首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mullen JR  Kaliraman V  Brill SJ 《Genetics》2000,154(3):1101-1114
SGS1 in yeast encodes a DNA helicase with homology to the human BLM and WRN proteins. This group of proteins is characterized by a highly conserved DNA helicase domain homologous to Escherichia coli RecQ and a large N-terminal domain of unknown function. To determine the role of these domains in SGS1 function, we constructed a series of truncation and helicase-defective (-hd) alleles and examined their ability to complement several sgs1 phenotypes. Certain SGS1 alleles showed distinct phenotypes: sgs1-hd failed to complement the MMS hypersensitivity and hyper-recombination phenotypes, but partially complemented the slow-growth suppression of top3 sgs1 strains and the top1 sgs1 growth defect. Unexpectedly, an allele that encodes the amino terminus alone showed essentially complete complementation of the hyper-recombination and top1 sgs1 defects. In contrast, an allele encoding the helicase domain alone was unable to complement any sgs1 phenotype. Small truncations of the N terminus resulted in hyper-recombination and slow-growth phenotypes in excess of the null allele. These hypermorphic phenotypes could be relieved by deleting more of the N terminus, or in some cases, by a point mutation in the helicase domain. Intragenic complementation experiments demonstrate that both the amino terminus and the DNA helicase are required for full SGS1 function. We conclude that the amino terminus of Sgs1 has an essential role in SGS1 function, distinct from that of the DNA helicase, with which it genetically interacts.  相似文献   

3.
4.
Zheng XF  Prakash R  Saro D  Longerich S  Niu H  Sung P 《DNA Repair》2011,10(10):1034-1043
The budding yeast Mph1 protein, the putative ortholog of human FANCM, possesses a 3' to 5' DNA helicase activity and is capable of disrupting the D-loop structure to suppress chromosome arm crossovers in mitotic homologous recombination. Similar to FANCM, genetic studies have implicated Mph1 in DNA replication fork repair. Consistent with this genetic finding, we show here that Mph1 is able to mediate replication fork reversal, and to process the Holliday junction via DNA branch migration. Moreover, Mph1 unwinds 3' and 5' DNA Flap structures that bear key features of the D-loop. These biochemical results not only provide validation for a role of Mph1 in the repair of damaged replication forks, but they also offer mechanistic insights as to its ability to efficiently disrupt the D-loop intermediate.  相似文献   

5.
Paeschke K  Capra JA  Zakian VA 《Cell》2011,145(5):678-691
G-quadruplex (G4) DNA structures are extremely stable four-stranded secondary structures held together by noncanonical G-G base pairs. Genome-wide chromatin immunoprecipitation was used to determine the in?vivo binding sites of the multifunctional Saccharomyces cerevisiae Pif1 DNA helicase, a potent unwinder of G4 structures in?vitro. G4 motifs were a significant subset of the high-confidence Pif1-binding sites. Replication slowed in the vicinity of these motifs, and they were prone to breakage in Pif1-deficient cells, whereas non-G4 Pif1-binding sites did not show this behavior. Introducing many copies of G4 motifs caused slow growth in replication-stressed Pif1-deficient cells, which was relieved by spontaneous mutations that eliminated their ability to form G4 structures, bind Pif1, slow DNA replication, and stimulate DNA breakage. These data suggest that G4 structures form in?vivo and that they are resolved by Pif1 to prevent replication fork stalling and DNA breakage.  相似文献   

6.
Hmi1p is a Saccharomyces cerevisiae mitochondrial DNA helicase that is essential for the maintenance of functional mitochondrial DNA. Hmi1p belongs to the superfamily 1 of helicases and is a close homologue of bacterial PcrA and Rep helicases. We have overexpressed and purified recombinant Hmi1p from Escherichia coli and describe here the biochemical characteristics of its DNA helicase activities. Among nucleotide cofactors, the DNA unwinding by Hmi1p was found to occur efficiently only in the presence of ATP and dATP. Hmi1p could unwind only the DNA substrates with a 3'-single-stranded overhang. The length of the 3'-overhang needed for efficient targeting of the helicase to the substrate depended on the substrate structure. For substrates consisting of duplex DNA with a 3'-single-stranded DNA overhang, at least a 19-nt 3'-overhang was needed. In the case of forked substrates with both 3'- and 5'-overhangs, a 9-nt 3'-overhang was sufficient provided that the 5'-overhang was also 9 nt in length. In flap-structured substrates mimicking the chain displacement structures in DNA recombination process, only a 5-nt 3'-single-stranded DNA tail was required for efficient unwinding by Hmi1p. These data indicate that Hmi1p may be targeted to a specific 3'-flap structure, suggesting its possible role in DNA recombination.  相似文献   

7.
Although mammals encode multiple family X DNA polymerases implicated in DNA repair, Saccharomyces cerevisiae has only one, DNA polymerase IV (pol IV). To better understand the repair functions of pol IV, here we characterize its biochemical properties. Like mammalian pol beta and pol lambda, but not pol mu, pol IV has intrinsic 5'-2-deoxyribose-5-phosphate lyase activity. Pol IV has low processivity and can fill short gaps in DNA. Unlike the case with pol beta and pol lambda, the gap-filling activity of pol IV is not enhanced by a 5'-phosphate on the downstream primer but is stimulated by a 5'-terminal synthetic abasic site. Pol IV incorporates rNTPs into DNA with an unusually high efficiency relative to dNTPs, a property in common with pol mu but not pol beta or pol lambda. Finally, pol IV is highly inaccurate, with an unusual error specificity indicating the ability to extend primer termini with limited homology. These properties are consistent with a possible role for pol IV in base excision repair and with its known role in non-homologous end joining of double strand breaks, perhaps including those with damaged ends.  相似文献   

8.
Saccharomyces cerevisiae SRS2 encodes an ATP-dependent DNA helicase that is needed for DNA damage checkpoint responses and that modulates the efficiency of homologous recombination. Interestingly, strains simultaneously mutated for SRS2 and a variety of DNA repair genes show low viability that can be overcome by inactivating homologous recombination, thus implicating inappropriate recombination as the cause of growth impairment in these mutants. Here, we report on our biochemical characterization of the ATPase and DNA helicase activities of Srs2. ATP hydrolysis by Srs2 occurs efficiently only in the presence of DNA, with ssDNA being considerably more effective than dsDNA in this regard. Using homopolymeric substrates, the minimal DNA length for activating ATP hydrolysis is found to be 5 nucleotides, but a length of 10 nucleotides is needed for maximal activation. In its helicase action, Srs2 prefers substrates with a 3' ss overhang, and approximately 10 bases of 3' overhanging DNA is needed for efficient targeting of Srs2 to the substrate. Even though a 3' overhang serves to target Srs2, under optimized conditions blunt-end DNA substrates are also dissociated by this protein. The ability of Srs2 to unwind helicase substrates with a long duplex region is enhanced by the inclusion of the single-strand DNA-binding factor replication protein A.  相似文献   

9.
Trinucleotide repeat expansions are the mutational cause of at least 15 genetic diseases. In vitro, single-stranded triplet repeat DNA forms highly stable hairpins, depending on repeat sequence, and a strong correlation exists between hairpin-forming ability and the risk of expansion in vivo. Hairpins are viewed, therefore, as likely mutagenic precursors to expansions. If a helicase unwinds the hairpin, it would be less likely to expand. Previous work indicated that yeast Srs2 DNA helicase selectively blocks expansions in vivo (Bhattacharyya, S., and Lahue, R. S. (2004) Mol. Cell. Biol. 24, 7324-7330). For example, srs2 mutants, including an ATPase-defective point mutant, exhibit substantially higher expansion rates than wild type controls. In contrast, mutation of another helicase gene, SGS1, had little effect on expansion rates. These findings prompted the idea that Srs2 might selectively unwind triplet repeat hairpins. In this study, DNA helicase assays were performed with purified Srs2, Sgs1, and Escherichia coli UvrD (DNA helicase II). Srs2 shows substantially faster unwinding than Sgs1 or UvrD on partial duplex substrates containing (CTG) x (CTG) sequences, provided that Srs2 encounters the triplet repeat DNA immediately on entering the duplex. Srs2 was also faster at unwinding (CAG) x (CAG)- and (CCG) x (CCG)-containing substrates and an intramolecular (CTG) x (CTG) hairpin. In contrast, all three enzymes unwind about equally well control substrates with either Watson-Crick base pairs or mismatched substrates with non-CNG repeats. Overall, the selective unwinding activity of Srs2 on triplet repeat hairpin DNA helps explain the genetic evidence that Srs2, not the RecQ homolog Sgs1, is a preferred helicase for preventing expansions.  相似文献   

10.
A novel DNA helicase has been isolated from Saccharomyces cerevisiae. This DNA helicase co-purified with replication factor C (RF-C) during chromatography on S-Sepharose, DEAE-silica gel high performance liquid chromatography (HPLC), Affi-Gel Blue-agarose, heparin-agarose, single-stranded DNA-cellulose, fast protein liquid chromatography MonoS, and hydroxyapatite HPLC. Surprisingly, the helicase could be separated from RF-C by sedimentation on a glycerol gradient in the presence of 200 mM NaCl. The helicase is probably a homodimer of a 60-kDa polypeptide, which by UV cross-linking has been shown to bind ATP. It has a single-stranded DNA-dependent ATPase activity, with a Km for ATP of 60 microM. The DNA helicase activity depends on the hydrolysis of NTP (dNTP), with ATP and dATP the most efficient cofactors, followed by CTP and dCTP. The DNA helicase has a 5' to 3' directionality and is only marginally stimulated by coating the single-stranded DNA with the yeast single-stranded DNA-binding protein RF-A.  相似文献   

11.
Mitochondrial DNA (mtDNA) is highly susceptible to oxidative and chemically induced damage, and these insults lead to a number of diseases. In Saccharomyces cerevisiae, the DNA helicase Pif1p is localized to the nucleus and mitochondria. We show that pif1 mutant cells are sensitive to ethidium bromide-induced damage and this mtDNA is prone to fragmentation. We also show that Pif1p associates with mtDNA. In pif1 mutant cells, mtDNA breaks at specific sites that exhibit Pif1-dependent recombination. We conclude that Pif1p participates in the protection from double-stranded (ds) DNA breaks or alternatively in the repair process of dsDNA breaks in mtDNA.  相似文献   

12.
Trinucleotide repeats (TNRs) undergo frequent mutations in families afflicted with certain neurodegenerative disorders and in model organisms. TNR instability is modulated both by the repeat tract itself and by cellular proteins. Here we identified the Saccharomyces cerevisiae DNA helicase Srs2 as a potent and selective inhibitor of expansions. srs2 mutants had up to 40-fold increased expansion rates of CTG, CAG, and CGG repeats. The expansion phenotype was specific, as mutation rates at dinucleotide repeats, at unique sequences, or for TNR contractions in srs2 mutants were not altered. Srs2 is known to suppress inappropriate genetic recombination; however, the TNR expansion phenotype of srs2 mutants was largely independent of RAD51 and RAD52. Instead, Srs2 mainly functioned with DNA polymerase delta to block expansions. The helicase activity of Srs2 was important, because a point mutant lacking ATPase function was defective in blocking expansions. Purified Srs2 was substantially better than bacterial UvrD helicase at in vitro unwinding of a DNA substrate that mimicked a TNR hairpin. Disruption of the related helicase gene SGS1 did not lead to excess expansions, nor did wild-type SGS1 suppress the expansion phenotype of an srs2 strain. We conclude that Srs2 selectively blocks triplet repeat expansions through its helicase activity and primarily in conjunction with polymerase delta.  相似文献   

13.
The Saccharomyces cerevisiae Sgs1 protein is a member of the RecQ family of DNA helicases and is required for genome stability, but not cell viability. To identify proteins that function in the absence of Sgs1, a synthetic-lethal screen was performed. We obtained mutations in six complementation groups that we refer to as SLX genes. Most of the SLX genes encode uncharacterized open reading frames that are conserved in other species. None of these genes is required for viability and all SLX null mutations are synthetically lethal with mutations in TOP3, encoding the SGS1-interacting DNA topoisomerase. Analysis of the null mutants identified a pair of genes in each of three phenotypic classes. Mutations in MMS4 (SLX2) and SLX3 generate identical phenotypes, including weak UV and strong MMS hypersensitivity, complete loss of sporulation, and synthetic growth defects with mutations in TOP1. Mms4 and Slx3 proteins coimmunoprecipitate from cell extracts, suggesting that they function in a complex. Mutations in SLX5 and SLX8 generate hydroxyurea sensitivity, reduced sporulation efficiency, and a slow-growth phenotype characterized by heterogeneous colony morphology. The Slx5 and Slx8 proteins contain RING finger domains and coimmunoprecipitate from cell extracts. The SLX1 and SLX4 genes are required for viability in the presence of an sgs1 temperature-sensitive allele at the restrictive temperature and Slx1 and Slx4 proteins are similarly associated in cell extracts. We propose that the MMS4/SLX3, SLX5/8, and SLX1/4 gene pairs encode heterodimeric complexes and speculate that these complexes are required to resolve recombination intermediates that arise in response to DNA damage, during meiosis, and in the absence of SGS1/TOP3.  相似文献   

14.
15.
The Rad3 ATPase/DNA helicase was purified to physical homogeneity from extracts of yeast cells containing overexpressed Rad3 protein. The DNA helicase can unwind duplex regions as short as 11 base pairs in a partially duplex circular DNA substrate and does so by a strictly processive mechanism. On partially duplex linear substrates, the enzyme has a strict 5'----3' polarity with respect to the single strand to which it binds. Nicked circular DNA is not utilized as a substrate, and the enzyme requires single-stranded gaps between 5 and 21 nucleotides long to unwind oligonucleotide fragments from partially duplex linear molecules. The enzyme also requires duplex regions at least 11 base pairs long when these are present at the ends of linear molecules. Rad3 DNA helicase activity is inhibited by the presence of ultraviolet-induced photoproducts in duplex regions of partially duplex circular molecules.  相似文献   

16.
The Saccharomyces cerevisiae Sgs1p helicase localizes to the nucleolus and is required to maintain the integrity of the rDNA repeats. Sgs1p is a member of the RecQ DNA helicase family, which also includes Schizo-saccharomyces pombe Rqh1, and the human BLM and WRN genes. These genes encode proteins which are essential to maintenance of genomic integrity and which share a highly conserved helicase domain. Here we show that recombinant Sgs1p helicase efficiently unwinds guanine-guanine (G-G) paired DNA. Unwinding of G-G paired DNA is ATP- and Mg2+-dependent and requires a short 3' single-stranded tail. Strikingly, Sgs1p unwinds G-G paired substrates more efficiently than duplex DNAs, as measured either in direct assays or by competition experiments. Sgs1p efficiently unwinds G-G paired telomeric sequences, suggesting that one function of Sgs1p may be to prevent telomere-telomere interactions which can lead to chromosome non-disjunction. The rDNA is G-rich and has considerable potential for G-G pairing. Diminished ability to unwind G-G paired regions may also explain the deleterious effect of mutation of Sgs1 on rDNA stability, and the accelerated aging characteristic of yeast strains that lack Sgs1 as well as humans deficient in the related WRN helicase.  相似文献   

17.
18.
Crossing over is regulated to occur at least once per each pair of homologous chromosomes during meiotic prophase to ensure proper segregation of chromosomes at the first meiotic division. In a mer3 deletion mutant of Saccharomyces cerevisiae, crossing over is decreased, and the distribution of the crossovers that occur is random. The predicted Mer3 protein contains seven motifs characteristic of the DExH box type of DNA/RNA helicases. The mer3G166D and the mer3K167A mutation, amino acid substitutions of conserved residues in a putative nucleotide-binding domain of the helicase motifs caused a defect in the transition of meiosis-specific double-strand breaks to later intermediates, decreased crossing over, and reduced crossover interference. The purified Mer3 protein was found to have DNA helicase activity. This helicase activity was reduced by the mer3GD mutation to <1% of the wild-type activity, even though binding of the mutant protein to single- and double-strand DNA was unaffected. The mer3KA mutation eliminated the ATPase activity of the wild-type protein. These results demonstrate that Mer3 is a DNA helicase that functions in meiotic crossing over.  相似文献   

19.
The Saccharomyces cerevisiae Srs2 UvrD DNA helicase controls genome integrity by preventing unscheduled recombination events. While Srs2 orthologues have been identified in prokaryotic and lower eukaryotic organisms, human orthologues of Srs2 have not been described so far. We found that the human F-box DNA helicase hFBH1 suppresses specific recombination defects of S. cerevisiae srs2 mutants, consistent with the finding that the helicase domain of hFBH1 is highly conserved with that of Srs2. Surprisingly, hFBH1 in the absence of SRS2 also suppresses the DNA damage sensitivity caused by inactivation of postreplication repair-dependent functions leading to PCNA ubiquitylation. The F-box domain of hFBH1, which is not present in Srs2, is crucial for hFBH1 functions in substituting for Srs2 and postreplication repair factors. Furthermore, our findings indicate that an intact F-box domain, acting as an SCF ubiquitin ligase, is required for the DNA damage-induced degradation of hFBH1 itself. Overall, our findings suggest that the hFBH1 helicase is a functional human orthologue of budding yeast Srs2 that also possesses self-regulation properties necessary to execute its recombination functions.  相似文献   

20.
Amin AD  Chaix AB  Mason RP  Badge RM  Borts RH 《PloS one》2010,5(11):e15380

Background

The Saccharomyces cerevisiae RecQ helicase Sgs1 is essential for mitotic and meiotic genome stability. The stage at which Sgs1 acts during meiosis is subject to debate. Cytological experiments showed that a deletion of SGS1 leads to an increase in synapsis initiation complexes and axial associations leading to the proposal that it has an early role in unwinding surplus strand invasion events. Physical studies of recombination intermediates implicate it in the dissolution of double Holliday junctions between sister chromatids.

Methodology/Principal Findings

In this work, we observed an increase in meiotic recombination between diverged sequences (homeologous recombination) and an increase in unequal sister chromatid events when SGS1 is deleted. The first of these observations is most consistent with an early role of Sgs1 in unwinding inappropriate strand invasion events while the second is consistent with unwinding or dissolution of recombination intermediates in an Mlh1- and Top3-dependent manner. We also provide data that suggest that Sgs1 is involved in the rejection of ‘second strand capture’ when sequence divergence is present. Finally, we have identified a novel class of tetrads where non-sister spores (pairs of spores where each contains a centromere marker from a different parent) are inviable. We propose a model for this unusual pattern of viability based on the inability of sgs1 mutants to untangle intertwined chromosomes. Our data suggest that this role of Sgs1 is not dependent on its interaction with Top3. We propose that in the absence of SGS1 chromosomes may sometimes remain entangled at the end of pre-meiotic replication. This, combined with reciprocal crossing over, could lead to physical destruction of the recombined and entangled chromosomes. We hypothesise that Sgs1, acting in concert with the topoisomerase Top2, resolves these structures.

Conclusions

This work provides evidence that Sgs1 interacts with various partner proteins to maintain genome stability throughout meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号