首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electrochemical immunosensing method was developed based on a magnetic nanocomposite. The multiwalled carbon nanotubes (MWCNTs) were treated with nitric acid to produce carboxyl groups at the open ends. Then, Fe3O4 nanoparticles were deposited on COOH–MWCNTs by chemical coprecipitation of Fe2+ and Fe3+ salts in an alkaline solution. Goat anti-human IgG (anti-hIgG) was covalently attached to magnetic nanocomposite through amide bond formation between the carboxylic groups of MWCNTs and the amine groups of anti-hIgG. The prepared bio-nanocomposite was used for electrochemical sensing of human tetanus IgG (hIgG) as a model antigen. The anti-hIgG magnetic nanocomposite was fixed on the surface of a gold plate electrode using a permanent magnet. The hIgG was detected using horseradish peroxidase (HRP)-conjugated anti-hIgG in a sandwich model. Electrochemical detection of hIgG was carried out in the presence of H2O2 and KI as substrates of HRP. Using this method, hIgG was detected in a concentration range from 30 to 1000 ng ml?1 with a correlation coefficient of 0.998 and a detection limit of 25 ng ml?1 (signal/noise = 3). The designed immunosensor was stable for 1 month.  相似文献   

2.
We investigated the suitability of surface plasmon resonance (SPR) for providing quantitative binding information from direct screening of a chemical library on protein tyrosine phosphatase 1b (PTP1B). The experimental design was established from simulations to detect binding with KD < 10?4 M. The 1120 compounds (cpds) were injected sequentially at concentrations [C(cpd)] of 0.5 or 10 μM over various target surfaces. An optimized evaluation procedure was applied. More than 90% of cpds showed no detectable signal in four screens. The 30 highest responders at C(cpd) = 10 μM, of which 25 were selected in at least one of three screens at C(cpd) = 0.5 μM, contained 22 promiscuous binders and 8 potential PTP1B-specific binders with KD  10?5 M. Inhibition of PTP1B activity was assayed and confirmed for 6 of these, including sanguinarine, a known PTP1B inhibitor. C(cpd) dependence studies fully confirmed screening conclusions. The quantitative consistency of SPR data led us to propose a structure–activity relationship (SAR) model for developing selective PTP1B inhibitors based on the ranking of 10 arylbutylpiperidine analogs.  相似文献   

3.
A method for the quantitation of midazolam and its metabolites 1-hydroxymidazolam and 4-hydroxymidazolam from human serum capable of monitoring concentrations achieved under therapeutic conditions is presented. The substances were extracted under basic conditions with toluene and the hydroxy metabolites transformed to their tert-butyldimethylsilyl derivatives with N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide. The samples were measured by gas chromatography–mass spectrometry. The limits of detection are 0.2 ng ml−1 for midazolam and 0.1 ng ml−1 for 1-hydroxy- and 4-hydroxymidazolam. The coefficients of variation are 3.9% at 5 ng ml−1 for midazolam, 6.7% at 2 ng ml−1 for 1-hydroxymidazolam and 8.8% (22.2%) at 0.5 (0.2) ng ml−1 for 4-hydroxymidazolam.  相似文献   

4.
The xanthophyll carotenoids lutein and zeaxanthin constitute the major carotenoids of the macular pigment in the human retina where they are thought to act in part to prevent light induced oxidative damage associated with age-related macular degeneration (AMD). The highly selective uptake of these pigments is mediated by specific carotenoid-binding proteins (GSTP1 and StARD3) recently identified in our laboratory. Carotenoids are hydrophobic in nature, so we first systematically optimized carotenoid preparations that are nano-dispersed in aqueous buffers, and then we used a new-generation surface plasmon resonance (SPR) protocol called FastStep?, which is significantly faster than conventional SPR assays. We have explored carotenoid-binding interactions of five proteins: human serum albumin (HSA), β-lactoglobulin (LG), steroidogenic acute regulatory domain proteins (StARD1, StARD3) and glutathione S- transferase Pi isoform (GSTP1). HSA and LG showed relatively weak interaction with carotenoids (KD > 1 μM). GSTP1 evidenced high affinity and specificity towards zeaxanthin and meso-zeaxanthin with KD values 0.14 ± 0.02 μM and 0.17 ± 0.02 μM, respectively. StARD3 expressed a relative high specificity towards lutein with a KD value of 0.59 ± 0.03 μM, whereas StARD1 exhibited a relatively low selectivity and affinity (KD > 1 μM) towards the various carotenoids tested.  相似文献   

5.
This is the first report to our knowledge that demonstrates a functional steroid hormone receptor in a protozoon. The study used Cryptobia salmositica, a pathogenic haemoflagellate found in salmonid fishes. It has been previously shown that cortisol and dexamethasone (a synthetic glucocorticoid) enhanced the multiplication of C. salmositica under in vitro conditions indicating the presence of glucocorticoid receptors on/in the parasite. Also, the glucocorticoid receptor antagonist, mifepristone (RU486), inhibited the stimulatory effect of the two glucocorticoids on parasite multiplication. In the present study, we used an antibody (produced in a rabbit against glucocorticoid receptor protein) agglutination test and confocal microscopy with immunohistofluorescence staining to demonstrate cortisol-glucocorticoid receptor-like protein receptors on the plasma membrane and in the cytoplasm of the parasite. In two in vitro studies, the addition of 50 ng ml−1 of RU486 was more effective in inhibiting parasite replication in cultures with 7,000 parasites ml−1 than in cultures with 14,000 parasites ml−1. Also, 100 ng ml−1 of RU486/ml was more effective than 50 ng ml−1 in inhibiting parasite multiplication in the 14,000 parasites ml-1 cultures. These in vitro studies indicate that the number of binding sites on/in the parasite is finite. The findings may be important in future studies especially on steroid receptor signalling pathways and dissection of ligand–receptor interactions, and for evaluating the adaptations that develop in pathogens as part of the host–parasite interaction.  相似文献   

6.
Acetylcholinesterase (AChE) was immobilized on chemically modified poly-(acrylonitrile-methyl-methacrylate-sodium vinylsulfonate) membranes in accordance with three different methods, the first of which involved random enzyme immobilization via glutaraldehyde, the second one—site-specific enzyme immobilization via glutaraldehyde and Concanavalin A (Con A) and the third method—modified site-specific enzyme immobilization via glutaraldehyde in the presence of a mixture of multiwall carbon nanotubes and albumin (MWCNs + BSA), glutaraldehyde and Con A. Preliminary tests for the activity of immobilized AChE were carried out using these three methods. The third method was selected as the most efficient one for the immobilization of AChE and the prepared enzyme carriers were used for the construction of amperometric biosensors for the detection of acetylthiocholine (ATCh).A five level three factorial central composite design was chosen to determine the optimal conditions for the enzyme immobilization with three critical variables: concentration of enzyme, Concanavalin A and MWCNs. The design illustrated that the optimum values of the factors influencing the amperometric current were CE: 70 U mL−1; CCon A: 1.5 mg mL−1 and CMWCN: 11 mg mL−1, with an amperometric current 0.418 μA. The basic amperometric characteristics of the constructed biosensor were investigated. A calibration plot was obtained for a series of ATCh concentrations ranging from 5 to 400 μM. A linear interval was detected along the calibration curve from 5 to 200 μM. The correlation coefficient for this concentration range was 0.995. The biosensor sensitivity was calculated to be 0.065 μA μM−1 cm−2. The detection limit with regard to ATCh was calculated to be 0.34 μM. The potential application of the biosensor for detection and quantification of organophosphate pesticides was investigated as well. It was tested against sample solutions of Paraoxon. The biosensor detection limit was determined to be 1.39 × 10−12 g L−1 of Paraoxon, as well as the interval (10−11 to 10−8 g L−1) within which the biosensor response was linearly dependant on the Paraoxon concentration. Finally the storage stability of the enzyme carrier was traced for a period of 120 days. After 30-day storage the sensor retained 76% of its initial current response, after 60 days—68% and after 120 days—61%.  相似文献   

7.
In the present study, a novel, fast, sensitive and robust method to quantify budesonide in human plasma using 3-keto-desogestrel as the internal standard (IS) is described. The analyte and the IS were extracted from human plasma by liquid–liquid extraction (LLE) using ether. Extracted samples were analyzed by high performance liquid chromatography coupled to Atmospheric pressure photoionization tandem mass spectrometry (HPLC–APPI-MS/MS). Chromatography was performed isocratically on a C18, 5 μm analytical column. The temperature of the autosampler was kept at 6 °C and the run time was 4.00 min. A linear calibration curve over the range 7.5–1000 pg ml?1 was obtained and the lowest concentration quantified was 7.5 pg ml?1, demonstrating acceptable accuracy and precision. This analytical method was applied in a relative bioavailability study in order to compare a test budesonide 64 μg/dose nasal spray formulation vs. a reference 64 μg/dose nasal spray formulation (Budecort Aqua) in 48 volunteers of both sexes. The study was conducted in an open randomized two-period crossover design and with a one-week washout period. Plasma samples were obtained over a 14 h interval. Since the 90% CI for both Cmax, AUClast and AUC0-inf were within the 80–125% interval proposed by the Food and Drug Administration and ANVISA, it was concluded that budesonide 64 μg/dose nasal spray was bioequivalent to Budecort Acqua® 64 μg/dose nasal spray, according to both the rate and extent of absorption.  相似文献   

8.
Two series of novel acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors containing benzimidazole core structure were synthesized by a four-step reaction pathway starting from 4-fluoro-3-nitrobenzoic acid as the basic compound. The structure of the novel benzimidazoles was characterized and confirmed by the elemental and mass spectral analyses as well as 1H NMR spectroscopic data. Of the 34 novel synthesized compounds, three benzimidazoles revealed AChE inhibition with IC50 < 10 μM. The highest inhibitory activity (IC50 = 5.12 μM for AChE and IC50 = 8.63 μM for BChE) corresponds to the compound 5IIc (ethyl 1-(3-(1H-imidazol-1-yl)propyl)-2-(4-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate). The relationship between lipophilicity and the chemical structures as well as their limited structure–activity relationship was discussed.  相似文献   

9.
A novel competitive immunosensor was developed as a model system using anti-human serum albumin (HSA)-conjugated gold nanoparticles (AuNPs) as an electrochemical label and mobile crystalline material-41 (MCM-41)–polyvinyl alcohol (PVA) mesoporous nanocomposite as an immobilization platform. However, no attempt has yet been made to use the MCM-41 as the supporting electrolyte for the electrosynthesis of nonconducting polymer nanocomposite. This hybrid membrane was evaluated extensively by using field emission scanning electron microscopy (FESEM), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) to determine its physicochemical and electrochemical properties in immunosensor application. FESEM revealed an appropriate and stable attachment between HSA and MCM-41 and also a dense layer deposition of MCM-41–HSA–PVA film onto the electrode surfaces. DPV was developed for quantitative determination of antigen in biological samples. A decrease in DPV responses was observed with increasing concentrations of HSA in standard and real samples. In optimal conditions, this immunosensor based on MCM-41–PVA nanocomposite film could detect HSA in a high linear range (0.5–200 μg ml?1) with a low detection limit of 1 ng ml?1. The proposed method showed acceptable reproducibility, stability, and reliability and could also be applied to detect the other antigens.  相似文献   

10.
A group of N-1 and C-3 disubstituted-indole Schiff bases bearing an indole N-1 (R′ = H, CH2Ph, COPh) substituent in conjunction with a C-3 –CHN–C6H4–4-X (X = F, Me, CF3, Cl) substituent were synthesized and evaluated as inhibitors of cyclooxygenase (COX) isozymes (COX-1/COX-2). Within this group of Schiff bases, compounds 15 (R1 = CH2Ph, X = F), 17 (R1 = CH2Ph, X = CF3), 18 (R1 = COPh, X = F) and 20 (R1 = COPh, X = CF3) were identified as effective and selective COX-2 inhibitors (COX-2 IC50’s = 0.32–0.84 μM range; COX-2 selectivity index (SI) = 113 to >312 range). 1-Benzoyl-3-[(4-trifluoromethylphenylimino)methyl]indole (20) emerged as the most potent (COX-1 IC50 >100 μM; COX-2 IC50 = 0.32 μM) and selective (SI >312) COX-2 inhibitor. Furthermore, compound 20 is a selective COX-2 inhibitor in contrast to the reference drug indomethacin that is a potent and selective COX-1 inhibitor (COX-1 IC50 = 0.13 μM; COX-2 IC50 = 6.9 μM, COX-2 SI = 0.02). Molecular modeling studies employing compound 20 showed that the phenyl CF3 substituent attached to the CN spacer is positioned near the secondary pocket of the COX-2 active site, the CN nitrogen atom is hydrogen bonded (N?NH = 2.85 Å) to the H90 residue, and the indole N-1 benzoyl is positioned in a hydrophobic pocket of the COX-2 active site near W387.  相似文献   

11.
AimsCardiac function is modulated by the sympathetic nervous system through β-adrenergic receptor (β-AR) activity and this represents the main regulatory mechanism for cardiac performance. To date, however, the metabolic and molecular responses to β2-agonists are not well characterized. Therefore, we studied the inotropic effect and signaling response to selective β2-AR activation by tulobuterol.Main methodsStrips of rat right ventricle were electrically stimulated (1 Hz) in standard Tyrode solution (95% O2, 5% CO2) in the presence of the β1-antagonist CGP-20712A (1 μM). A cumulative dose–response curve for tulobuterol (0.1–10 μM), in the presence or absence of the phosphodiesterase (PDE) inhibitor IBMX (30 μM), or 10 min incubation (1 μM) with the β2-agonist tulobuterol was performed.Key findingsβ2-AR stimulation induced a positive inotropic effect (maximal effect = 33 ± 3.3%) and a decrease in the time required for half relaxation (from 45 ± 0.6 to 31 ± 1.8 ms, ? 30%, p < 0.001) after the inhibition of PDEs. After 10 min of β2-AR stimulation, p-AMPKαT172 (54%), p-PKBT308 (38%), p-AS160T642 (46%) and p-CREBS133 (63%) increased, without any change in p-PKAT197.SignificanceThese results suggest that the regulation of ventricular contractility is not the primary function of the β2-AR. Rather, β2-AR could function to activate PKB and AMPK signaling, thereby modulating muscle mass and energetic metabolism of rat ventricular muscle.  相似文献   

12.
A series of symmetric and asymmetric spermine (SPM) conjugates with all-trans-retinoic acid (ATRA), acitretin (ACI), (E)-3-(trioxsalen-4′-yl)acrylic acid (TRAA) and l-DOPA, amides of ACI, l-DOPA and TRAA with 1-aminobutane, benzylamine, dopamine and 1,12-diaminobutane as well as hybrid conjugates of O,O′-dimethylcaffeic acid (DMCA) with TRAA or N-fumaroyl-indole-3-carboxanilide (FICA) and 2-(2-aminoethoxy)ethanol were synthesized and their antioxidant properties were studied. The reducing activity (RA)% of the compounds were evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging assay and found to be in the range 0–92(20 min)%/96(60 min)% at 100 μM, the most powerful being the conjugates l-DOPA-SPM-l-DOPA (8, RA = 89%/96%) and l-DOPA-dopamine (13, RA = 92%/92%). Conjugate DMCA-NH(CH2CH2O)2-FICA (14) was the most powerful LOX inhibitor with IC50 33.5 μM, followed by the conjugates ACI-NHCH2Ph (10, IC50 40.5 μM), ACI-SPM-TRAA (7, IC50 41.5 μM), DMCA-NH(CH2CH2O)2-TRAA (15, IC50 65 μM), 13 (IC50 81.5 μM) and ACI-dopamine (11, IC50 87 μM). The most potent inhibitors of lipid peroxidation at 100 μM were the conjugates 15 (98%) and ACI-SPM-ACI (4, 97%) whereas all other compounds showed activities comparable or lower than trolox. The most interesting compounds, namely ATRA-SPM-ATRA (3), 4, 10, 11 and 15, as well as unconjugated compounds such as ATRA and dopamine, were studied for their anti-inflammatory activity in vivo on rat paw oedema induced by Carrageenan and found to exhibit, for doses of 0.01 mmol/mL of conjugates per Kg of rat body weight, weaker anti-inflammatory activities (3.6–40%) than indomethacin (47%) with conjugate 3 being the most potent (40%) in this series of compounds. The cytocompatibility of selected compounds was evaluated by the viability of RAMEC cells in the presence of different concentrations (0.5–50 μM) of the compounds. Conjugates 3 (IC50 2.6 μM) and 4 (IC50 4.7 μM) were more cytotoxic than the corresponding unconjugated retinoids ATRA (IC50 18.3 μM) and ACI (IC50 14.6 μM), whereas conjugate 15 (IC50 12.9 μM) was less cytotoxic than either DCSP (IC50 11.3 μM) or the tert-butyl ester of TRAA (IC50 2.9 μM).  相似文献   

13.
A biosensor for trace metal ions based on horseradish peroxidase (HRP) immobilized on maize tassel-multiwalled carbon nanotube (MT-MWCNT) through electrostatic interactions is described herein. The biosensor was characterized using Fourier transform infrared (FTIR), UV–vis spectrometry, voltammetric and amperometric methods. The FTIR and UV–vis results inferred that HRP was not denatured during its immobilization on MT-MWCNT composite. The biosensing principle was based on the determination of the cathodic responses of the immobilized HRP to H2O2, before and after incubation in trace metal standard solutions. Under optimum conditions, the inhibition rates of trace metals were proportional to their concentrations in the range of 0.092–0.55 mg L−1, 0.068–2 mg L−1 for Pb2+ and Cu2+ respectively. The limits of detection were 2.5 μg L−1 for Pb2+ and 4.2 μg L−1 for Cu2+. Representative Dixon and Cornish-Bowden plots were used to deduce the mode of inhibition induced by the trace metal ions. The inhibition was reversible and mixed for both metal ions. Furthermore, the biosensor showed good stability, selectivity, repeatability and reproducibility.  相似文献   

14.
An LC–MS method for the determination of metoclopramide in human plasma was developed and validated. Sample preparation involved extraction with ethyl acetate. Chromatographic separation was performed on a Thermo Hypersil-Hypurity C18 (150 mm × 2.1 mm, 5 μm) with the mobile phase consisting of 40 mM ammonium acetate–methanol–acetonitrile. A single-quadrupole mass spectrometer with an electrospray interface was operated in the selected-ion monitoring mode to detect the [M+H]+ ions at m/z 300 for metoclopramide and at m/z 384 for the internal standard (prazosin). The method was validated over 0.78–50.00 ng mL?1 for metoclopramide. The recovery was 67.8–83.1%, and the limit of quantitation (LOQ) detection was 0.78 ng mL?1 for metoclopramide. The intra- and inter-day precision of the method at three concentrations was 5.0–13.6% with accuracy of 99.2–104.0%. Stability of compounds was established in a battery of stability studies. The method was successfully applied to bioequivalence studies of metoclopramide hydrochloride tablets to obtain the pharmacokinetic parameters.  相似文献   

15.
One pot, three-component reaction of 1-acryloyl-3,5-bisarylmethylidenepiperidin-4-ones with isatin and sarcosine in molar ratios of 1:1:1 and 1:2:2 furnished to mono- and bis-spiropyrrolidine heterocyclic hybrids comprising functionalized piperidine, pyrrolidine and oxindole structural motifs. Both mono and bis-spiropyrrolidines displayed good inhibitory activity against acetylcholinesterase (AChE) with IC50 values of 2.36–9.43 μM. For butyrylcholinesterase (BChE), mono-cycloadducts in series 8 with IC50 values of lower than 10 μM displayed better inhibitory activities than their bis-cycloadduct analogs in series 9 with IC50 values of 7.44–19.12 μM. The cycloadducts 9j and 8e were found to be the most potent AChE and BChE inhibitors with IC50 values of 2.35 and 3.21 μM, respectively. Compound 9j was found to be competitive inhibitor of AChE while compound 8e was a mixed-mode inhibitor of BChE with calculated Ki values of 2.01 and 6.76 μM, respectively. Molecular docking on Torpedo californica AChE and human BChE showed good correlation between IC50 values and free binding energy values of the synthesized compounds docked into the active site of the enzymes.  相似文献   

16.
Yang ZD  Duan DZ  Xue WW  Yao XJ  Li S 《Life sciences》2012,90(23-24):929-933
AimsInhibition of acetylcholinesterase (AChE) is still considered as a strategy for the treatment of neurological disorders such as Alzheimer's disease (AD). Many plant derived alkaloids (such as huperzine A, galanthamine and rivastigmine) are known for their AChE inhibitory activity. The aim of the present work was to isolate and identify new AChE inhibitors from Holarrhen antidysenterica.Main methodsThese compounds were tested for AChE inhibiting activity by the Ellman's method in 96-well microplates. In addition, molecular modeling was performed to explore the binding mode of inhibitors 15 at the active site of AChE, and the preliminary structure–activity relationships (SARs) were discussed.Key findingsIn the course of searching for AChE inhibitors from herb medicines, the total alkaloidal extract from the seeds of H. antidysenterica was found having potent AChE inhibitory activity with an IC50 value of 6.1 μg/mL. Further bioactivity-guided chromatographic fractionation afforded five steroidal alkaloids, conessine 1, isoconessimine 2, conessimin 3, conarrhimin 4 and conimin 5. All the isolated compounds, except for 2, showed strong AChE inhibiting activity with IC50 values ranging from 4 to 28 μM. The most active inhibitor is compound 3 with an IC50 value of 4 μM. The mode of AChE inhibition by 3 was reversible and non-competitive.SignificanceThe results suggest that these alkaloids could be potential candidates for further development of new drugs against AD.  相似文献   

17.
A series of new biphenyl bis-sulfonamide derivatives 2a3p were synthesized in good to excellent yield (76–98%). The inhibitory potential of the synthesized compounds on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was investigated. Most of the screened compounds showed modest in vitro inhibition for both AChE and BChE. Compared to the reference compound eserine (IC50 0.04 ± 0.0001 μM for AChE) and (IC50 0.85 ± 0.0001 μM for BChE), the IC50 values of these compounds were ranged from 2.27 ± 0.01 to 123.11 ± 0.04 μM for AChE and 7.74 ± 0.07 to <400 μM for BuChE. Among the tested compounds, 3p was found to be the most potent against AChE (IC50 2.27 ± 0.01 μM), whereas 3g exhibited the highest inhibition for BChE (IC50 7.74 ± 0.07 μM). Structure–activity relationship (SAR) of these compounds was developed and elaborated with the help of molecular docking studies.  相似文献   

18.
AimsMethamidophos (Meth) is a toxic organophosphorus compound (OP) that inhibits acetylcholinesterase enzyme (AChE) and induces neurotoxicity. As the mechanism of its neurotoxic effects is not well understood, the aim of the present study was to evaluate the effects of Meth on glutamate and gamma aminobutyric acid (GABA) uptake and correlate with cell viability and AChE and Na+/K+-ATPase enzyme activities in striatum and hippocampus slices exposed to low concentrations (0.05 to 1.0 μM) of Meth.Main methodsHippocampal and striatal slices of rat brain were exposed to Meth for 5 min ([3H]Glutamate uptake) or 15 min ([3H]GABA uptake) for assays. The enzyme activities and cell viability were also accessed at both times in hippocampal and striatal slices and homogenates.Key findingsAt concentrations that did not inhibit AChE, Meth caused changes in glutamate uptake in striatal (0.05 and 1.0 μM Meth) and hippocampal (1.0 μM Meth) slices. GABA uptake was increased by the pesticide in striatum at 0.5 and 1.0 μM and in hippocampus at 0.05 μM. After 3.5 h of Meth exposure, striatal and hippocampal cells showed no changes in viability as well as no inhibition of Na+/K+-ATPase were observed after 5 or 15 min exposure to Meth in the same brain structures.SignificanceResults suggest that Meth, even without changing the AChE activity can modify somehow the neurotransmitters uptake. However, further studies are necessary to clarify if this modulation in glutamate or GABA uptake may be responsible to cause some disturbance in behavior or in other neurochemical parameters following low Meth exposure in vivo.  相似文献   

19.
A method for the sensitive determination of tetrahydrothiophene (THT) in cytosolic incubation mixtures was developed. Busulfan conjugation with glutathione was predominantly catalysed by glutathione S-transferase A1-1 (GST A1-1) and THT was released from the primary metabolite by alkalization. After liquid–liquid extraction using n-pentane separation and quantification of the product was performed by gas chromatography with a mass-selective detector. The method showed good sensitivity, accuracy and reproducibility with a detection limit of 2 ng ml−1 and a limit of quantification of 5 ng ml−1. The suitability of the method is shown for enzyme kinetic studies in human liver cytosol as well as for determination of GST A1-1 activity.  相似文献   

20.
The commonly used beverage and psychostimulant caffeine is known to inhibit human acetylcholinesterase enzyme. This pharmacological activity of caffeine is partly responsible for its cognition enhancing properties. However, the exact mechanisms of its binding to human cholinesterases (acetyl and butyrylcholinesterase; hAChE and hBuChE) are not well known. In this study, we investigated the cholinesterase inhibition by the xanthine derivatives caffeine, pentoxifylline, and propentofylline. Among them, propentofylline was the most potent AChE inhibitor (hAChE IC50 = 6.40 μM). The hAChE inhibitory potency was of the order: caffeine (hAChE IC50 = 7.25 μM) < pentoxifylline (hAChE IC50 = 6.60 μM) ? propentofylline (hAChE IC50 = 6.40 μM). These compounds were less potent relative to the reference agent donepezil (hAChE IC50 = 0.04 μM). Moreover, they all exhibited selective inhibition of hAChE with no inhibition of hBuChE (IC50 > 50 μM) relative to the reference agent donepezil (hBuChE IC50 = 13.60 μM). Molecular modeling investigations indicate that caffeine binds primarily in the catalytic site (Ser203, Glu334 and His447) region of hAChE whereas pentoxifylline and propentofylline are able to bind to both the catalytic site and peripheral anionic site due to their increased bulk/size, thereby exhibiting superior AChE inhibition relative to caffeine. In contrast, their lack of hBuChE inhibition is due to a larger binding site and lack of key aromatic amino acids. In summary, our study has important implications in the development of novel caffeine derivatives as selective AChE inhibitors with potential application as cognitive enhancers and to treat various forms of dementia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号