首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spacecraft hardware and assembly cleanroom surfaces (233 m(2) in total) were sampled, total genomic DNA was extracted, hypervariable regions of the 16S rRNA gene (bacteria and archaea) and ribosomal internal transcribed spacer (ITS) region (fungi) were subjected to 454 tag-encoded pyrosequencing PCR amplification, and 203,852 resulting high-quality sequences were analyzed. Bioinformatic analyses revealed correlations between operational taxonomic unit (OTU) abundance and certain sample characteristics, such as source (cleanroom floor, ground support equipment [GSE], or spacecraft hardware), cleaning regimen applied, and location about the facility or spacecraft. National Aeronautics and Space Administration (NASA) cleanroom floor and GSE surfaces gave rise to a larger number of diverse bacterial communities (619 OTU; 20 m(2)) than colocated spacecraft hardware (187 OTU; 162 m(2)). In contrast to the results of bacterial pyrosequencing, where at least some sequences were generated from each of the 31 sample sets examined, only 13 and 18 of these sample sets gave rise to archaeal and fungal sequences, respectively. As was the case for bacteria, the abundance of fungal OTU in the GSE surface samples dramatically diminished (9× less) once cleaning protocols had been applied. The presence of OTU representative of actinobacteria, deinococci, acidobacteria, firmicutes, and proteobacteria on spacecraft surfaces suggests that certain bacterial lineages persist even following rigorous quality control and cleaning practices. The majority of bacterial OTU observed as being recurrent belonged to actinobacteria and alphaproteobacteria, supporting the hypothesis that the measures of cleanliness exerted in spacecraft assembly cleanrooms (SAC) inadvertently select for the organisms which are the most fit to survive long journeys in space.  相似文献   

2.
The nuclear ribosomal Internal Transcribed Spacer ITS region is widely used as a DNA metabarcoding marker to characterize the diversity and composition of fungal communities. In amplicon pyrosequencing studies of fungal diversity, one of the spacers ITS1 or ITS2 of the ITS region is normally used. In this methodological study we evaluate the usability of ITS1 vs. ITS2 as a DNA metabarcoding marker for fungi. We analyse three data sets: two comprising ITS1 and ITS2 sequences of known taxonomic affiliations and a third comprising ITS1 and ITS2 environmental amplicon pyrosequencing data. Clustering analyses of sequences with known taxonomy using the bioinformatics pipeline ClustEx revealed that a 97% similarity cut‐off represent a reasonable threshold for estimating the number of known species in the data sets for both ITS1 and ITS2. However, no single threshold value worked well for all fungi at the same time within the curated UNITE database, and we found that the Operational Taxonomic Unit (OTU) concept is not easily translated into the level of species because many species are distributed over several clusters. Clustering analyses of the 134 692 ITS1 and ITS2 pyrosequences using a 97% similarity cut‐off revealed a high similarity between the two data sets when it comes to taxonomic coverage. Although some groups are under‐ or unrepresented in the two data sets due to, e.g. primer mismatches, our results indicate that ITS1 and ITS2 to a large extent yield similar results when used as DNA metabarcodes for fungi.  相似文献   

3.
Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km2 along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities.  相似文献   

4.
【目的】了解八门湾红树林生态系统中不同生境(潮间带、海洋到红树区的过渡带、海桑红树区)和不同深度土壤的可培养真菌的多样性。【方法】采用稀释涂布平板法分离土壤中的真菌,利用形态学观察和ITS rDNA序列分析技术研究可培养真菌的表观和遗传多样性。【结果】从八门湾红树林生态系统的3个不同生境中分离到257株真菌,分别属于21属28种,其中青霉属(Penicillium)、曲霉属(Aspergillus)和木霉属(Trichoderma)为优势类群。来自不同生境或者同一生境不同采样深度的土壤真菌种类组成不同,并且有些真菌类群只出现在特定的样品中。从空间角度看,红树区土壤样品的真菌多样性高于其他两个生境的土壤样品;从垂直角度看,潮间带和过渡带的表层土壤样品的真菌多样性高于深层土壤样品,而红树区的深层土壤样品真菌多样性高于表层土壤样品。【结论】八门湾红树林生态系统中的可培养真菌资源丰富,种类多样性较高,但不同生境或不同深度的可培养真菌分布存在较大的差异。这些结果揭示了红树林土壤中可培养真菌的生态分布特点,也为红树林真菌资源的开发利用提供了基础的背景资料。  相似文献   

5.
The arbuscular mycorrhizal (AM) fungal resources present in wheat fields of the Canadian Prairie were explored using 454 pyrosequencing. Of the 33 dominant AM fungal operational taxonomic units (OTUs) found in the 76 wheat fields surveyed at anthesis in 2009, 14 clustered as Funneliformis - Rhizophagus, 16 as Claroideoglomus, and 3 as Diversisporales. An OTU of Funneliformis mosseae and one OTU of Diversisporales each accounted for approximately 16% of all AM fungal OTUs. The former was ubiquitous, and the latter was mainly restricted to the Black and Dark Brown Chernozems. AM fungal OTU community composition was better explained by the Chernozem great groups (P = 0.044) than by measured soil properties. Fifty-two percent of the AM fungal OTUs were unrelated to measured soil properties. Black Chernozems hosted the largest AM fungal OTU diversity and almost twice the number of AM fungal sequences seen in Dark Brown Chernozems, the great group ranking second for AM fungal sequence abundance. Brown Chernozems hosted the lowest AM fungal abundance and an AM fungal diversity as low as that seen in Gray soils. We concluded that Black Chernozems are most conducive to AM fungal proliferation. AM fungi are generally distributed according to Chernozem great groups in the Canadian Prairie, although some taxa are evenly distributed in all soil groups.  相似文献   

6.
The entomopathogenic fungus Beauveria bassiana is widely used as a biological control agent (BCA) for insect pest control, with fungal propagules being either incorporated into the potting media or soil or sprayed directly onto the foliage or soil. To gain a better understanding of entomopathogenic fungal ecology when applied as a BCA to the soil environment, a case study using tag-encoded 454 pyrosequencing of fungal ITS sequences was performed to assess the fate and potential effect of an artificially applied B. bassiana strain on the diversity of soil fungal communities in an agricultural field in India. Results show that the overall fungal diversity was not influenced by application of B. bassiana during the 7 weeks of investigation. Strain-specific microsatellite markers indicated both an establishment of the applied B. bassiana strain in the treated plot and its spread to the neighboring nontreated control plot. These results might be important for proper risk assessment of entomopathogenic fungi-based BCAs.  相似文献   

7.
Owing to previous methodological limitations, knowledge about the fine-scale distribution of fungal mycelia in decaying logs is limited. We investigated fungal communities in decaying Norway spruce logs at various spatial scales at two environmentally different locations in Sweden. On the basis of 454 pyrosequencing of the ITS2 region of rDNA, 1914 operational taxonomic units (OTUs) were detected in 353 samples. The communities differed significantly among logs, but the physical distance between logs was not found to have a significant effect on whether fungal communities had any resemblance to each other. Within a log, samples that were closer together generally had communities that showed more resemblance to each other than those that were further apart. OTUs characteristic for particular positions on the logs could be identified. In general, these OTUs did not overlap with the most abundant OTUs, and their ecological role was often unknown. Only a few OTUs were detected in the majority of logs, whereas numerous OTUs were rare and present in only one or a few logs. Wood-decaying Basidiomycetes were often represented by higher sequence reads in individual logs than Ascomycete OTUs, suggesting that Basidiomycete mycelia spread out more rapidly when established. OTU richness tended to increase with the decay stage of the sample; however, the known wood decayers were most abundant in less-decomposed samples. The fungi identified in the logs represented different ecological strategies. Our findings differ from previously published sporocarp studies, indicating that the highly abundant fruiting species may respond to environment in different ways than the rest of the fungal community.  相似文献   

8.
Fungi associated with the decomposition of Nypa fruticans in Malaysia are under investigation. Forty-one fungi have been identified including 35 ascomycetes, four mitosporic fungi and two basidiomycetes. The distribution of intertidal fungi on palm structures including leaves, leaf veins, rachides, petiole bases, and inflorescences, and fungi on terrestrial parts have also been examined. No fungi were found on the leaf material, although several fungi were found on the leaf midribs, and possible reasons for this are given. Very few taxa developed on the inflorescences, but those that were present were abundant. The greatest density of fruiting structures occurred on the rachides, and the greatest diversity of fungal species occurred on the petiole bases. The terrestrial fungi differed from the intertidal fungi, although Linocarpon nipae occurred in both habitats. Reasons for the differences in fungal numbers and diversity on the various palm parts are discussed. The diversity of fungi at Morib mangrove was low when compared to previous studies on fungi on Nypa palm at Kampong Api Api in Brunei and in this study at Kuala Selangor mangrove in Malaysia.  相似文献   

9.
The Schimacher Oasis, an ice-free plateau in East Antarctic Dronning Maud Land, consists of over 120 freshwater lakes. These lakes are connected largely through four major surface channels. The bacterial diversity in these lake ecosystems remains largely unexplored. In this study, we compared the bacterial diversity in five freshwater lakes (L42, L46, L47, L50, and L51) interconnected by two surface channels using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) method. We further compared the resultant bacterial composition from these five lakes with another freshwater lake in the Schirmacher Oasis, Lake Tawani(P), which is not connected through the same surface channels. Using bTEFAP, we differentiated nine different phyla with the phyla Proteobacteria (especially the class Alphaproteobacteria) and Bacteroidetes (the class Sphingobacteria) dominating in lakes interconnected by surface channel 1, while the phyla Chloroflexi and Firmicutes were highly abundant in lakes interconnected by surface channel 2. The operational taxonomic unit (OTU) network and Principle Coordinate Analysis (PCoA) plot based on unweighted UNIFRAC determined that the bacterial assemblages found in these five lakes are different than the bacterial composition residing in Lake Tawani(P). The distribution and the diversity of the bacterial communities in Schirmacher Oasis freshwater lakes that are connected through surface channels may provide an insight into the role of the extreme physico-chemical parameters that help shape microbially driven functional ecosystems in other oases on this icy continent.  相似文献   

10.
Although the commonly used internal transcribed spacer region of rDNA (ITS) is well suited for taxonomic identification of fungi, the information on the relative abundance of taxa and diversity is negatively affected by the multicopy nature of rDNA and the existence of ITS paralogues. Moreover, due to high variability, ITS sequences cannot be used for phylogenetic analyses of unrelated taxa. The part of single‐copy gene encoding the second largest subunit of RNA polymerase II (rpb2) was thus compared with first spacer of ITS as an alternative marker for the analysis of fungal communities in spruce forest topsoil, and their applicability was tested on a comprehensive mock community. In soil, rpb2 exhibited broad taxonomic coverage of the entire fungal tree of life including basal fungal lineages. The gene exhibited sufficient variation for the use in phylogenetic analyses and taxonomic assignments, although it amplifies also paralogues. The fungal taxon spectra obtained with rbp2 region and ITS1 corresponded, but sequence abundance differed widely, especially in the basal lineages. The proportions of OTU counts and read counts of major fungal groups were close to the reality when rpb2 was used as a molecular marker while they were strongly biased towards the Basidiomycota when using the ITS primers ITS1/ITS4. Although the taxonomic placement of rbp2 sequences is currently more difficult than that of the ITS sequences, its discriminative power, quantitative representation of community composition and suitability for phylogenetic analyses represent significant advantages.  相似文献   

11.
Studying patterns of species distributions along elevation gradients is frequently used to identify the primary factors that determine the distribution, diversity and assembly of species. However, despite their crucial role in ecosystem functioning, our understanding of the distribution of below‐ground fungi is still limited, calling for more comprehensive studies of fungal biogeography along environmental gradients at various scales (from regional to global). Here, we investigated the richness of taxa of soil fungi and their phylogenetic diversity across a wide range of grassland types along a 2800 m elevation gradient at a large number of sites (213), stratified across a region of the Western Swiss Alps (700 km2). We used 454 pyrosequencing to obtain fungal sequences that were clustered into operational taxonomic units (OTUs). The OTU diversity–area relationship revealed uneven distribution of fungal taxa across the study area (i.e. not all taxa are everywhere) and fine‐scale spatial clustering. Fungal richness and phylogenetic diversity were found to be higher in lower temperatures and higher moisture conditions. Climatic and soil characteristics as well as plant community composition were related to OTU alpha, beta and phylogenetic diversity, with distinct fungal lineages suggesting distinct ecological tolerances. Soil fungi, thus, show lineage‐specific biogeographic patterns, even at a regional scale, and follow environmental determinism, mediated by interactions with plants.  相似文献   

12.
Revealing the relationship between plants and root-associated fungi is very important in understanding diversity maintenance and community assembly in ecosystems. However, the community assembly of root-associated fungi of focal plant species along a subtropical plant species diversity gradient is less documented. Here, we examined root-associated fungal communities associated with five ectomycorrhizal (EM) plant species (Betula luminifera, Castanea henryi, Castanopsis fargesii, C. sclerophylla, and Quercus serrate) in a Chinese subtropical woody plant species diversity (1, 2, 4, 8, 16 and 24 species) experiment, using paired-end Illumina MiSeq sequencing of the ITS2 region. In total, we detected 1933 root-associated fungal operational taxonomic units (OTUs) at a 97% sequence similarity level. Plant identity had a significant effect on total and saprotrophic fungal OTU richness, but plant species diversity level had a significant effect on saprotrophic and pathogenic fungal OTU richness. The community composition of total, saprotrophic and EM fungi was structured by plant identity and plant species diversity level. However, the community composition of pathogenic fungi was only shaped by plant identity. This study highlights that plant identity has a stronger effect on the root-associated fungal community than plant species diversity level in a diverse subtropical forest ecosystem.  相似文献   

13.
This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs). Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems.  相似文献   

14.
Next generation sequencing technology has revolutionised microbiology by allowing concurrent analysis of whole microbial communities. Here we developed and verified similar methods for the analysis of fungal communities using a proton release sequencing platform with the ability to sequence reads of up to 400 bp in length at significant depth. This read length permits the sequencing of amplicons from commonly used fungal identification regions and thereby taxonomic classification. Using the 400 bp sequencing capability, we have sequenced amplicons from the ITS1, ITS2 and LSU fungal regions to a depth of approximately 700,000 raw reads per sample. Representative operational taxonomic units (OTUs) were chosen by the USEARCH algorithm, and identified taxonomically through nucleotide blast (BLASTn). Combination of this sequencing technology with the bioinformatics pipeline allowed species recognition in two controlled fungal spore populations containing members of known identity and concentration. Each species included within the two controlled populations was found to correspond to a representative OTU, and these OTUs were found to be highly accurate representations of true biological sequences. However, the absolute number of reads attributed to each OTU differed among species. The majority of species were represented by an OTU derived from all three genomic regions although in some cases, species were only represented in two of the regions due to the absence of conserved primer binding sites or due to sequence composition. It is apparent from our data that proton release sequencing technologies can deliver a qualitative assessment of the fungal members comprising a sample. The fact that some fungi cannot be amplified by specific “conserved” primer pairs confirms our recommendation that a multi-region approach be taken for other amplicon-based metagenomic studies.  相似文献   

15.
In a previous study from our laboratory we used automated ribosomal intergenic spacer analysis (ARISA) to assess salt-marsh fungal diversity (Torzilli et al. 2006). The results demonstrated that different salt-marsh plants harbor distinct fungal communities, thereby supporting the hypothesis that substratum type is an important factor in determining fungal community composition. However, ARISA of several pure cultures of salt-marsh fungi indicated that an operational taxonomic unit (OUT) in an ARISA community profile may represent more than one taxon. To assess the extent to which such ambiguity might have affected the interpretation of our ARISA fingerprinting, we have now fingerprinted and sequenced clones derived from the same fungal DNA used for our ARISA community profiles. Results from this confirmed that an ARISA OTU may represent multiple taxa and that a given taxon may be represented by more than one OTU. Nonetheless, sequencing still confirmed the importance of substratum in determining community composition, and indicated that despite ambiguities associated with OTU's, ARISA may be used to provide a quick snapshot of diversity which can be further refined using sequencing methods. In addition, we compared the fungal diversity from short-form Spartina alterniflora as revealed by clone sequencing with that obtained from pyrosequencing, which avoids the cloning biases of traditional sequencing, and provide greatly expanded depth of coverage. Pyrosequencing significantly enhanced the characterization of fungal diversity compared to traditional clone sequencing.  相似文献   

16.
The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7–100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen‐associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen‐associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen‐associated fungi was not evident.  相似文献   

17.
Although bryophytes are a dominant vegetation component of boreal and alpine ecosystems, little is known about their associated fungal communities. HPLC assays of ergosterol (fungal biomass) and amplicon pyrosequencing of the ITS2 region of rDNA were used to investigate how the fungal communities associated with four bryophyte species changed across an elevational gradient transitioning from conifer forest to the low‐alpine. Fungal biomass and OTU richness associated with the four moss hosts did not vary significantly across the gradient (P > 0.05), and both were more strongly affected by host and tissue type. Despite largely constant levels of fungal biomass, distinct shifts in community composition of fungi associated with Hylocomium, Pleurozium and Polytrichum occurred between the elevation zones of the gradient. This likely is a result of influence on fungal communities by major environmental factors such as temperature, directly or indirectly mediated by, or interacting with, the response of other components of the vegetation (i.e. the dominant trees). Fungal communities associated with Dicranum were an exception, exhibiting spatial autocorrelation between plots, and no significant structuring by elevation. Nevertheless, the detection of distinct fungal assemblages associated with a single host growing in different elevation zones along an elevational gradient is of particular relevance in the light of the ongoing changes in vegetation patterns in boreal and alpine systems due to global climate warming.  相似文献   

18.
Sponges are ancient metazoans that host diverse and complex microbial communities. Sponge-associated microbial diversity has been studied from wide oceans across the globe, particularly in subtidal regions, but the microbial communities from intertidal sponges have remained mostly unexplored. Here we used pyrosequencing to characterize the microbial communities in 12 different co-occurring intertidal marine sponge species sampled from the Atlantic coast, revealing a total of 686 operational taxonomic units (OTUs) at 97% sequence similarity. Taxonomic assignment of 16S ribosomal RNA tag sequences estimated altogether 26 microbial groups, represented by bacterial (75.5%) and archaeal (22%) domains. Proteobacteria (43.4%) and Crenarchaeota (20.6%) were the most dominant microbial groups detected in all the 12 marine sponge species and ambient seawater. The Crenarchaeota microbes detected in three Atlantic Ocean sponges had a close similarity with Crenarchaeota from geographically separated subtidal Red Sea sponges. Our study showed that most of the microbial communities observed in sponges (73%) were also found in the surrounding ambient seawater suggesting possible environmental acquisition and/or horizontal transfer of microbes. Beyond the microbial diversity and community structure assessments (NMDS, ADONIS, ANOSIM), we explored the interactions between the microbial communities coexisting in sponges using the checkerboard score (C-score). Analyses of the microbial association pattern (co-occurrence) among intertidal sympatric sponges revealed the random association of microbes, favoring the hypothesis that the sponge-inhabiting microbes are recruited from the habitat mostly by chance or influenced by environmental factors to benefit the hosts.  相似文献   

19.
Bacterioplankton community diversity was investigated in the subtropical Brisbane River-Moreton Bay estuary, Australia (27 degrees 25 minutes S, 153 degrees 5 minutes E). Bacterial communities were studied using automated rRNA intergenic spacer analysis (ARISA), which amplifies 16S-23S ribosomal DNA internally transcribed spacer regions from mixed-community DNA and detects the separated products on a fragment analyzer. Samples were collected from eight sites throughout the estuary and east to the East Australian Current (Coral Sea). Bacterioplankton communities had the highest operational taxonomic unit (OTU) richness, as measured by ARISA at eastern bay stations (S [total richness] = 84 to 85 OTU) and the lowest richness in the Coral Sea (S = 39 to 59 OTU). Richness correlated positively with bacterial abundance; however, there were no strong correlations between diversity and salinity, NO(3)(-) and PO(4)(3-) concentrations, or chlorophyll a concentration. Bacterioplankton communities at the riverine stations were different from communities in the bay or Coral Sea. The main differences in OTU richness between stations were in taxa that each represented 0.1% (the detection limit) to 0.5% of the total amplified DNA, i.e., the "tail" of the distribution. We found that some bacterioplankton taxa are specific to distinct environments while others have a ubiquitous distribution from river to sea. Bacterioplankton richness and diversity patterns in the estuary are potentially a consequence of greater niche availability, mixing of local and adjacent environment communities, or intermediate disturbance. Furthermore, these results contrast with previous reports of spatially homogeneous bacterioplankton communities in other coastal waters.  相似文献   

20.
Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号