首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of magnetosomes in magnetotactic bacteria   总被引:1,自引:0,他引:1  
The ability of magnetotactic bacteria to orient and migrate along geomagnetic field lines is based on intracellular magnetic structures, the magnetosomes, which comprise nano-sized, membrane bound crystals of magnetic iron minerals. The formation of magnetosomes is achieved by a biological mechanism that controls the accumulation of iron and the biomineralization of magnetic crystals with a characteristic size and morphology within membrane vesicles. This paper focuses on the current knowledge about magnetotactic bacteria and will outline aspects of the physiology and molecular biology of magnetosome formation. The biotechnological potential of the biomineralization process is discussed.  相似文献   

2.
趋磁细菌的磁小体   总被引:4,自引:0,他引:4  
趋磁细菌是一类对磁场有趋向性反应的细菌,其菌体能吸收外界环境中铁元素并在体内合成包裹有膜的纳米磁性颗粒Fe3O4或Fe3O3S4晶体即磁小体。综述了趋磁细菌的磁小体生物矿化的条件,以及趋磁细菌的铁离子吸收、磁小体囊泡的形成、铁离子的转运到磁小体囊泡及囊泡中受控的Fe3O4生物矿化的分子生物学和生物化学等方面的研究进展,重点介绍了趋磁细菌磁小体合成机制的研究进展及未来研究磁小体的发展方向。  相似文献   

3.
Magnetotactic bacteria (MTB) are a diverse group of microorganisms with the ability to orient and migrate along geomagnetic field lines. This unique feat is based on specific intracellular organelles, the magnetosomes, which, in most MTB, comprise nanometer-sized, membrane bound crystals of magnetic iron minerals and organized into chains via a dedicated cytoskeleton. Because of the special properties of the magnetosomes, MTB are of great interest for paleomagnetism, environmental magnetism, biomarkers in rocks, magnetic materials and biomineralization in organisms, and bacterial magnetites have been exploited for a variety of applications in modern biological and medical sciences. In this paper, we describe general characteristics of MTB and their magnetic mineral inclusions, but focus mainly on the magnetosome formation and the magnetisms of MTB and bacterial magnetosomes, as well as on the significances and applications of MTB and their intracellular magnetic mineral crystals.  相似文献   

4.
Bacterial cells, like their eukaryotic counterparts, are capable of constructing lipid-based organelles that carry out essential biochemical functions. The magnetosomes of magnetotactic bacteria are one such compartment that is quickly becoming a model for exploring the process of organelle biogenesis in bacteria. Magnetosomes consist of a lipid-bilayer compartment that houses a magnetic crystal. By arranging magnetosomes into chains within the cell, magnetotactic bacteria create an internal compass that is used for navigation along magnetic fields. Over the past decade, a number of studies have elucidated the possible factors involved in the formation of the magnetosome membrane and biomineralization of magnetic minerals. Here, we highlight some of these recent advances with a particular focus on the cell biology of magnetosome formation.  相似文献   

5.
Magnetotactic bacteria have the ability to orient along geomagnetic field lines based on the formation of magnetosomes, which are intracellular nanometer-sized, membrane-enclosed magnetic iron minerals. The formation of these unique bacterial organelles involves several processes, such as cytoplasmic membrane invagination and magnetosome vesicle formation, the accumulation of iron in the vesicles, and the crystallization of magnetite. Previous studies suggested that the magA gene encodes a magnetosome-directed ferrous iron transporter with a supposedly essential function for magnetosome formation in Magnetospirillum magneticum AMB-1 that may cause magnetite biomineralization if expressed in mammalian cells. However, more recent studies failed to detect the MagA protein among polypeptides associated with the magnetosome membrane and did not identify magA within the magnetosome island, a conserved genomic region that is essential for magnetosome formation in magnetotactic bacteria. This raised increasing doubts about the presumptive role of magA in bacterial magnetosome formation, which prompted us to reassess MagA function by targeted deletion in Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1. Contrary to previous reports, magA mutants of both strains still were able to form wild-type-like magnetosomes and had no obvious growth defects. This unambiguously shows that magA is not involved in magnetosome formation in magnetotactic bacteria.  相似文献   

6.
Magnetosomes are prokaryotic organelles produced by magnetotactic bacteria that consist of nanometer-sized magnetite (Fe3O4) or/and greigite (Fe3S4) magnetic crystals enveloped by a lipid bilayer membrane. In magnetite-producing magnetotactic bacteria, proteins present in the magnetosome membrane modulate biomineralization of the magnetite crystal. In these microorganisms, genes that encode for magnetosome membrane proteins as well as genes involved in the construction of the magnetite magnetosome chain, the mam and mms genes, are organized within a genomic island. However, partially because there are presently no greigite-producing magnetotactic bacteria in pure culture, little is known regarding the greigite biomineralization process in these organisms including whether similar genes are involved in the process. Here using culture-independent techniques, we now show that mam genes involved in the production of magnetite magnetosomes are also present in greigite-producing magnetotactic bacteria. This finding suggest that the biomineralization of magnetite and greigite did not have evolve independently (that is, magnetotaxis is polyphyletic) as once suggested. Instead, results presented here are consistent with a model in which the ability to biomineralize magnetosomes and the possession of the mam genes was acquired by bacteria from a common ancestor, that is, the magnetotactic trait is monophyletic.  相似文献   

7.
Magnetotactic bacteria (MTB) use magnetosomes, membrane-bound crystals of magnetite or greigite, for navigation along geomagnetic fields. In Magnetospirillum magneticum sp. AMB-1, and other MTB, a magnetosome gene island (MAI) is essential for every step of magnetosome formation. An 8-gene region of the MAI encodes several factors implicated in control of crystal size and morphology in previous genetic and proteomic studies. We show that these factors play a minor role in magnetite biomineralization in vivo. In contrast, MmsF, a previously uncharacterized magnetosome membrane protein encoded within the same region plays a dominant role in defining crystal size and morphology and is sufficient for restoring magnetite synthesis in the absence of the other major biomineralization candidates. In addition, we show that the 18 genes of the mamAB gene cluster of the MAI are sufficient for the formation of an immature magnetosome organelle. Addition of MmsF to these 18 genes leads to a significant enhancement of magnetite biomineralization and an increase in the cellular magnetic response. These results define a new biomineralization protein and lay down the foundation for the design of autonomous gene cassettes for the transfer of the magnetic phenotype in other bacteria.  相似文献   

8.
Magnetotactic bacteria (MTB) are a group of Gram‐negative microorganisms that are able to sense and change their orientation in accordance with the geomagnetic field. This unique capability is due to the presence of a special suborganelle called the magnetosome, composed of either a magnetite or gregite crystal surrounded by a lipid membrane. MTB were first detected in 1975 and since then numerous efforts have been made to clarify the special mechanism of magnetosome formation at the molecular level. Magnetosome formation can be divided into several steps, beginning with vesicle invagination from the cell membrane, through protein sorting, followed by the combined steps of iron transportation, biomineralization, and the alignment of magnetosomes into a chain. The magnetosome‐chain enables the sensing of the magnetic field, and thus, allows the MTB to navigate. It is known that magnetosome formation is tightly controlled by a distinctive set of magnetosome‐associated proteins that are encoded mainly in a genomically conserved region within MTB called the magnetosome island (MAI). Most of these proteins were shown to have an impact on the magnetism of MTB. Here, we describe the process in which the magnetosome is formed with an emphasis on the different proteins that participate in each stage of the magnetosome formation scheme.  相似文献   

9.
趋磁细菌磁小体研究进展   总被引:5,自引:0,他引:5  
趋磁细菌能在细胞内形成由膜包裹的纳米级单畴磁性颗粒——磁小体。磁小体的形成是受生物严格控制的矿化过程,包括铁离子的吸收、转运和结晶成核等。磁小体膜在磁铁矿(Fe3O4)晶体的形成中起着重要的作用。主要介绍近年来关于磁小体形成过程和参与这一过程的蛋白质等方面的一些重要研究进展。  相似文献   

10.
The magnetosomes of magnetotactic bacteria are prokaryotic organelles consisting of a magnetite crystal bounded by a phospholipid bilayer that contains a distinct set of proteins with various functions. Because of their unique magnetic and crystalline properties, magnetosome particles are potentially useful as magnetic nanoparticles in a number of applications, which in many cases requires the coupling of functional moieties to the magnetosome membrane. In this work, we studied the use of green fluorescent protein (GFP) as a reporter for the magnetosomal localization and expression of fusion proteins in the microaerophilic Magnetospirillum gryphiswaldense by flow cytometry, fluorescence microscopy, and biochemical analysis. Although optimum conditions for high fluorescence and magnetite synthesis were mutually exclusive, we established oxygen-limited growth conditions, which supported growth, magnetite biomineralization, and GFP fluorophore formation at reasonable rates. Under these optimized conditions, we studied the subcellular localization and expression of the GFP-tagged magnetosome proteins MamC, MamF, and MamG by fluorescence microscopy and immunoblotting. While all fusions specifically localized at the magnetosome membrane, MamC-GFP displayed the strongest expression and fluorescence. MamC-GFP-tagged magnetosomes purified from cells displayed strong fluorescence, which was sensitive to detergents but stable under a wide range of temperature and salt concentrations. In summary, our data demonstrate the use of GFP as a reporter for protein localization under magnetite-forming conditions and the utility of MamC as an anchor for magnetosome-specific display of heterologous gene fusions.  相似文献   

11.
The ability of magnetotactic bacteria (MTB) to orient and migrate along magnetic field lines is based on magnetosomes, which are membrane-enclosed intracellular crystals of a magnetic iron mineral. Magnetosome biomineralization is achieved by a process involving control over the accumulation of iron and deposition of the magnetic particle, which has a specific morphology, within a vesicle provided by the magnetosome membrane. In Magnetospirillum gryphiswaldense, the magnetosome membrane has a distinct biochemical composition and comprises a complex and specific subset of magnetosome membrane proteins (MMPs). Classes of MMPs include those with presumed function in magnetosome-directed uptake and binding of iron, nucleation of crystal growth, and the assembly of magnetosome membrane multiprotein complexes. Other MMPs comprise protein families of so far unknown function, which apparently are conserved between all other MTB. The mam and mms genes encode most of the MMPs and are clustered within several operons, which are part of a large, unstable genomic region constituting a putative magnetosome island. Current research is directed towards the biochemical and genetic analysis of MMP functions in magnetite biomineralization as well as their expression and localization during growth.Abbreviations MM Magnetosome membrane - MMP Magnetosome membrane protein - MTB Magnetotactic bacteria  相似文献   

12.
Klumpp S  Faivre D 《PloS one》2012,7(3):e33562
Magnetotactic bacteria assemble chains of magnetosomes, organelles that contain magnetic nano-crystals. A number of genetic factors involved in the controlled biomineralization of these crystals and the assembly of magnetosome chains have been identified in recent years, but how the specific biological regulation is coordinated with general physical processes such as diffusion and magnetic interactions remains unresolved. Here, these questions are addressed by simulations of different scenarios for magnetosome chain formation, in which various physical processes and interactions are either switched on or off. The simulation results indicate that purely physical processes of magnetosome diffusion, guided by their magnetic interactions, are not sufficient for the robust chain formation observed experimentally and suggest that biologically encoded active movements of magnetosomes may be required. Not surprisingly, the chain pattern is most resembling experimental results when both magnetic interactions and active movement are coordinated. We estimate that the force such active transport has to generate is compatible with forces generated by the polymerization or depolymerization of cytoskeletal filaments. The simulations suggest that the pleiotropic phenotypes of mamK deletion strains may be due to a defect in active motility of magnetosomes and that crystal formation in magneteosome vesicles is coupled to the activation of their active motility in M. gryphiswaldense, but not in M. magneticum.  相似文献   

13.
Magnetotactic bacteria contain nanometre-sized, membrane-bound organelles, called magnetosomes, which are tasked with the biomineralization of small crystals of the iron oxide magnetite allowing the organism to use geomagnetic field lines for navigation. A key player in this process is the HtrA/DegP family protease MamE. In its absence, Magnetospirillum magneticum str AMB-1 is able to form magnetosome membranes but not magnetite crystals, a defect previously linked to the mislocalization of magnetosome proteins. In this work we use a directed genetic approach to find that MamE, and another predicted magnetosome-associated protease, MamO, likely function as proteases in vivo. However, as opposed to the complete loss of mamE where no biomineralization is observed, the protease-deficient variant of this protein still supports the initiation and formation of small, 20 nm-sized crystals of magnetite, too small to hold a permanent magnetic dipole moment. This analysis also reveals that MamE is a bifunctional protein with a protease-independent role in magnetosome protein localization and a protease-dependent role in maturation of small magnetite crystals. Together, these results imply the existence of a previously unrecognized 'checkpoint' in biomineralization where MamE moderates the completion of magnetite formation and thus committal to magneto-aerotaxis as the organism's dominant mode of navigating the environment.  相似文献   

14.
The ultrastructure of the greigite magnetosome membrane in the multicellular magnetotactic bacteria 'Candidatus Magnetoglobus multicellularis' was studied. Each cell contains 80 membrane-enclosed iron-sulfide magnetosomes. Cytochemistry methods showed that the magnetosomes are enveloped by a structure whose staining pattern and dimensions are similar to those of the cytoplasmic membrane, indicating that the magnetosome membrane likely originates from the cytoplasmic membrane. Freeze-fracture showed intramembrane particles in the vesicles surrounding each magnetosome. Observations of cell membrane invaginations, the trilaminar membrane structure of immature magnetosomes, and empty vesicles together suggested that greigite magnetosome formation begins by invagination of the cell membrane, as has been proposed for magnetite magnetosomes.  相似文献   

15.
Magnetotactic bacteria are a diverse group of prokaryotes that biomineralize intracellular magnetosomes, composed of magnetic (Fe3O4) crystals each enveloped by a lipid bilayer membrane that contains proteins not found in other parts of the cell. Although partial roles of some of these magnetosome proteins have been determined, the roles of most have not been completely elucidated, particularly in how they regulate the biomineralization process. While studies on the localization of these proteins have been focused solely on Magnetospirillum species, the goal of the present study was to determine, for the first time, the localization of the most abundant putative magnetosome membrane protein, MamC, in Magnetococcus marinus strain MC-1. MamC was expressed in Escherichia coli and purified. Monoclonal antibodies were produced against MamC and immunogold labeling TEM was used to localize MamC in thin sections of cells of M. marinus. Results show that MamC is located only in the magnetosome membrane of Mc. marinus. Based on our findings and the abundance of this protein, it seems likely that it is important in magnetosome biomineralization and might be used in controlling the characteristics of synthetic nanomagnetite.  相似文献   

16.
Magnetotactic bacteria synthesize uniform-sized and regularly shaped magnetic nanoparticles in their organelles termed magnetosomes. Homeostasis of the magnetosome lumen must be maintained for its role accomplishment. Here, we developed a method to estimate the pH of a single living cell of the magnetotactic bacterium Magnetospirillum magneticum AMB-1 using a pH-sensitive fluorescent protein E2GFP. Using the pH measurement, we estimated that the cytoplasmic pH was approximately 7.6 and periplasmic pH was approximately 7.2. Moreover, we estimated pH in the magnetosome lumen and cytoplasmic surface using fusion proteins of E2GFP and magnetosome-associated proteins. The pH in the magnetosome lumen increased during the exponential growth phase when magnetotactic bacteria actively synthesize magnetite crystals, whereas pH at the magnetosome surface was not affected by the growth stage. This live-cell pH measurement method will help for understanding magnetosome pH homeostasis to reveal molecular mechanisms of magnetite biomineralization in the bacterial organelle.  相似文献   

17.
综述了近年趋磁细菌纳米磁小体生物合成的分子机制及应用进展。磁小体的合成涉及磁小体膜的形成、铁的吸收和转运、磁小体晶体的矿化、成熟以及磁小体的链状排列等。其中Mam J和Mam K互作并丝状排列,固定磁小体使其链状排列及磁小体膜由细胞质膜内陷而形成是两个令人注目的成就。我们也提出了关于磁小体的生理意义及合成机制的假说:细胞在低氧浓度下由于氧胁迫大量吸收铁,Fe3+/Fe2+电子对可起到类似O2/H2O的作用,产生能量并作为电子受体;Fe3+得到电子还原成的Fe2+可引起Fenton反应,此反应产生的活性氧可影响到生物体的正常生理代谢,细胞为降低Fe2+浓度,将其与Fe3+一同转化为Fe3O4颗粒;磁小体的生理功能之一是降低胞内的活性氧。  相似文献   

18.
Magnetotactic bacteria synthesize magnetosomes, which cause them to orient and migrate along magnetic field lines. The analysis of magnetotaxis and magnetosome biomineralization at the molecular level has been hindered by the unavailability of genetic methods, namely the lack of a means to introduce directed gene-specific mutations. Here we report a method for knockout mutagenesis by homologous recombination in Magnetospirillum gryphiswaldense. Multiple flagellin genes, which are unlinked in the genome, were identified in M. gryphiswaldense. The targeted disruption of the flagellin gene flaA was shown to eliminate flagella formation, motility, and magnetotaxis. The techniques described in this paper will make it possible to take full advantage of the forthcoming genome sequences of M. gryphiswaldense and other magnetotactic bacteria.  相似文献   

19.
Magnetotactic bacteria (MTB) synthesize intracellular magnetic nanocrystals called magnetosomes, which are composed of either magnetite (Fe3O4) or greigite (Fe3S4) and covered with lipid membranes. The production of magnetosomes is achieved by the biomineralization process with strict control over the formation of magnetosome membrane vesicles, uptake and transport of iron ions, and synthesis of mature crystals. These magnetosomes have high potential for both biotechnological and nanotechnological applications, but it is still extremely difficult to grow MTB and produce a large amount of magnetosomes under the conventional cultural conditions. Here, we investigate as a first attempt the effect of polyethylene glycol (PEG) added to the culture medium on the increase in the yield of magnetosomes formed in Magnetospirillum magnetotacticum MS-1. We find that the yield of the formation of magnetosomes can be increased up to approximately 130 % by adding PEG200 to the culture medium. We also measure the magnetization of the magnetosomes and find that the magnetosomes possess soft ferromagnetic characteristics and the saturation mass magnetization is increased by 7 %.  相似文献   

20.
The ability of magnetotactic bacteria (MTB) to orient in magnetic fields is based on the synthesis of magnetosomes, which are unique prokaryotic organelles comprising membrane-enveloped, nano-sized crystals of a magnetic iron mineral that are aligned in well-ordered intracellular chains. Magnetosome crystals have species-specific morphologies, sizes, and arrangements. The magnetosome membrane, which originates from the cytoplasmic membrane by invagination, represents a distinct subcellular compartment and has a unique biochemical composition. The roughly 20 magnetosome-specific proteins have functions in vesicle formation, magnetosomal iron transport, and the control of crystallization and intracellular arrangement of magnetite particles. The assembly of magnetosome chains is under genetic control and involves the action of an acidic protein that links magnetosomes to a novel cytoskeletal structure, presumably formed by a specific actin-like protein. A total of 28 conserved genes present in various magnetic bacteria were identified to be specifically associated with the magnetotactic phenotype, most of which are located in the genomic magnetosome island. The unique properties of magnetosomes attracted broad interdisciplinary interest, and MTB have recently emerged as a model to study prokaryotic organelle formation and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号