首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Throughout the 1990 s, there was an epidemic of multidrug resistant Salmonella Typhimurium DT104 in both animals and humans in Scotland. The use of antimicrobials in agriculture is often cited as a major source of antimicrobial resistance in pathogenic bacteria of humans, suggesting that DT104 in animals and humans should demonstrate similar prevalences of resistance determinants. Until very recently, only the application of molecular methods would allow such a comparison and our understanding has been hindered by the fact that surveillance data are primarily phenotypic in nature. Here, using large scale surveillance datasets and a novel Bayesian approach, we infer and compare the prevalence of Salmonella Genomic Island 1 (SGI1), SGI1 variants, and resistance determinants independent of SGI1 in animal and human DT104 isolates from such phenotypic data. We demonstrate differences in the prevalences of SGI1, SGI1-B, SGI1-C, absence of SGI1, and tetracycline resistance determinants independent of SGI1 between these human and animal populations, a finding that challenges established tenets that DT104 in domestic animals and humans are from the same well-mixed microbial population.  相似文献   

2.
Salmonella enterica is among the principal etiological agents of food-borne illness in humans. Increasing antimicrobial resistance in S. enterica is a cause for worldwide concern. There is concern at present in relation to the increasing incidence of human infection with antimicrobial agent-resistant strains of S. enterica serotype Typhimurium, in particular of phage type DT104. Integrons appear to play an important role in the dissemination of antimicrobial resistance genes in many Enterobacteriaceae including S. enterica. In this study the antimicrobial susceptibilities and phage types of 74 randomly collected strains of S. enterica serotype Typhimurium from the Cork region of southern Ireland, obtained from human, animal (clinical), and food sources, were determined. Each strain was examined for integrons and typed by DNA amplification fingerprinting (DAF). Phage type DT104 predominated (n = 48). Phage types DT104b (n = 3), -193 (n = 9), -195 (n = 6), -208 (n = 3), -204a (n = 2), PT U302 (n = 1), and two nontypeable strains accounted for the remainder. All S. enterica serotype Typhimurium DT104 strains were resistant to ampicillin, chloramphenicol, streptomycin, Sulfonamide Duplex, and tetracycline, and one strain was additionally resistant to trimethoprim. All DT104 strains but one were of a uniform DAF type (designated DAF-I) and showed a uniform pattern of integrons (designated IP-I). The DT104b and PT U302 strains also exhibited the same resistance phenotype, and both had the DAF-I and IP-I patterns. The DAF-I pattern was also observed in a single DT193 strain in which no integrons were detectable. Greater diversity of antibiograms and DAF and IP patterns among non-DT104 phage types was observed. These data indicate a remarkable degree of homogeneity at a molecular level among contemporary isolates of S. enterica serotype Typhimurium DT104 from animal, human, and food sources in this region.  相似文献   

3.
Salmonella enterica is among the principal etiological agents of food-borne illness in humans. Increasing antimicrobial resistance in S. enterica is a cause for worldwide concern. There is concern at present in relation to the increasing incidence of human infection with antimicrobial agent-resistant strains of S. enterica serotype Typhimurium, in particular of phage type DT104. Integrons appear to play an important role in the dissemination of antimicrobial resistance genes in many Enterobacteriaceae including S. enterica. In this study the antimicrobial susceptibilities and phage types of 74 randomly collected strains of S. enterica serotype Typhimurium from the Cork region of southern Ireland, obtained from human, animal (clinical), and food sources, were determined. Each strain was examined for integrons and typed by DNA amplification fingerprinting (DAF). Phage type DT104 predominated (n = 48). Phage types DT104b (n = 3), -193 (n = 9), -195 (n = 6), -208 (n = 3), -204a (n = 2), PT U302 (n = 1), and two nontypeable strains accounted for the remainder. All S. enterica serotype Typhimurium DT104 strains were resistant to ampicillin, chloramphenicol, streptomycin, Sulfonamide Duplex, and tetracycline, and one strain was additionally resistant to trimethoprim. All DT104 strains but one were of a uniform DAF type (designated DAF-I) and showed a uniform pattern of integrons (designated IP-I). The DT104b and PT U302 strains also exhibited the same resistance phenotype, and both had the DAF-I and IP-I patterns. The DAF-I pattern was also observed in a single DT193 strain in which no integrons were detectable. Greater diversity of antibiograms and DAF and IP patterns among non-DT104 phage types was observed. These data indicate a remarkable degree of homogeneity at a molecular level among contemporary isolates of S. enterica serotype Typhimurium DT104 from animal, human, and food sources in this region.  相似文献   

4.
Anthropogenic environments such as those created by intensive farming of livestock, have been proposed to provide ideal selection pressure for the emergence of antimicrobial-resistant Escherichia coli bacteria and antimicrobial resistance genes (ARGs) and spread to humans. Here, we performed a longitudinal study in a large-scale commercial poultry farm in China, collecting E. coli isolates from both farm and slaughterhouse; targeting animals, carcasses, workers and their households and environment. By using whole-genome phylogenetic analysis and network analysis based on single nucleotide polymorphisms (SNPs), we found highly interrelated non-pathogenic and pathogenic E. coli strains with phylogenetic intermixing, and a high prevalence of shared multidrug resistance profiles amongst livestock, human and environment. Through an original data processing pipeline which combines omics, machine learning, gene sharing network and mobile genetic elements analysis, we investigated the resistance to 26 different antimicrobials and identified 361 genes associated to antimicrobial resistance (AMR) phenotypes; 58 of these were known AMR-associated genes and 35 were associated to multidrug resistance. We uncovered an extensive network of genes, correlated to AMR phenotypes, shared among livestock, humans, farm and slaughterhouse environments. We also found several human, livestock and environmental isolates sharing closely related mobile genetic elements carrying ARGs across host species and environments. In a scenario where no consensus exists on how antibiotic use in the livestock may affect antibiotic resistance in the human population, our findings provide novel insights into the broader epidemiology of antimicrobial resistance in livestock farming. Moreover, our original data analysis method has the potential to uncover AMR transmission pathways when applied to the study of other pathogens active in other anthropogenic environments characterised by complex interconnections between host species.  相似文献   

5.
In the course of nationwide investigation on epidemiological characteristics in Salmonella Typhimurium isolates from food-producing animals in Japan between 1999 and 2001, fifty-seven isolates of S. Typhimurium DT104 and 104B obtained from cattle and swine at farm level in Japan between 1999 and 2001 were classified with pulsotype and antimicrobial resistance type. Most of the isolates were resistant to five or more antimicrobials and were genotyped into four groups. The present nationwide investigation shows that at least 11 types of S. Typhimurium related to DT104 are prevalent among food-producing animals across the country.  相似文献   

6.
Aims:  To investigate the prevalence of integrons and antimicrobial resistance genes in Salmonella recovered from animals in Japan.
Methods and Results:  Forty-eight out of ninety-four (51·1%) Salmonella isolates showed multidrug resistance phenotypes and harboured at least one antimicrobial resistance gene. Twenty-two out of forty-seven (46·8%) Salmonella enterica serovar Typhimurium that were multidrug-resistant were of definitive phage type DT104. Class 1 integrons were identified in 34/94 isolates (36·2%): 21 isolates containing two gene cassettes, aadA2 and bla PSE–1, and 13 containing one gene cassette, aadA1 , aadA2 or bla PSE–1. Class 2 integrons containing estX - sat2 - aadA1 gene cassettes were only identified in Salmonella Enteritidis. The β-lactamase-encoding gene, bla TEM, was only detected in S. Typhimurium. The plasmid-mediated quinolone resistance gene, qnrS1 , was identified in S. Typhimurium and Salmonella Thompson.
Conclusions:  Our results characterized integrons and antimicrobial resistance genes in Salmonella of animal origin. To the best of our knowledge, this is the first report of qnrS in Salmonella from Japan and also the first report of qnrS in S . Thompson.
Significance and Impact of the Study:  Little is known about the molecular basis of antimicrobial resistance in Salmonella isolated from animals. This study provides useful data on the incidence of integrons and resistance genes in Salmonella of animal origin.  相似文献   

7.
Aeromonas spp. are ubiquitous aquatic bacteria that cause serious infections in both poikilothermic and endothermic animals, including humans. Clinical isolates have shown an increasing incidence of antibiotic and antimicrobial drug resistance since the widespread use of antibiotics began. A total of 282 Aeromonas pure cultures were isolated from both urban and rural playa lakes in the vicinity of Lubbock, Texas, and several rivers in West Texas and New Mexico. Of these, at least 104 were subsequently confirmed to be independent isolates. The 104 isolates were identified by Biolog and belonged to 11 different species. The MICs of six metals, one metalloid, five antibiotics, and two antimicrobial drugs were determined. All aeromonads were sensitive to chromate, cobalt, copper, nickel, zinc, cefuroxime, kanamycin, nalidixic acid, ofloxacin, tetracycline, and sulfamethoxazole. Low incidences of trimethoprim resistance, mercury resistance, and arsenite resistance were found. Dual resistances were found in 5 of the 104 Aeromonas isolates. Greater numbers of resistant isolates were obtained from samples taken in March versus July 2002 and from sediment versus water. Plasmids were isolated from selected strains of the arsenite- and mercury-resistant organisms and were transformed into Escherichia coli XL1-Blue MRF'. Acquisition of the resistance phenotypes by the new host showed that these resistance genes were carried on the plasmids. Mercury resistance was found to be encoded on a conjugative plasmid. Despite the low incidence of resistant isolates, the six playa lakes and three rivers that were sampled in this study can be considered a reservoir for antimicrobial resistance genes.  相似文献   

8.
Epidemic strain Salmonella typhimurium DT104 is characterized by various multiresistance patterns. At least some of the resistance genes are organized as integrons. Resistance genes of DT104 isolates can be efficiently transduced by P22-like phage ES18 and by phage PDT17 which is released by all DT104 isolates so far analyzed. Cotransduction tests demonstrate that the resistance genes, although not organized in a unique integron, are tightly clustered on the Salmonella chromosome. The spread of resistance genes in this strain by generalized transduction is discussed.  相似文献   

9.
Two hundred and twenty-six Salmonella enterica serotype Typhimurium isolates were examined for the presence of integron-associated gene cassettes. All but two of the non-DT104 isolates, together with DT104 isolates, contained gene cassettes. Amplicons of 1.5 kbp each were found in two non-DT104 isolates, encoding a dhfrI gene (trimethoprim resistance) linked to an aadA gene (streptomycin and spectinomycin resistance), by site-specific recombination. DT104 isolates of resistance (R) type ACSSuT possessed the recently described 1.0- and 1.2-kbp gene cassettes. Macrorestriction analysis with XbaI and DNA probing mapped ant(3")-1a, bla(PSE-1), and dhfrI genes to large multiresistant gene clusters in a DT170a isolate and a DT193 isolate. In contrast, all DT104 isolates (R-type ACSSuT) possessed a conserved 10-kbp Xba1 DNA fragment. Our study highlights the occurrence of integrons (and antimicrobial resistance determinants) among serotype Typhimurium isolates other than DT104. Larger and previously unrecognized multiresistance gene clusters were identified in these isolates by DNA probing.  相似文献   

10.
AIMS: To assess the degree of genetic diversity among animal Salmonella Dublin UK isolates, and to compare it with the genetic diversity found among human isolates from the same time period. METHODS AND RESULTS: One hundred isolates (50 human and 50 animal) were typed using plasmid profiling, XbaI-pulsed field gel electrophoresis (PFGE) and PstI-SphI ribotyping. Antimicrobial resistance data to 16 antibiotics was presented, and the presence of class-I integrons was investigated by real-time PCR. Seven different plasmid profiles, 19 ribotypes and 21 PFGE types were detected. A combination of the three methods allowed clear differentiation of 43 clones or strains. Eighteen isolates were resistant to at least one antimicrobial; five of them were multi-resistant and of these, only three presented class I integrons. CONCLUSIONS: Ribotyping data suggest the existence of at least three very different clonal lines; the same distribution in well-defined groups was not evident from the PFGE data. The existence of a variety of clones in both animals and humans has been demonstrated. A few prevalent clones seem to be widely disseminated among different animal species and show a diverse geographical and temporal distribution. The same clones were found in animals and humans, which may infer that both farm and pet animals may act as potential vehicles of infection for humans. Some other clones seem to be less widely distributed. Clustering analysis of genomic fingerprints of Salmonella Dublin and Salm. Enteritidis isolates confirms the existence of a close phylogenetic relationship between both serotypes. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper describes the utility of a multiple genetic typing approach for Salm. Dublin. It gives useful information on clonal diversity among human and animal isolates.  相似文献   

11.
AIMS: Acid resistance could be an indicator of virulence since acid resistant strains are able to better survive the human stomach passage and in macrophages. We studied the acid resistance of several Salmonella Typhimurium DT104 strains isolated from food and humans and identified cellular parameters contributing to the enhanced acid resistance of these isolates. METHODS AND RESULTS: Acid resistance was tested in 37 Salmonella enterica Typhimurium serovar DT104 (S. Typhimurium DT104) strains. Acid adaptation at pH 5 followed by exposure for 2 h at pH 2.5 in the 27 human, nine nonhuman, and in two reference strains, revealed strong variation of acid survival. After 2 h at pH 2.5 six strains of S. Typhimurium DT104 were considered high acid resistant as they displayed a level of survival >10%, 14 strains were considered intermediate acid resistant (level of survival was <10% and >0.01%) and 19 strains were considered low acid resistant (level of survival <0.01%). Six strains were selected for further studies and proteomics revealed a relatively high amount of phase 2 flagellin in an acid-sensitive strain and a relatively high amount of the beta component of the H(+)/ATPase in an acid-resistant strain. Two strains were slightly more heat resistant possibly as the result of increased levels of DnaK or GroEL. CONCLUSIONS: A significant difference could be detected between human and food isolates regarding their acid resistance; all high acid-resistant strains were human isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: S. Typhimurium DT104 is known for two decades and has a great impact on human health causing serious food-borne diseases. Our results suggest the existence of a positive correlation between acid resistance and pathogenicity in S. Typhimurium DT104 as all high acid-resistant strains were isolated from humans.  相似文献   

12.
Antimicrobial resistance (AMR) in humans is inter-linked with AMR in other populations, especially farm animals, and in the wider environment. The relatively few bacterial species that cause disease in humans, and are the targets of antibiotic treatment, constitute a tiny subset of the overall diversity of bacteria that includes the gut microbiota and vast numbers in the soil. However, resistance can pass between these different populations; and homologous resistance genes have been found in pathogens, normal flora and soil bacteria. Farm animals are an important component of this complex system: they are exposed to enormous quantities of antibiotics (despite attempts at reduction) and act as another reservoir of resistance genes. Whole genome sequencing is revealing and beginning to quantify the two-way traffic of AMR bacteria between the farm and the clinic. Surveillance of bacterial disease, drug usage and resistance in livestock is still relatively poor, though improving, but achieving better antimicrobial stewardship on the farm is challenging: antibiotics are an integral part of industrial agriculture and there are very few alternatives. Human production and use of antibiotics either on the farm or in the clinic is but a recent addition to the natural and ancient process of antibiotic production and resistance evolution that occurs on a global scale in the soil. Viewed in this way, AMR is somewhat analogous to climate change, and that suggests that an intergovernmental panel, akin to the Intergovernmental Panel on Climate Change, could be an appropriate vehicle to actively address the problem.  相似文献   

13.
Aeromonas spp. are ubiquitous aquatic bacteria that cause serious infections in both poikilothermic and endothermic animals, including humans. Clinical isolates have shown an increasing incidence of antibiotic and antimicrobial drug resistance since the widespread use of antibiotics began. A total of 282 Aeromonas pure cultures were isolated from both urban and rural playa lakes in the vicinity of Lubbock, Texas, and several rivers in West Texas and New Mexico. Of these, at least 104 were subsequently confirmed to be independent isolates. The 104 isolates were identified by Biolog and belonged to 11 different species. The MICs of six metals, one metalloid, five antibiotics, and two antimicrobial drugs were determined. All aeromonads were sensitive to chromate, cobalt, copper, nickel, zinc, cefuroxime, kanamycin, nalidixic acid, ofloxacin, tetracycline, and sulfamethoxazole. Low incidences of trimethoprim resistance, mercury resistance, and arsenite resistance were found. Dual resistances were found in 5 of the 104 Aeromonas isolates. Greater numbers of resistant isolates were obtained from samples taken in March versus July 2002 and from sediment versus water. Plasmids were isolated from selected strains of the arsenite- and mercury-resistant organisms and were transformed into Escherichia coli XL1-Blue MRF′. Acquisition of the resistance phenotypes by the new host showed that these resistance genes were carried on the plasmids. Mercury resistance was found to be encoded on a conjugative plasmid. Despite the low incidence of resistant isolates, the six playa lakes and three rivers that were sampled in this study can be considered a reservoir for antimicrobial resistance genes.  相似文献   

14.
About 110 sporadic, epidemiologically unrelated Salmonella enterica serovar typhimurium strains isolated in the Slovak Republic were analyzed for the presence of integrons. Of these 110 examined strains, 47 were of definitive phage type DT104 and 63 were strains of various phage type, RDNC and untypeable, designated here as non-DT104 strains. All isolates were also tested for antimicrobial resistance to 10 antibiotics as well as for the presence of virulence plasmid. Of 63 non-DT104 strains, 15 isolates were multiple-resistant, independently from phage type, other strains were resistant to one, two or three drugs. Resistance to ampicillin, streptomycin, tetracycline and sulfisoxazole was most frequently observed. Among the DT104 isolates up 65.9% exhibited characteristic pentaresistance--ACSSuT phenotype. The integron content was studied in PCR experiments using a 5'-CS/3'-CS primer pair. Fourteen non-DT104 strains, independently from phage type, were found to carry integrons with amplicons 650-1900 bp in size. Thirty-six DT104 strains contained integrons of 1000 and 1200 bp and 31 of they exhibited the ACSSuT phenotype. No integron was found in 10 DT104 strains, which included strains mostly resistant only to streptomycin, tetracycline and sulfisoxazole. The majority of non-DT104 strains did not possess any integrons. Our findings show the widespread existence of both resistant and multiple-resistant epidemiologically unrelated Salmonella typhimurium strains and suggest that integrons contribute to this antimicrobial resistance. The presence of 90-kb virulence plasmid in the 54 non-DT104 and in the all DT104 strains was found.  相似文献   

15.
Salmonella enterica serovar Typhimurium DT104 (Salmonella Typhimurium DT104 or DT104) has been emerging as a common pathogen for human in Korea since 1997. In order to compare the genomic relationship and to search for the dominant strains in Korea, we conducted pulsed-field gel electrophoresis (PFGE) and IS200 fingerprinting of 25 epidemiological unrelated isolates from human and animals from Korea and cattle from America. Two Salmonella Typhimurium DT104 isolates from human in Korea and all 8 isolates from American cattle had indistinguishable patterns from the PFGE and IS200 fingerprinting but multidrug-resistant Salmonella Typhimurium isolates, including DT104, from Korean animals had diverse genetic patterns. The data suggest that a dominant DT104 strain might have circulated between Korean and American cattle and that it had a high level of clonality.  相似文献   

16.
Breeding pigs and one-half of their progeny were fed antimicrobial-free rations; the other half of the progeny received rations supplemented with 100 g of chlortetracycline (Ctc)/ton. Effects of dietary Ctc with respect to the distribution of species and biotypes of faecal Gram-positive cocci and their relative resistance to 12 antimicrobial agents were studied. Diversity of antimicrobial resistance (AMR) patterns and modal AMR patterns were determined for bacterial species common to all three groups. Numerical taxonomic analysis placed 1140 of 1150 isolates (99%) into 10 groups. Three of these were biotypes of Streptococcus faecium and contained the largest number of isolates ( n = 934, 81%). Streptococcus faecalis, Strep. morbillorum, Pediococcus halophilus and Gemella haemolysans also were isolated. Generally, the proportion of tetracycline-resistant strains for a species or biotype was greater from pigs fed Ctc, although differences were not significant ( P > 0.05). There was a significant difference ( P > 0.05) among all the groups for the percentage of penicillin-resistant strains in a biotype of Strep. faecium. Overall, 57 and 43 different AMR patterns, including 2 to 11 and 1 to 11 resistance determinants, were demonstrated in isolates from control pigs and pigs fed Ctc, respectively. Modal AMR patterns in species and biotypes were the same from both progeny groups, except for Strep. faecium. AMR pattern diversity was decreased for strains from pigs fed Ctc. Similar proportions of resistant strains from each group of progeny pigs were accompanied by decreased AMR pattern diversity in strains from pigs fed Ctc. These results indicated a change in distribution of AMR phenotypical patterns, rather than a change in overall frequency of individual resistant phenotypes.  相似文献   

17.
Breeding pigs and one-half of their progeny were fed antimicrobial-free rations; the other half of the progeny received rations supplemented with 100 g of chlortetracycline (Ctc)/ton. Effects of dietary Ctc with respect to the distribution of species and biotypes of faecal Gram-positive cocci and their relative resistance to 12 antimicrobial agents were studied. Diversity of antimicrobial resistance (AMR) patterns and modal AMR patterns were determined for bacterial species common to all three groups. Numerical taxonomic analysis placed 1140 of 1150 isolates (99%) into 10 groups. Three of these were biotypes of Streptococcus faecium and contained the largest number of isolates (n = 934, 81%). Streptococcus faecalis, Strep. morbillorum, Pediococcus halophilus and Gemella haemolysans also were isolated. Generally, the proportion of tetracycline-resistant strains for a species or biotype was greater from pigs fed Ctc, although differences were not significant (P greater than 0.05). There was a significant difference (P less than 0.05) among all the groups for the percentage of penicillin-resistant strains in a biotype of Strep. faecium. Overall, 57 and 43 different AMR patterns, including 2 to 11 and 1 to 11 resistance determinants, were demonstrated in isolates from control pigs and pigs fed Ctc, respectively. Modal AMR patterns in species and biotypes were the same from both progeny groups, except for Strep. faecium. AMR pattern diversity was decreased for strains from pigs fed Ctc. Similar proportions of resistant strains from each group of progeny pigs were accompanied by decreased AMR pattern diversity in strains from pigs fed Ctc. These results indicated a change in distribution of AMR phenotypical patterns, rather than a change in overall frequency of individual resistant phenotypes.  相似文献   

18.
Two hundred and twenty-six Salmonella enterica serotype Typhimurium isolates were examined for the presence of integron-associated gene cassettes. All but two of the non-DT104 isolates, together with DT104 isolates, contained gene cassettes. Amplicons of 1.5 kbp each were found in two non-DT104 isolates, encoding a dhfrI gene (trimethoprim resistance) linked to an aadA gene (streptomycin and spectinomycin resistance), by site-specific recombination. DT104 isolates of resistance (R) type ACSSuT possessed the recently described 1.0- and 1.2-kbp gene cassettes. Macrorestriction analysis with XbaI and DNA probing mapped ant(3")-1a, blaPSE-1, and dhfrI genes to large multiresistant gene clusters in a DT170a isolate and a DT193 isolate. In contrast, all DT104 isolates (R-type ACSSuT) possessed a conserved 10-kbp Xba1 DNA fragment. Our study highlights the occurrence of integrons (and antimicrobial resistance determinants) among serotype Typhimurium isolates other than DT104. Larger and previously unrecognized multiresistance gene clusters were identified in these isolates by DNA probing.  相似文献   

19.
Fifty-six human and 24 adult dairy cattle isolates of Salmonella enterica serovar Typhimurium from a single county in California were compared using ribotyping, insertion sequence typing (IS200), pulsed-field gel electrophoresis, plasmid typing, phage typing, and antimicrobial resistance testing. The majority of the isolates fell into one of two groups which were phage types DT104 and DT193. Combining the information from all typing methods, a total of 45 different "clusters" were defined, with 35 of those including only a single isolate. The library of isolates had a high degree of variability, but antibiotic resistance and plasmid typing each defined single clusters in which human or bovine isolates predominated (chi2, P < 0.05).  相似文献   

20.
Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) has caused significant morbidity and mortality in humans and animals for almost three decades. We completed the full DNA sequence of one DT104 strain, NCTC13348, and showed that significant differences between the genome of this isolate and the genome of the previously sequenced strain Salmonella serovar Typhimurium LT2 are due to integrated prophage elements and Salmonella genomic island 1 encoding antibiotic resistance genes. Thirteen isolates of Salmonella serovar Typhimurium DT104 with different pulsed-field gel electrophoresis (PFGE) profiles were analyzed by using multilocus sequence typing (MLST), plasmid profiling, hybridization to a pan-Salmonella DNA microarray, and prophage-based multiplex PCR. All the isolates belonged to a single MLST type, sequence type ST19. Microarray data demonstrated that the gene contents of the 13 DT104 isolates were remarkably conserved. The PFGE DNA fragment size differences in these isolates could be explained to a great extent by differences in the prophage and plasmid contents. Thus, here the nature of variation in different Salmonella serovar Typhimurium DT104 isolates is further defined at the gene and whole-genome levels, illustrating how this phage type evolves over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号