首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ygfZ gene product of Escherichia coli represents a large protein family conserved in bacteria to eukaryotes. The members of this family are uncharacterized proteins with marginal sequence similarity to the T-protein (aminomethyltransferase) of the glycine cleavage system. To assist with the functional assignment of the YgfZ family, the crystal structure of the E. coli protein was determined by multiwavelength anomalous diffraction. The protein molecule has a three-domain architecture with a central hydrophobic channel. The structure is very similar to that of bacterial dimethylglycine oxidase, an enzyme of the glycine betaine pathway and a homolog of the T-protein. Based on structural superposition, a folate-binding site was identified in the central channel of YgfZ, and the ability of YgfZ to bind folate derivatives was confirmed experimentally. However, in contrast to dimethylglycine oxidase and T-protein, the YgfZ family lacks amino acid conservation at the folate site, which implies that YgfZ is not an aminomethyltransferase but is likely a folate-dependent regulatory protein involved in one-carbon metabolism.  相似文献   

2.
The role of salicylic acid in iron metabolism was examined in two wild-type strains (mc(2)155 and NCIMB 8548) and three mutant strains (mc(2)1292 [lacking exochelin], SM3 [lacking iron-dependent repressor protein IdeR] and S99 [a salicylate-requiring auxotroph derived in this study]) of Mycobacterium smegmatis. Synthesis of salicylate in SM3 was derepressed even in the presence of iron, as was synthesis of the siderophores exochelin, mycobactin, and carboxymycobactin. S99 was dependent on salicylate for growth and failed to grow with the three ferrisiderophores, suggesting that salicylate fulfills an additional function(s) other than being a precursor of mycobactin and carboxymycobactin. Salicylic acid at 100 microgram/ml repressed the formation of a 29-kDa cell envelope protein (putative exochelin receptor protein) in S99 grown both iron deficiently and iron sufficiently. In contrast, synthesis of this protein was affected only under iron-limited conditions in the parent strain, mc(2)155, and remained unaltered in SM3, suggesting an interaction between the IdeR protein and salicylate. Thus, salicylate may also function as a signal molecule for recognition of cellular iron status. Growth of all strains and mutants with p-aminosalicylate (PAS) at 100 microgram/ml increased salicylate accumulation between three- and eightfold under both iron-limited and iron-sufficient growth conditions and decreased mycobactin accumulation by 40 to 80% but increased carboxymycobactin accumulation by 50 to 55%. Thus, although PAS inhibited salicylate conversion to mycobactin, presumptively by blocking salicylate AMP kinase, PAS also interferes with the additional functions of salicylate, as its effect was heightened in S99 when the salicylate concentration was minimal.  相似文献   

3.
COG0354 proteins have been implicated in synthesis or repair of iron/sulfur (Fe/S) clusters in all domains of life, and those of bacteria, animals, and protists have been shown to require a tetrahydrofolate to function. Two COG0354 proteins were identified in Arabidopsis and many other plants, one (At4g12130) related to those of α-proteobacteria and predicted to be mitochondrial, the other (At1g60990) related to those of cyanobacteria and predicted to be plastidial. Grasses and poplar appear to lack the latter. The predicted subcellular locations of the Arabidopsis proteins were validated by in vitro import assays with purified pea organelles and by targeting assays in Arabidopsis and tobacco protoplasts using green fluorescent protein fusions. The At4g12130 protein was shown to be expressed mainly in flowers, siliques, and seeds, whereas the At1g60990 protein was expressed mainly in young leaves. The folate dependence of both Arabidopsis proteins was established by functional complementation of an Escherichia coli COG0354 (ygfZ) deletant; both plant genes restored in vivo activity of the Fe/S enzyme MiaB but restoration was abrogated when folates were eliminated by deleting folP. Insertional inactivation of At4g12130 was embryo lethal; this phenotype was reversed by genetic complementation of the mutant. These data establish that COG0354 proteins have a folate-dependent function in mitochondria and plastids, and that the mitochondrial protein is essential. That plants retain mitochondrial and plastidial COG0354 proteins with distinct phylogenetic origins emphasizes how deeply the extant Fe/S cluster assembly machinery still reflects the ancient endosymbioses that gave rise to plants.  相似文献   

4.
NifS-like proteins are ubiquitous, homodimeric, proteins which belong to the alpha-family of pyridoxal-5'-phoshate dependent enzymes. They are proposed to donate elementary sulphur, generated from cysteine, via a cysteinepersulphide intermediate during iron sulphur cluster biosynthesis, an important albeit not well understood process. Here, we report on the crystal structure of a NifS-like protein from the hyperthermophilic bacterium Thermotoga maritima (tmNifS) at 2.0 A resolution. The tmNifS is structured into two domains, the larger bearing the pyridoxal-5'-phosphate-binding active site, the smaller hosting the active site cysteine in the middle of a highly flexible loop, 12 amino acid residues in length. Once charged with sulphur the loop could possibly deliver S(0) directly to regions far remote from the protein. Based on the three-dimensional structures of the native as well as the substrate complexed form and on spectrophotometric results, a mechanism of sulphur activation is proposed. The His99, which stacks on top of the pyridoxal-5'-phosphate co-factor, is assigned a crucial role during the catalytic cycle by acting as an acid-base catalyst and is believed to have a pK(a) value depending on the co-factor redox state.  相似文献   

5.
It is suggested that iron may play a role in the pathogenesis of diabetes. Iron is not only chaperoned through its essential functional pathways, but it also causes damage to biological systems by catalyzing the production of reactive oxygen species. So, the parenchymal tissues of several organs are subject to cell injury and functional insufficiency due to excess deposition of iron. The present study investigated the effects of S-allylcysteine (SAC), a sulphur containing amino acid derived from garlic on the changes in iron metabolism induced by oxidative stress in tissues, as well as on serum biochemical parameters of streptozotocin (STZ)-induced diabetic rats. SAC was administered orally for 45 days to control and experimental diabetic rats. The effects of SAC on glucose, insulin, serum iron, ferritin, transferrin, serum bilirubin, heart heme oxygenase activity (HO) and δ-aminolevulinicacid dehydratase activity (δ-ALA-D) in liver and kidneys were studied. The levels of glucose, iron, ferritin, bilirubin and HO in liver were increased significantly (p < 0.05) whereas the levels of insulin, transferrin and δ-ALA-D in tissues were decreased in diabetic rats. Administration of SAC to diabetic rats showed a decrease in blood glucose, iron, ferritin, bilirubin and HO. In addition, the levels of insulin, transferrin and δ-ALA-D activity in tissues were increased in SAC treated diabetic rats. These findings suggest that S-allylcysteine could have a protective effect against alterations in oxidative stress induced iron metabolism in the diabetic state which was evidenced by the capacity of this natural antioxidant to modulate parameters of iron metabolism.  相似文献   

6.
We previously reported an endogenous, membrane-bound Cu oxidase with homology to ceruloplasmin in BeWo cells, a placental choriocarcinoma cell line. In this previous study, ceruloplasmin immunoreactivity was localized to the perinuclear region and non-brush-border membranes. Here, we show that azide-sensitive oxidase activity is enriched in the same fractions, correlating subcellular localization of enzyme activity with ceruloplasmin immunoreactivity. Expression of the placental Cu oxidase is inversely proportional to Fe status and directly proportional to Cu status at enzyme and protein levels. To identify a role for the Cu oxidase, cells were exposed to (59)Fe-transferrin for 18 h in an environment of 20% O(2) or 5% O(2). At 5% O(2), Cu-deficient cells retain significantly more (59)Fe than control cells. This excess in (59)Fe accumulation is caused by a significant decrease in (59)Fe release. These results indicate that downregulation of the placental Cu oxidase in BeWo cells impairs Fe release. This effect is only apparent in an environment of limited O(2).  相似文献   

7.
Vesicle-associated membrane protein-2 (VAMP-2) and cellubrevin are associated with the membrane of insulin-containing secretory granules and of gamma-aminobutyric acid (GABA)-containing synaptic-like vesicles of pancreatic beta-cells. We found that a point mutation in VAMP-2 preventing targeting to synaptic vesicles also impairs the localization on insulin-containing secretory granules, suggesting a similar requirement for vesicular targeting. Tetanus toxin (TeTx) treatment of permeabilized HIT-T15 cells leads to the proteolytic cleavage of VAMP-2 and cellubrevin and causes the inhibition of Ca2+-triggered insulin exocytosis. Transient transfection of HIT-T15 cells with VAMP-1, VAMP-2 or cellubrevin made resistant to the proteolytic action of TeTx by amino acid replacements in the cleavage site restored Ca2+-stimulated secretion. Wild-type VAMP-2, wild-type cellubrevin or a mutant of VAMP-2 resistant to TeTx but not targeted to secretory granules were unable to rescue Ca2+-evoked insulin release. The transmembrane domain and the N-terminal region of VAMP-2 were not essential for the recovery of stimulated exocytosis, but deletions preventing the binding to SNAP-25 and/or to syntaxin I rendered the protein inactive in the reconstitution assay. Mutations of putative phosphorylation sites or of negatively charged amino acids in the SNARE motif recognized by clostridial toxins had no effect on the ability of VAMP-2 to mediate Ca2+-triggered secretion. We conclude that: (i) both VAMP-2 and cellubrevin can participate in the exocytosis of insulin; (ii) the interaction of VAMP-2 with syntaxin and SNAP-25 is required for docking and/or fusion of secretory granules with the plasma membrane; and (iii) the phosphorylation of VAMP-2 is not essential for Ca2+-stimulated insulin exocytosis.  相似文献   

8.
In this study, point mutations were introduced in plant uncoupling mitochondrial protein AtUCP1, a typical member of the plant uncoupling protein (UCP) gene subfamily, in amino acid residues Lys147, Arg155 and Tyr269, located inside the so-called UCP-signatures, and in two more residues, Cys28 and His83, specific for plant UCPs. The effects of amino acid replacements on AtUCP1 biochemical properties were examined using reconstituted proteoliposomes. Residue Arg155 appears to be crucial for AtUCP1 affinity to linoleic acid (LA) whereas His83 plays an important role in AtUCP1 transport activity. Residues Cys28, Lys147, and also Tyr269 are probably essential for correct protein function, as their substitutions affected either the AtUCP1 affinity to LA and its transport activity, or sensitivity to inhibitors (purine nucleotides). Interestingly, Cys28 substitution reduced ATP inhibitory effect on AtUCP1, while Tyr269Phe mutant exhibited 2.8-fold increase in sensitivity to ATP, in accordance with the reverse mutation Phe267Tyr of mammalian UCP1.  相似文献   

9.
10.
Juvenile hemochromatosis is a severe and rapidly progressing hereditary disorder of iron overload, and it is caused primarily by defects in the gene encoding repulsive guidance molecule c/hemojuvelin (RGMc/HJV), a recently identified protein that undergoes a complicated biosynthetic pathway in muscle and liver, leading to cell membrane-linked single-chain and heterodimeric species, and two secreted single-chain isoforms. RGMc modulates expression of the hepatic iron regulatory factor, hepcidin, potentially through effects on signaling by the bone morphogenetic protein (BMP) family of soluble growth factors. To date, little is known about specific pathogenic defects in disease-causing RGMc/HJV proteins. Here we identify functional abnormalities in three juvenile hemochromatosis-linked mutants. Using a combination of approaches, we first show that BMP-2 could interact in biochemical assays with single-chain RGMc species, and also could bind to cell-associated RGMc. Two mouse RGMc amino acid substitution mutants, D165E and G313V (corresponding to human D172E and G320V), also could bind BMP-2, but less effectively than wild-type RGMc, while G92V (human G99V) could not. In contrast, the membrane-spanning protein, neogenin, a receptor for the related molecule, RGMa, preferentially bound membrane-associated heterodimeric RGMc and was able to interact on cells only with wild-type RGMc and G92V. Our results show that different isoforms of RGMc/HJV may play unique physiological roles through defined interactions with distinct signaling proteins and demonstrate that, in some disease-linked RGMc mutants, these interactions are defective.  相似文献   

11.
The small GstI protein (63 amino acids) of Rhizobium leguminosarum inhibits the expression of the glnII (glutamine synthetase II) gene, thus reducing the bacterial ability to assimilate ammonium. In order to identify the residues essential for its inhibitory activity, all the 53 non-alanine amino acid residues of GstI were individually mutated into alanine. Based on their capacity to inhibit glnII expression (in two genetic backgrounds) three groups of mutants were identified. The first group displayed an inhibitory activity similar to the wild-type; the second and the third ones showed partial and total loss of inhibitory activity, respectively. Several mutations of the latter group concerned residues conserved in two related sequences from Sinorhizobium meliloti and Agrobacterium tumefaciens. Additionally, we performed experiments to exclude a GstI-mediated mechanism of glutamine synthetase II inhibition/degradation. Finally, the protein was over expressed in Escherichia coli, purified and characterised.  相似文献   

12.
The essential nucleoid-associated protein HBsu of Bacillus subtilis comprises 92 residues, 20% of which are basic amino acids. To investigate the role of the residues located within the DNA-binding arm, the arginine residues R58 and R61 were changed to leucine, while lysine residues K80 and K86 were replaced by alanine. All altered proteins exhibited a reduction in DNA binding capacity, ranging from 10% to 30% of HBsu wild type DNA-binding ability. To investigate the physiological effect of these mutations in B. subtilis, the indigenous hbs gene was replaced by the mutated genes. B. subtilis strain PK20, which carries the HBsu mutation R58L which exhibits the lowest DNA binding ability in vitro, showed the strongest retardation of growth compared to the wild type. Furthermore, PK20 cells displayed an increased rate of cell lysis, diminished sporulation efficiency and a reduced level of negatively supercoiled DNA. These observations suggest that the DNA binding ability of HBsu DNA is important for growth and differentiation and influences DNA topology. Received: 27 July 1998 / Accepted: 22 September 1998  相似文献   

13.
The work is dedicated to creation of the mathematical model of folate-dependent one-carbon unit metabolism (FOCM) and study of its function in human placenta under homocysteine load and the most common mutations in the genes of methylenetetrahydrofolate reductase (MTHFR) and cystathionine beta-synthase (CBS). In the model we have taken into account specific features of placental expression of genes that encode enzymes of FOCM. Using software tools Metatool and COBRAToolbox we have identified key metabolites, elementary modes and metabolic fluxes through different reactions of the system. It is shown that the most vulnerable links in the system are the folate cycle and synthesis of precursors of nucleic acids, inosine monophosphate and thymidyne monophosphates, which are changing in the broad range from significant inhibition to activation depending on the imposed conditions. The most stable links in the system are the reactions of glutathione and taurine synthesis. Simulation results coincide with the results obtained in similar experimental conditions. Under certain imposed conditions non-obvious relationships between the system links are revealed, and this becomes the basis for a purposeful test of predictions generated by the model.  相似文献   

14.
15.
The emergence of multidrug-resistant strains of Mycobacterium tuberculosis poses a serious threat to human health and has led to world-wide efforts focusing on the development of novel vaccines and antibiotics against this pathogen. Sulphur metabolism in this organism has been linked to essential processes such as virulence and redox defence. The cysteine biosynthetic pathway is up-regulated in models of persistent M. tuberculosis infections and provides potential targets for novel anti-mycobacterial agents, directed specifically toward the pathogen in its persistent phase. Functional and structural characterization of enzymes from sulfur metabolism establishes a necessary framework for the design of strong binding inhibitors that might be developed into new drugs. This review summarizes recent progress in the elucidation of the structural enzymology of the sulphate reduction and cysteine biosynthesis pathways.  相似文献   

16.
Imelysin-like proteins define a superfamily of bacterial proteins that are likely involved in iron uptake. Members of this superfamily were previously thought to be peptidases and were included in the MEROPS family M75. We determined the first crystal structures of two remotely related, imelysin-like proteins. The Psychrobacter arcticus structure was determined at 2.15 Å resolution and contains the canonical imelysin fold, while higher resolution structures from the gut bacteria Bacteroides ovatus, in two crystal forms (at 1.25 Å and 1.44 Å resolution), have a circularly permuted topology. Both structures are highly similar to each other despite low sequence similarity and circular permutation. The all-helical structure can be divided into two similar four-helix bundle domains. The overall structure and the GxHxxE motif region differ from known HxxE metallopeptidases, suggesting that imelysin-like proteins are not peptidases. A putative functional site is located at the domain interface. We have now organized the known homologous proteins into a superfamily, which can be separated into four families. These families share a similar functional site, but each has family-specific structural and sequence features. These results indicate that imelysin-like proteins have evolved from a common ancestor, and likely have a conserved function.  相似文献   

17.
18.
PrkC was shown to be a eukaryotic-like (Hanks-type) protein kinase from Bacillus subtilis with a structural organization similar to that of the eukaryotic sensor Ser/Thr or Tyr kinases (e.g. the TGF beta or PDGF receptors). The molecule consists of a catalytic domain located in the cytoplasm, joined by a single transmembrane-spanning region (TMD) to a large extracellular domain. Using a genetic reporter system, involving the cI repressor of lambda, evidence was obtained indicating that PrkC forms a dimer, involving both the TMD and the external domain in dimerization. The purified catalytic domain of PrkC was shown to autophosphorylate and to phosphorylate an external target, MBP, in both cases on threonine. These two functions require the completely conserved K40 residue in subdomain II, which is essential for enzymatic activity. Importantly, both the mutant deleted for prkC and a K40R mutant exhibit decreased efficiency of sporulation and a significant reduction in biofilm formation, demonstrating that the catalytic activity of PrkC is necessary for these two developmental processes. In addition, we showed that the product of prpC, a PPM phosphatase encoded by the adjacent gene, co-transcribed with prkC, is also required for normal biofilm and spore formation.  相似文献   

19.
Microbial acquisition of iron from natural sources in aerobic environments is a little-studied process that may lead to mineral instability and trace metal mobilization. Pseudomonas mendocina ymp was isolated from the Yucca Mountain Site for long-term nuclear waste storage. Its ability to solubilize a variety of Fe-containing minerals under aerobic conditions has been previously investigated but its molecular and genetic potential remained uncharacterized. Here, we have shown that the organism produces a hydroxamate and not a catecholate-based siderophore that is synthesized via non-ribosomal peptide synthetases. Gene clustering patterns observed in other Pseudomonads suggested that hybridizing multiple probes to the same library could allow for the identification of one or more clusters of syntenic siderophore-associated genes. Using this approach, two independent clusters were identified. An unfinished draft genome sequence of P. mendocina ymp indicated that these mapped to two independent contigs. The sequenced clusters were investigated informatically and shown to contain respectively a potentially complete set of genes responsible for siderophore biosynthesis, uptake, and regulation, and an incomplete set of genes with low individual homology to siderophore-associated genes. A mutation in the cluster’s pvdA homolog (pmhA) resulted in a siderophore-null phenotype, which could be reversed by complementation. The organism likely produces one siderophore with possibly different isoforms and a peptide backbone structure containing seven residues (predicted sequence: Acyl-Asp-Dab-Ser-fOHOrn-Ser-fOHorn). A similar approach could be applied for discovery of Fe− and siderophore-associated genes in unsequenced or poorly annotated organisms.  相似文献   

20.
In a forward genetic screen for interaction with mitochondrial iron carrier proteins in Saccharomyces cerevisiae, a hypomorphic mutation of the essential DRE2 gene was found to confer lethality when combined with Δmrs3 and Δmrs4. The dre2 mutant or Dre2-depleted cells were deficient in cytosolic Fe/S cluster protein activities while maintaining mitochondrial Fe/S clusters. The Dre2 amino acid sequence was evolutionarily conserved, and cysteine motifs (CX2CXC and twin CX2C) in human and yeast proteins were perfectly aligned. The human Dre2 homolog (implicated in blocking apoptosis and called CIAPIN1 or anamorsin) was able to complement the nonviability of a Δdre2 deletion strain. The Dre2 protein with triple hemagglutinin tag was located in the cytoplasm and in the mitochondrial intermembrane space. Yeast Dre2 overexpressed and purified from bacteria was brown and exhibited signature absorption and electron paramagnetic resonance spectra, indicating the presence of both [2Fe-2S] and [4Fe-4S] clusters. Thus, Dre2 is an essential conserved Fe/S cluster protein implicated in extramitochondrial Fe/S cluster assembly, similar to other components of the so-called CIA (cytoplasmic Fe/S cluster assembly) pathway although partially localized to the mitochondrial intermembrane space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号