaction to establish a hub gene network of two data sets and a network of 11 candidate genes. Eventually, IRF1 was selected as a biomarker. As validation, IRF1 levels were shown to be up-regulated in patients with TB relative to healthy controls in data sets GSE19491 and GSE50834 . Additionally, IRF1 levels were measured in the new patient samples using ELISA. IRF1 was seen to be significantly up-regulated in patients with TB compared with healthy controls with an AUC of 0.801. These results collectively indicate that IRF1 could serve as a new biomarker for the diagnosis of pulmonary tuberculosis.  相似文献   

6.
由结核分枝杆菌感染引起的结核病是人类重要传染病之一。临床上结核菌耐药性日趋严重,不断出现的耐多药及广泛耐药结核病患者,使现有的一线至五线药物不能满足结核病防控需求。微生物来源的天然产物是药物先导化合物的重要来源。环境中存在大量常规培养条件下未培养微生物,同时微生物基因组中也存在大量未被表达的"沉默代谢途径"。运用各种方法对未培养微生物进行再培养,同时激活微生物的沉默代谢途径,进而获得潜在的新型抗生素药物已成为目前研究热点。文中系统阐述了近年来获取天然化合物所采用的微生物非常规培养技术及沉默代谢途径激活策略,同时总结了利用这两种方法获得的新型抗结核天然产物,并展望了这些方法在抗结核药物进一步研发中的应用前景。  相似文献   

7.
8.
A quantitative structure activity relationship study was performed on different groups of anti-tuberculosis drug compound for establishing quantitative relationship between biological activity and their physicochemical /structural properties. In recent years, a large number of herbal drugs are promoted in treatment of tuberculosis especially due to the emergence of MDR (multi drug resistance) and XDR (extensive drug resistance) tuberculosis. Multidrug-resistant TB (MDR-TB) is resistant to front-line drugs (isoniazid and rifampicin, the most powerful anti-TB drugs) and extensively drug-resistant TB (XDR-TB) is resistant to front-line and second-line drugs. The possibility of drug resistance TB increases when patient does not take prescribed drugs for defined time period. Natural products (secondary metabolites) isolated from the variety of sources including terrestrial and marine plants and animals, and microorganisms, have been recognized as having antituberculosis action and have recently been tested preclinically for their growth inhibitory activity towards Mycobacterium tuberculosis or related organisms. A quantitative structure activity relationship (QSAR) studies were performed to explore the antituberculosis compound from the derivatives of natural products . Theoretical results are in accord with the in vitro experimental data with reported growth inhibitory activity towards Mycobacterium tuberculosis or related organisms. Antitubercular activity was predicted through QSAR model, developed by forward feed multiple linear regression method with leave-one-out approach. Relationship correlating measure of QSAR model was 74% (R(2) = 0.74) and predictive accuracy was 72% (RCV(2) = 0.72). QSAR studies indicate that dipole energy and heat of formation correlate well with anti-tubercular activity. These results could offer useful references for understanding mechanisms and directing the molecular design of new lead compounds with improved anti-tubercular activity. The generated QSAR model revealed the importance of structural, thermodynamic and electro topological parameters. The quantitative structure activity relationship provides important structural insight in designing of potent antitubercular agent.  相似文献   

9.
Multidrug-resistant tuberculosis (MDR-TB) and TB–HIV co-infection have become a great threat to global health. However, the last truly novel drug that was approved for the treatment of TB was discovered 40?years ago. The search for new effective drugs against TB has never been more intensive. Natural products derived from microbes and medicinal plants have been an important source of TB therapeutics. Recent advances have been made to accelerate the discovery rate of novel TB drugs including diversifying strategies for environmental strains, high-throughput screening (HTS) assays, and chemical diversity. This review will discuss the challenges of finding novel natural products with anti-TB activity from marine microbes and plant medicines, including biodiversity- and taxonomy-guided microbial natural products library construction, target- and cell-based HTS, and bioassay-directed isolation of anti-TB substances from traditional medicines.  相似文献   

10.
TB (tuberculosis) disease remains responsible for the death of over 1.5 million people each year. The alarming emergence of drug-resistant TB has sparked a critical need for new front-line TB drugs with a novel mode of action. In the present paper, we review recent genomic and biochemical evidence implicating Mycobacterium tuberculosis CYP (cytochrome P450) enzymes as exciting potential targets for new classes of anti-tuberculars. We also discuss HTS (high-throughput screening) and fragment-based drug-discovery campaigns that are being used to probe their potential druggability.  相似文献   

11.
The number of new cases of tuberculosis (TB) arising each year is increasing globally. Migration, socio-economic deprivation, HIV co-infection and the emergence of drug-resistant strains of Mycobacterium tuberculosis, the main causative agent of TB in humans, have all contributed to the increasing number of TB cases worldwide. Proteins that are essential to the pathogen survival and absent in the host, such as enzymes of the shikimate pathway, are attractive targets to the development of new anti-TB drugs. Here we describe the metal requirement and kinetic mechanism determination of M. tuberculosis dehydroquinate synthase (MtDHQS). True steady-state kinetic parameters determination and ligand binding data suggested that the MtDHQS-catalyzed chemical reaction follows a rapid-equilibrium random mechanism. Treatment with EDTA abolished completely the activity of MtDHQS, and addition of Co(2+) and Zn(2+) led to, respectively, full and partial recovery of the enzyme activity. Excess Zn(2+) inhibited the MtDHQS activity, and isotitration microcalorimetry data revealed two sequential binding sites, which is consistent with the existence of a secondary inhibitory site. We also report measurements of metal concentrations by inductively coupled plasma atomic emission spectrometry. The constants of the cyclic reduction and oxidation of NAD(+) and NADH, respectively, during the reaction of MtDHQS was monitored by a stopped-flow instrument, under single-turnover experimental conditions. These results provide a better understanding of the mode of action of MtDHQS that should be useful to guide the rational (function-based) design of inhibitors of this enzyme that can be further evaluated as anti-TB drugs.  相似文献   

12.
Due to the failure of chemotherapy and the only available vaccine, BCG, to control tuberculosis (TB) disease, there is an urgent need to develop new vaccines and therapeutics. The identification of correlates of immune protection or "biomarkers" will facilitate the rational design of vaccines and drugs for the prevention and clearance of TB infection. Although it is known that IFN-gamma is essential for protective immunity, animal and human studies have found that IFN-gamma alone is not sufficient for the prevention of TB disease. There is evidence that IL-23, a recently described member of the IL-12 family of cytokines, is important in the immuno-pathogenesis of TB. There is also evidence that regulatory T cells (Treg) are present in TB disease and that Treg may suppress effector T cell responses. In the last five years, clinical studies have been able to use Mycobacterium tuberculosis specific antigens, such as ESAT-6, to focus on recently infected, healthy contacts of TB patients in endemic countries. Advances in techniques such as multi-parameter flow cytometry and DNA microarray analysis will enable us to study these cohorts in great detail and facilitate the identification of immune correlates for the rational design of drugs and vaccines for the treatment and prevention of TB.  相似文献   

13.
Tuberculosis (TB) remains a major global health concern whose control has been exacerbated by HIV and the emergence of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) strains of Mycobacterium tuberculosis. The demand for new and faster acting TB drugs is thus greater than ever. In the past decade intensive efforts have been made to discover new leads for TB drug development using both target-based and cell-based approaches. Here, we describe the most promising anti-tubercular drug candidates that are in clinical development and introduce some nitro-aromatic compounds that inhibit a new target, DprE1, an essential enzyme involved in a crucial step in mycobacterial cell wall biosynthesis.  相似文献   

14.
Mycobacterium tuberculosis (Mtb), the pathogen of tuberculosis (TB), is one of the most infectious bacteria in the world. The traditional strategy to combat TB involves targeting the pathogen directly; however, the rapid evolution of drug resistance lessens the efficiency of this anti-TB method. Therefore, in recent years, some researchers have turned to an alternative anti-TB strategy, which hinders Mtb infection through targeting host genes. In this work, using a theoretical genetic analysis, we identified 170 Mtb infection-associated genes from human genetic variations related to Mtb infection. Then, the agents targeting these genes were identified to have high potential as anti-TB drugs. In particular, the agents that can target multiple Mtb infection-associated genes are more druggable than the single-target counterparts. These potential anti-TB agents were further screened by gene expression data derived from connectivity map. As a result, some agents were revealed to have high interest for experimental evaluation. This study not only has important implications for anti-TB drug discovery, but also provides inspirations for streamlining the pipeline of modern drug discovery.  相似文献   

15.
Drug-resistant tuberculosis (TB) poses a significant challenge to the successful treatment and control of TB worldwide. Resistance to anti-TB drugs has existed since the beginning of the chemotherapy era. New insights into the resistant mechanisms of anti-TB drugs have been provided. Better understanding of drug resistance mechanisms helps in the development of new tools for the rapid diagnosis of drug-resistant TB. There is also a pressing need in the development of new drugs with novel targets to improve the current treatment of TB and to prevent the emergence of drug resistance in Mycobacterium tuberculosis. This review summarizes the anti-TB drug resistance mechanisms, furnishes some possible novel drug targets in the development of new agents for TB therapy and discusses the usefulness using known targets to develop new anti-TB drugs. Whole genome sequencing is currently an advanced technology to uncover drug resistance mechanisms in M. tuberculosis. However, further research is required to unravel the significance of some newly discovered gene mutations in their contribution to drug resistance.  相似文献   

16.
Tuberculosis (TB) is a chronic infectious disease caused mainly by Mycobacterium tuberculosis. The worldwide emergence of drug-resistant strains, the increasing number of infected patients among immune compromised populations, and the large number of latent infected individuals that are reservoir to the disease have underscored the urgent need of new strategies to treat TB. The nucleotide metabolism pathways provide promising molecular targets for the development of novel drugs against active TB and may, hopefully, also be effective against latent forms of the pathogen. The orotate phosphoribosyltransferase (OPRT) enzyme of the de novo pyrimidine synthesis pathway catalyzes the reversible phosphoribosyl transfer from 5'-phospho-α-D-ribose 1'-diphosphate (PRPP) to orotic acid (OA), forming pyrophosphate and orotidine 5'-monophosphate (OMP). Here we describe cloning and characterization of pyrE-encoded protein of M. tuberculosis H37Rv strain as a homodimeric functional OPRT enzyme. The M. tuberculosis OPRT true kinetic constants for forward reaction and product inhibition results suggest a Mono-Iso Ordered Bi-Bi kinetic mechanism, which has not been previously described for this enzyme family. Absence of detection of half reaction and isothermal titration calorimetry (ITC) data support the proposed mechanism. ITC data also provided thermodynamic signatures of non-covalent interactions between substrate/product and M. tuberculosis OPRT. These data provide a solid foundation on which to base target-based rational design of anti-TB agents and should inform us how to better design inhibitors of M. tuberculosis OPRT.  相似文献   

17.
Tuberculosis (TB) poses a major worldwide public health problem. The increasing prevalence of TB, the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis, the causative agent of TB, and the devastating effect of co-infection with HIV have highlighted the urgent need for the development of new antimycobacterial agents. Analysis of the complete genome sequence of M. tuberculosis shows the presence of genes involved in the aromatic amino acid biosynthetic pathway. Experimental evidence that this pathway is essential for M. tuberculosis has been reported. The genes and pathways that are essential for the growth of the microorganisms make them attractive drug targets since inhibiting their function may kill the bacilli. We have previously cloned and expressed in the soluble form the fourth shikimate pathway enzyme of the M. tuberculosis, the aroE-encoded shikimate dehydrogenase (mtSD). Here, we present the purification of active recombinant aroE-encoded M. tuberculosis shikimate dehydrogenase (mtSD) to homogeneity, N-terminal sequencing, mass spectrometry, assessment of the oligomeric state by gel filtration chromatography, determination of apparent steady-state kinetic parameters for both the forward and reverse directions, apparent equilibrium constant, thermal stability, and energy of activation for the enzyme-catalyzed chemical reaction. These results pave the way for structural and kinetic studies, which should aid in the rational design of mtSD inhibitors to be tested as antimycobacterial agents.  相似文献   

18.
Around the world, tuberculosis (TB) remains one of the most common causes of morbidity and mortality. The molecular mechanism of Mycobacterium tuberculosis (Mtb) infection is still unclear. Extracellular vesicles (EVs) play a key role in the onset and progression of many disease states and can serve as effective biomarkers or therapeutic targets for the identification and treatment of TB patients. We analysed the expression profile to better clarify the EVs characteristics of TB and explored potential diagnostic markers to distinguish TB from healthy control (HC). Twenty EVs-related differentially expressed genes (DEGs) were identified, and 17 EVs-related DEGs were up-regulated and three DEGs were down-regulated in TB samples, which were related to immune cells. Using machine learning, a nine EVs-related gene signature was identified and two EVs-related subclusters were defined. The single-cell RNA sequence (scRNA-seq) analysis further confirmed that these hub genes might play important roles in TB pathogenesis. The nine EVs-related hub genes had excellent diagnostic values and accurately estimated TB progression. TB's high-risk group had significantly enriched immune-related pathways, and there were substantial variations in immunity across different groups. Furthermore, five potential drugs were predicted for TB using CMap database. Based on the EVs-related gene signature, the TB risk model was established through a comprehensive analysis of different EV patterns, which can accurately predict TB. These genes could be used as novel biomarkers to distinguish TB from HC. These findings lay the foundation for further research and design of new therapeutic interventions aimed at treating this deadly infectious disease.  相似文献   

19.
In Africa, more than 4 million people suffer from active tuberculosis (TB) resulting in an estimated 650,000 deaths every year. The etiologic agent of TB, Mycobacterium tuberculosis, survives in resting macrophages, which control the pathogen after activation by specific T lymphocytes. Here, we describe the basic mechanisms underlying the host response to TB with an emphasis on immunity and discuss diagnostics, drugs, and vaccines for TB. Moreover, we outline our attempts to develop biomarkers, which could help the monitoring of TB clinical trials, provide the basis for new diagnostics, and allow prognosis of outcome of infection and of drug treatment.  相似文献   

20.
Global control of tuberculosis (TB), an infectious disease that claims nearly 2 million lives annually, is hindered by the long duration of chemotherapy required for curative treatment. Lack of adherence to this intense treatment regimen leads to poor patient outcomes, development of new or additional drug resistance, and continued spread of M.tb. within communities. Hence, shortening the duration of TB therapy could increase drug adherence and cure in TB patients. Here, we report that addition of the United Stated Food and Drug Administration-approved phosphodiesterase inhibitors (PDE-Is) cilostazol and sildenafil to the standard TB treatment regimen reduces tissue pathology, leads to faster bacterial clearance and shortens the time to lung sterilization by one month, compared to standard treatment alone, in a murine model of TB. Our data suggest that these PDE-Is could be repurposed for use as adjunctive drugs to shorten TB treatment in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号